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The role of adaptive methods

Ordinarily, in a clinical trial one specifies at the outset:

Patient population,

Treatment,

Primary endpoint,

Hypothesis to be tested,

Power at a specific effect size.

Adaptive designs allow these elements to be reviewed during the trial.

Because . . . there may be limited information to guide these choices initially,

but more knowledge will accrue as the study progresses.
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Critical appraisal of adaptive designs

It is important to assess the benefits a new approach will be able to deliver.

How can the benefits be assessed?

Are these benefits real?

What “standard” methods should be used for comparison?

We shall use simulation to appraise adaptive methods for three applications:

1: Sample size modification,

2: Switching to a patient sub-population,

3: Treatment selection and testing in a combined Phase II/III design.
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1. Sample size modification to increase power

Type I error and power

Suppose θ represents the effect of a new treatment vs control.

A study is to test H0: θ ≤ 0 against θ > 0 with

one-sided type I error probability α = 0.025, say.

Sample size can be chosen to give a specific power curve.

-
θ0 δ

6
1−β

α . . . . . . . . . . . . . . . . . . . . .
Power

(Assume there is no unknown “nuisance parameter” such as a normal variance or

overall failure rate for survival data which appears in this relationship.)
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Sample size modification to increase power

Investigators may start out optimistically and design a trial with power to detect a

large treatment effect. Interim data may then suggest a smaller effect size — still

clinically important but difficult to demonstrate with the chosen sample size.

• An adaptive design can allow sample size to be increased during the trial,

rescuing an under-powered study.

• Some would advocate this wait and see approach as a way to “let the data say”

what power and sample size should be chosen.

• Or, a group sequential design can achieve a desired power curve and save

sample size through early stopping when the effect size is large.

Questions:

Is there a down-side to the “wait and see” approach?

How are the adaptive and group sequential approaches related?
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Sample size modification to increase power

Example (Jennison & Turnbull, Biometrika, 2006, Ex. 2)

We start with a group sequential design with 5 analyses,

testing H0: θ ≤ 0 against θ > 0 with

one-sided type I error probability α = 0.025 and

Initial design: power 1 − β = 0.9 at θ = δ.

Z(k)
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Sample size modification to increase power

Suppose, at analysis 2, a low interim estimate θ̂2 prompts investigators to consider

the trial’s power at effect sizes below δ, where power 0.9 was originally set:

Lower effect sizes start to appear plausible,

Conditional power under these effect sizes, using the current design, is low.

Cui, Hung and Wang (Biometrics, 1999) cite instances of studies reporting to the

FDA where such problems arose.

Special methods are needed in order to protect the type I error rate while making

data-dependent modifications to sample size.

Cui, Hung and Wang developed a method which allows remaining group sizes to be

increased in a group sequential design.

A variety of other methods for sample size modification is now available.
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Sample size modification to increase power

Applying the method of Cui, Hung and Wang (Biometrics, 1999)

Following a decision at analysis 2 to increase sample size:

Sample sizes for groups 3 to 5 are multiplied by a factor γ.

Sample sums from these groups are down-weighted by γ−1/2: this preserves the

variance of this term but the mean is multiplied by γ1/2.

Using the new weighted sample sum in place of the original sample sum maintains

the type I error rate and increases power.

In our example:

We choose the factor γ to give conditional power 0.9 if θ is equal to θ̂2, with the

constraint γ ≤ 6 so sample size can be at most 4 times the original maximum .
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Sample size modification to increase power

Simulations show that re-design has raised the power curve at all effect sizes.
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Overall power at θ = δ/2 has increased from 0.37 to 0.68.
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Sample size modification to increase power

Reasons for re-design arose purely from observing θ̂2. A group sequential design

responds to such interim estimates — in the decision to stop the trial or to continue.

Investigators could have considered at the design stage how they would respond to

low interim estimates of effect size.

If they had thought this through and chosen the above adaptive procedure, they

could also have examined its overall power curve.

Assuming this power curve were acceptable, how else might it have been achieved?

An alternative group sequential design

Five-group designs matching key features of the adaptive test can be found.

To be comparable, power curve should be as high as that of the adaptive design.

Can expected sample size be lower too?
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Sample size modification to increase power

Power of our “matched” group sequential design is as high as that of the adaptive

design at all effect sizes — and substantially higher at the largest θ values.
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Sample size modification to increase power

The group sequential design has significantly lower expected information than the

adaptive design over a range of effect sizes.

The group sequential design has slightly higher expected information for θ > 0.8 δ,

but this is where its power advantage is greatest.
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Sample size modification to increase power

Jennison & Turnbull (Biometrika, 2006) define an “Efficiency Ratio” to compare

expected sample size, adjusting for differences in attained power.

By this measure, the adaptive design is up to 39% less efficient than the

non-adaptive, group sequential alternative.

Efficiency ratio of adaptive design vs group sequential test
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Sample size modification to increase power

We have found similar inefficiency relative to group sequential tests in a wide variety

of proposed adaptive designs.

In general, adaptive designs have the advantage of extra freedom to choose group

sizes in a response-dependent manner.

Jennison & Turnbull (Biometrika, 2006) show this adaptation can lead to gains in

efficiency over non-adaptive group sequential tests — but the gains are very slight.

Sample size rules based on conditional power are far from optimal, hence the poor

properties of adaptive designs using such rules.

Application 1: Specify power properly at the outset: then, group

sequential designs offer a simple and efficient option.
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2. Switching to a patient sub-population

A trial protocol defines a specific target population.

Suppose it is believed the treatment may be effective in a certain sub-population,

even if it is ineffective in the rest of the population.

Enrichment: Restricting recruitment to a sub-population

At an interim analysis, the options are:

Continue as originally planned, or

Restrict the remainder of the study to a sub-population.

This choice will affect the licence a positive outcome can support.

The possibility of testing several null hypotheses means a multiple testing

procedure should be used.
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Enrichment: Example

&%
'$
θ1 θ2Sub-population 1

(proportion λ1)

Sub-population 2

(proportion λ2)

Overall treatment effect is θ = λ1θ1 + λ2θ2.

We may wish to test:

The null hypothesis for the full population, H0: θ ≤ 0 vs θ > 0,

The null hypothesis for sub-population 1, H1: θ1 ≤ 0 vs θ1 > 0,

The null hypothesis for sub-population 2, H2: θ2 ≤ 0 vs θ2 > 0.
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Multiple testing procedures

Suppose k null hypotheses, Hi: θi ≤ 0 for i = 1, . . . , k, are to be considered.

A procedure’s family-wise error rate under a set of values (θ1, . . . , θk) is

Pr{Reject Hi for some i with θi ≤ 0} = Pr{Reject any true Hi}.

The family-wise error rate is controlled strongly at level α if this error rate is at

most α for all possible combinations of θi values. Then

Pr{Reject any true Hi} ≤ α for all (θ1, . . . , θk).

With such strong control, the probability of choosing to focus on the parameter θi∗

and then falsely claiming significance for null hypothesis Hi∗ is at most α.
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Closed testing procedures (Marcus et al, Biometrika, 1976)

For each subset I of {1, . . . , k}, we define the intersection hypothesis

HI = ∩i∈I Hi.

We construct a level α test of each intersection hypothesis HI : this test rejects HI

with probability at most α whenever all hypotheses specified in HI are true.

Closed testing procedure

The simple hypothesis Hj : θj ≤ 0 is rejected if, and only if, HI is rejected for

every set I containing index j.

Proof of strong control of family-wise error rate

For a family-wise error to be committed, we must reject HĨ where Ĩ is the set of

indices of all true hypotheses Hi.

Since HĨ is true, Pr{Reject HĨ} = α and, thus, the probability of a family-wise

error is no greater than α.
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Enrichment: Example

&%
'$
θ1 θ2Sub-population 1

(proportion λ1)

Sub-population 2

(proportion λ2)

First, consider a design testing for a whole population effect, θ = λ1θ1 + λ2θ2.

The design has two analyses and one-sided type I error probability 0.025.

Sample size is set to achieve power 0.9 at θ = 20.

Data in each stage are summarised by a Z-value:

Stage 1 Stage 2 Overall

H0 Z1,0 Z2,0 Z0 = 1√
2
Z1,0 + 1√

2
Z2,0
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Enrichment: Example

Two stage design, testing for a whole population effect, θ.

Stage 1 Stage 2 Overall

H0 Z1,0 Z2,0 Z0 = 1√
2
Z1,0 + 1√

2
Z2,0

Decision rules:

If Z1,0 < 0 Stop at Stage 1, Accept H0

If Z1,0 ≥ 0 Continue to Stage 2, then

If Z0 < 1.95 Accept H0

If Z0 ≥ 1.95 Reject H0
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Enrichment: Example

Assume equal sub-population proportions, so λ1 = λ2 = 0.5.

Properties of design for the whole population effect, θ:

θ1 θ2 θ Power for

H0

20 20 20 0.90

10 10 10 0.37

20 0 10 0.37

0 20 10 0.37

Is it feasible to identify at Stage 1 that θ is low, but it would be worthwhile to

switch resources to test a sub-population?
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Enrichment: A closed testing procedure

We wish to be able to consider three null hypotheses:

On rejection, conclude:

H0: θ ≤ 0 Treatment is effective in the whole population

H1: θ1 ≤ 0 Treatment is effective in sub-population 1

H2: θ2 ≤ 0 Treatment is effective in sub-population 2

To apply a closed testing procedure, we need tests of intersection hypotheses:

H01: θ ≤ 0 and θ1 ≤ 0

H02: θ ≤ 0 and θ2 ≤ 0

H12 = H012: θ1 ≤ 0 and θ2 ≤ 0

(Since θ = λ1θ1 + λ2θ2, it is clear that H012 is identical to H12.)
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Enrichment: An adaptive design

At Stage 1, if θ̂ < 0, stop to accept H0: θ ≤ 0.

If θ̂ > 0 and the trial continues:

If θ̂2 < 0 and θ̂1 > θ̂2 + 8 Restrict to sub-population 1 and test H1 only,

needing to reject H1, H01, H12, H012.

If θ̂1 < 0 and θ̂2 > θ̂1 + 8, Restrict to sub-population 2 and test H2 only,

needing to reject H2, H02, H12, H012.

Else, Continue with full population and test H0,

needing to reject H0, H01, H02, H012.

The same total sample size for Stage 2 is retained in all cases, increasing the

numbers for the chosen sub-population when enrichment occurs.
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Enrichment: An adaptive design

Each null hypothesis, Hi say, is tested in a 2-stage group sequential test.

With Z-statistics Z1 and Z2 from Stages 1 and 2, Hi is rejected if

Z1 ≥ 0 and 1√
2
Z1 + 1√

2
Z2 ≥ 1.95.

When continuing with the full population, we use Z-statistics:

Stage 1 Stage 2

H0 Z1,0 Z2,0

H01 Z1,0 Z2,0

H02 Z1,0 Z2,0

H012 Z1,0 Z2,0

where Zi,0 is based on θ̂ from responses in Stage i.

So, there is no change from the original test of H0.
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Enrichment: An adaptive design

When switching to sub-population 1, we use:

Stage 1 Stage 2

H1 Z1,1 Z2,1

H01 Z1,0 Z2,1

H12 = H012 Z1,0 Z2,1

When switching to sub-population 2, we use:

Stage 1 Stage 2

H2 Z1,2 Z2,2

H02 Z1,0 Z2,2

H12 = H012 Z1,0 Z2,2

where Zi,j is based on θ̂j from responses in Stage i.

The need to reject intersection hypotheses adds to simple tests of H1 or H2.
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Simulation results: Power of non-adaptive and adaptive designs

Non-adaptive Adaptive

θ1 θ2 θ Full popn Sub-pop Sub-pop Full Total

1 only 2 only popn

1. 30 0 15 0.68 0.43 0.00 0.41 0.85

2. 20 20 20 0.90 0.03 0.03 0.84 0.90

3. 20 10 15 0.68 0.11 0.01 0.59 0.71

Case 1: Testing focuses (correctly) on H1, but it is still possible to find an effect

(wrongly) for the full population.

Case 2: Restricting to a sub-population reduces power for finding an effect in the

full population.

Case 3: Adaptation improves power overall, but there is a small probability of

restricting to the wrong sub-population.
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Enrichment: Example

The rules for sticking or switching to a sub-population can be adjusted, but we

cannot eliminate the probability of making an error in these decisions.

This is to be expected since the standard error of interim estimates θ̂1 and θ̂2 is

12.3 — much higher than the differences between θ1 and θ2 that interest us.

Similar results are found if only one sub-population is specified as a candidate for

restricted sampling.

Application 2: Restricting attention to a sub-population

can be effective in improving power.

However, higher overall sample size is needed for

accurate sub-population inference.
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3. Treatment selection: Combined Phase II / III trials

A seamless Phase II / III design facilitates progression from treatment selection to

a large confirmatory trial without the usual “white space”.

Such a design may also combine Phase II and Phase III data in the final hypothesis

test for efficacy of the selected treatment.

Since each treatment has its own null hypothesis, a multiple testing procedure is

required to control the overall type I error rate.

Data may be merged through inverse χ2 and inverse normal combination tests

(e.g., Bretz, Schmidli, et al. and Schmidli, Bretz et al, Biometrical Journal, 2006).

Earlier proposals control type I error, and power, directly (e.g., Thall, Simon &

Ellenberg, Biometrika, 1988).

How useful is this data combination?
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Combined Phase II/III trials: Example

Jennison & Turnbull (J. Biopharmaceutical Statistics, 2007) consider a Phase II

comparison of 4 treatments, with 100 observations per treatment and control.

If the treatment performing best in Phase II meets a minimum threshold, it proceeds

to further testing in Phase III, with 500 observations for this treatment and control.

They report simulations of four different strategies for combining data:

1. Conventional Separate Phase II and Phase III trials: final decision is based on

the Phase III data alone.

2. BK1 Data from the two phases are combined by an inverse χ2 test.

3. BK2 Data from the two phases are combined by an inverse normal test.

4. TSE A Thall, Simon & Ellenberg design.
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Combined Phase II/III trials: Example

Power of four 2-stage selection/testing procedures when three are ineffective and

the other has effect size δ:
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Differences in power curves correspond to differences in sample size needed for a

given power of order 5% to 10%.
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Combined Phase II/III trials: Example
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The conventional procedure — with no data combination — is surprisingly efficient:

only slightly worse than the Thall, Simon & Ellenberg design, and superior to

inverse χ2 and inverse normal combination tests.

Application 3: Joint planning of two phases of testing

can be valuable — for a variety of reasons.

Benefits of data combination may not be so great.
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Conclusions

Adaptive Methods provide a useful route to modifying sample size as a nuisance

parameter is estimated. However, they are an inferior option to Group Sequential

Tests if one wishes to respond to estimates of the primary endpoint.

Adaptive methods lead to moderate efficiency gains when restricting to a

sub-population.

Special methods can yield modest benefits from combining data between phases.

But, remember that interim estimates will have high variance.

We recommend adaptation as part of a pre-planned and

pre-tested trial design — “flexible adaptation” brings

risks as well as opportunities.
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