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Objectives for the training

Upon completion of this webinar, attendees should be able to:

State the key features of adaptive clinical trials that differentiate the adaptive

design from the traditional clinical trial design,

Understand why adaptive clinical trials offer greater efficiency for your clinical

trial budget,

Identify three applications of adaptive and group sequential designs ,

Gain awareness of the advantages of adaptive design,

Gain awareness of when it is most advantageous to employ an adaptive design

and when the traditional group sequential design would be preferable,

Know some key links to further your knowledge and keep up-to-date on this

topic.
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The role of adaptive methods

Ordinarily, in a clinical trial one specifies at the outset:

Patient population,

Treatment,

Primary endpoint,

Hypothesis to be tested,

Power at a specific effect size.

Adaptive designs allow these elements to be reviewed during the trial.

Because . . . there may be limited information to guide these choices initially,

but more knowledge will accrue as the study progresses.
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Critical appraisal of adaptive designs

It is important to assess the benefits a new approach will be able to deliver.

How can the benefits be assessed?

Are these benefits real?

What “standard” methods should be used for comparison?

We shall consider adaptive methods for three applications:

1. Sample size modification in response to estimates of a nuisance parameter

such as response variance,

2. Sample size when there is uncertainty about the likely treatment effect,

3. Switching to a patient sub-population.
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1. Sample size modification for a nuisance parameter

(a) Internal pilots in studies with a single analysis

The sample size needed to satisfy a power requirement often depends on an

unknown nuisance parameter.

Examples include

Normal response: Unknown variance, σ2.

Binary response: Since variance depends on p, the sample size needed to

detect a difference p1 − p2 = δ depends on (p1 + p2)/2.

Survival data: Information is governed by the number of observed deaths,

which depends on the overall failure rate and degree of censoring.

“Over-interpretation of results from a small pilot study, positive or negative, may

undermine support for the major investigation” (W. G. Cochran).
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Internal pilots: Wittes & Brittain

Wittes & Brittain (Statistics in Medicine, 1990) suggest an “internal” pilot study.

Let φ denote a nuisance parameter, e.g., the response variance.

Suppose the sample size required under a particular value of φ is given by

the function n(φ).

From a pre-study estimate, φ̂0, calculate an initial sample size, n(φ̂0).

At an interim stage, find a new estimate φ̂1 from the data observed so far

and aim for the new target of n(φ̂1).

Variations on this scheme are possible, e.g., one might only allow an increase over

the original target sample size.
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Internal pilots: Properties

Wittes and Brittain’s method has a complicated effect on the final test statistic.

Variance estimates tend to be biased downwards but the type I error rate is only

slightly perturbed.

Binary responses

Two-treatment comparison, H0: pA = pB , α = 0.05.

Internal pilots are used to achieve power at pB = pA + ∆ for fixed ∆, or at

pB = pA/ρ for fixed ρ.

Pilot sample size per treatment Type I error rate

10 0.057 – 0.059

30 0.049 – 0.057

50 0.049 – 0.053

Results from Jennison & Turnbull (2000) Ch. 14.
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Internal pilots: Properties

Normal data, estimating σ2

Two-treatment comparison, H0: µA = µB , α = 0.05.

Internal pilots are used to achieve power at µB − µA = ±δ for fixed δ.

Degrees of freedom for s2
1 Type I error rate

8 0.052 – 0.065

18 0.050 – 0.057

38 0.052 – 0.053

78 0.051

Results from Jennison & Turnbull (2000) Ch. 14.

Blinding: Finding s2
1 may break the blinding and reveal the estimated effect, θ̂.

Instead, one can estimate σ2 from pooled data without treatment labels.
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Sample size modification for a nuisance parameter

(b) Two stage designs with combination tests

Combination tests (Bauer & Köhne, Biometrics, 1994).

Initial design

Define the null hypothesis H0 (with a one-sided alternative).

Design Stage 1, fixing sample size and test statistic for this stage.

Stage 1

Observe the P-value, P1.

Under H0, P1 ∼ U(0, 1).

Design Stage 2 in the light of Stage 1 data.

Stage 2

Observe the P-value, P2.

Under H0, P2 ∼ U(0, 1) and P2 is independent of P1.
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Combination tests: The inverse χ2 test

Stipulate that Bauer & Köhne’s combination test will be used.

If P ∼ U(0, 1), then

− ln(P ) ∼ Exp (1) =
1

2
χ2

2.

Thus, under H0,

− ln(P1 P2) ∼ 1

2
χ2

4

and a test combining the two P-values rejects H0 if

− ln(P1 P2) >
1

2
χ2

4, 1−α.

This χ2 test was originally proposed for combining results of several studies by

R. A. Fisher (1932) Statistical Methods for Research Workers.
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Combination tests: The inverse normal test

Stipulate the inverse normal test with weights w1 and w2, where w2
1 + w2

2 = 1.

Stage 1

Compute Z1 = Φ−1(P1).

Under H0, Z1 ∼ N(0, 1).

Design Stage 2 in the light of Stage 1 data.

Stage 2

Compute Z2 = Φ−1(P2).

Under H0, Z2 ∼ N(0, 1) and Z2 is independent of Z1.

Overall test

Under H0, Z = w1Z1 + w2Z2 ∼ N(0, 1).

Reject H0 if Z > Φ−1(1 − α).
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Sample size re-estimation using a combination test

In a two-treatment comparison with normal response, power 1 − β at effect size

θ = δ requires sample size per treatment of

n = (zα + zβ)2 2 σ2/δ2, (1)

where zp denotes Φ−1(1 − p).

Initial design

A Bauer & Köhne two-stage design is specified using, say, the inverse χ2 test.

Sample size n0 is determined using a preliminary estimate σ2
0 in (1).

Stage 1 is planned with a sample size of n1 = n0/2.

Stage 1

Yields estimates θ̂1 and σ̂2
1 .

The t-statistic t1 for testing H0: θ ≤ 0 vs θ > 0 is converted to a P-value, P1.
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Sample size re-estimation using a combination test

Stage 1 . . .

Now use the variance estimate σ̂2
1 to re-calculate sample size.

One may simply substitute this value in (1).

Or, also take account of the interim estimate of treatment effect, θ̂1.

This defines an additional sample size of n2 in Stage 2.

Stage 2

Calculate the t-statistic t2 for testing H0 based on Stage 2 data alone and convert

to a P-value, P2.

The overall test rejects H0 if

− ln(P1 P2) >
1

2
χ2

4, 1−α.

This test has type I error rate exactly equal to α.
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Sample size modification for a nuisance parameter

(c) Sample size modification within group sequential tests

Group sequential tests

Reference: Jennison & Turnbull (2000)

Suppose we wish to test H0: θ ≤ 0 against θ > 0 with type I error probability α

and power 1 − β at θ = δ.

In a Group Sequential Test, a decision is taken after each group of observations to:

Stop, reject H0: θ ≤ 0 in favour of θ > 0,

Continue to observe the next group of subjects, or

Stop, accept H0.

Typically, group sizes are pre-specified.

“Error spending” designs are able to deal with unpredictable group sizes.
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Group sequential tests

A group sequential test, specified in the trial protocol, can be described by a

stopping boundary for the standardised statistic Zk at each analysis k.

Z
k

50 100 150 200
0

2

4

−2

−4

Sample
size

Reject H
0

Accept H
0

Continue

Early termination may be for a positive result (success) or a negative outcome

(stopping for futility).

An efficient design reduces average sample size or time to a conclusion while

protecting the type I error rate and maintaining desired power.
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Error spending group sequential tests

Error spending designs offer a flexible way to deal with unpredictable group sizes.

Type I and type II error probabilities are “spent” as a function of the observed

information at each analysis, as this increases towards a target Imax.

It is natural to plot stopping boundaries against observed information.

Z
k

2.6 5.2 7.8 10.4
0

2

4

−2

−4

Information

Reject H
0

Accept H
0

Continue
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Sample size modification for a nuisance parameter

Information monitoring

Mehta & Tsiatis (Drug Inf. J., 2001) describe the “information monitoring” approach.

With nA and nB observations on treatments A and B at analysis k, estimate σ2 by

s2
k =

∑
(XAi − X̄

(k)
A )2 +

∑
(XBi − X̄

(k)
B )2

nAk + nBk − 2

and estimate observed information by

Îk =
1

Var(θ̂)
=

{
s2

k

nA
+

s2
k

nB

}−1

.

Now “plug in” the estimated information sequence to create an error spending test

with cumulative error at analysis k determined by Îk.

-×

Î1

×

Î2

× ×

. . .
×

Îk

Imax

Information
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Information monitoring

Updating the sample size

In a K–group design, at each analysis k, we can re-calculate the target for the final

sample sizes nAK and nBK by solving the equation

{
s2

k

nAK
+

s2
k

nBK

}−1

= Imax

and choose the next group size to work towards this target.

Approximations in this method can lead to inflation of type I error rates. In 3 and 5

group tests with α = 0.05, we have found actual type I error rates:

Target total sample size Type I error rate

50 0.054 – 0.063

100 0.052 – 0.056

More precise methods can attain error rates more closely (e.g., Denne & Jennison,

Biometrika, 2000).
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Sample size modification for a nuisance parameter

The method of Lehmacher and Wassmer (Biometrics, 1999)

This is a K–group version of Bauer & Köhne’s inverse normal combination test.

Let Zk be the Z-statistic based on data in group k alone.

Define pre-assigned weights w1, . . . , wK proportional to the square roots of the

planned group sizes or information increments.

For k = 1, . . . , K , create cumulative Z-statistics

Z(k) = (w1Z1 + . . . + wkZk) / (w2
1 + . . . + w2

k)1/2.

Future group sizes can be modified to achieve a target “information level” and the

desired power at alternative θ = δ.

As long as each Zk ∼ N(0, 1) under H0, the sequence Z(1), Z(2), . . . has a

set distribution and can be used with a pre-specified group sequential boundary.

The target type I error probability will then be attained exactly.
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2. Sample size modification to increase power

Type I error and power

Suppose θ represents the effect of a new treatment vs control.

A study is to test H0: θ ≤ 0 against θ > 0 with

one-sided type I error probability α = 0.025, say.

Sample size is to be chosen to give a specific power curve.

-
θ0 δ

6
1−β

α . . . . . . . . . . . . . . . . . . . . .
Power

(Assume now that there is no unknown “nuisance parameter” in this relationship,

such as a normal variance or overall failure rate for survival data.)
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Sample size modification to increase power

Investigators may start out optimistically and design a trial with power to detect a

large treatment effect. Interim data may then suggest a smaller effect size — still

clinically important but difficult to demonstrate with the chosen sample size.

• An adaptive design can allow sample size to be increased during the trial,

rescuing an under-powered study.

• Some would advocate this wait and see approach as a way to “let the data say”

what power and sample size should be chosen.

• Or, a group sequential design can achieve a desired power curve and save

sample size through early stopping when the effect size is large.

Questions:

How should one set power and sample size?

Is there a down-side to the “wait and see” approach?

How are the adaptive and group sequential approaches related?
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Sample size modification to increase power

Example (Jennison & Turnbull, Biometrika, 2006, Ex. 2)

We start with a group sequential design with 5 analyses,

testing H0: θ ≤ 0 against θ > 0 with

one-sided type I error probability α = 0.025 and

Initial design: power 1 − β = 0.9 at θ = δ.

Z(k)

50 150 100 250
0

2

4

−2

−4

Sample 
size

Reject H
0

Accept H
0

Continue
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Sample size modification to increase power

Suppose, at analysis 2, a low interim estimate θ̂2 prompts investigators to consider

the trial’s power at effect sizes below δ, where power 0.9 was originally set:

Lower effect sizes start to appear plausible,

Conditional power under these effect sizes, using the current design, is low.

Cui, Hung and Wang (Biometrics, 1999) cite instances of studies reporting to the

FDA where such problems arose.

Special methods are needed in order to protect the type I error rate while making

data-dependent modifications to sample size.

Cui, Hung and Wang developed a method which allows remaining group sizes to be

increased in a group sequential design.

A variety of other methods for sample size modification is now available.
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Sample size modification to increase power

Applying the method of Cui, Hung and Wang (Biometrics, 1999)

Following a decision at analysis 2 to increase sample size:

Sample sizes for groups 3 to 5 are multiplied by a factor γ.

Sample sums from these groups are down-weighted by γ−1/2: this preserves the

variance of this term but the mean is multiplied by γ1/2.

Using the new weighted sample sum in place of the original sample sum maintains

the type I error rate and increases power.

In our example:

We choose the factor γ to give conditional power 0.9 if θ is equal to θ̂2, with the

constraint γ ≤ 6 so sample size can be at most 4 times the original maximum.
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Sample size modification to increase power

Simulations show that re-design has raised the power curve at all effect sizes.
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Overall power at θ = δ/2 has increased from 0.37 to 0.68.
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Sample size modification to increase power

Reasons for re-design arose purely from observing θ̂2. A group sequential design

responds to such interim estimates — in the decision to stop the trial or to continue.

Investigators could have considered at the design stage how they would respond to

low interim estimates of effect size.

If they had thought this through and chosen the above adaptive procedure, they

could also have examined its overall power curve.

Assuming this power curve were acceptable, how else might it have been achieved?

An alternative group sequential design

Five-group designs matching key features of the adaptive test can be found.

To be comparable, power curve should be as high as that of the adaptive design.

Can expected sample size be lower too?
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Sample size modification to increase power

Power of our “matched” group sequential design is as high as that of the adaptive

design at all effect sizes — and substantially higher at the largest θ values.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ/δ

P
ow

er

   Original 5 group test

   Adaptive test with conditional

   power 0.9 at estimated θ

   Matched group sequential test

27



'

&

$

%

Sample size modification to increase power

The group sequential design has significantly lower expected information than the

adaptive design over a range of effect sizes.

The group sequential design has slightly higher expected information for θ > 0.8 δ,

but this is where its power advantage is greatest.
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Sample size modification to increase power

Jennison & Turnbull (Biometrika, 2006) define an “Efficiency Ratio” to compare

expected sample size, adjusting for differences in attained power.

By this measure, the adaptive design is up to 39% less efficient than the

non-adaptive, group sequential alternative.

Efficiency ratio of adaptive design vs group sequential test
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Sample size modification to increase power

We have found similar inefficiency relative to group sequential tests in a wide variety

of proposed adaptive designs.

In general, adaptive designs have the advantage of extra freedom to choose group

sizes in a response-dependent manner.

Jennison & Turnbull (Biometrika, 2006) show this adaptation can lead to gains in

efficiency over non-adaptive group sequential tests — but the gains are very slight.

Sample size rules based on conditional power are far from optimal, hence the poor

properties of adaptive designs using such rules.

Conclusion: Specify power properly at the outset, then group

sequential designs offer a simple and efficient option.
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3. Switching to a patient sub-population

A trial protocol defines a population of subjects who may benefit from the treatment.

Suppose it is believed the treatment could be particularly effective in a certain

sub-population defined by a physiological or genetic biomarker.

Enrichment: Restricting recruitment to a sub-population

At an interim analysis, the options are:

Continue as originally planned, or

Restrict the remainder of the study to the defined sub-population.

This choice will affect the licence a positive outcome can support.

The possibility of testing more than one null hypothesis means a multiple testing

procedure must be used.
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Enrichment: Example
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θ1 θ2Sub-population 1

(proportion λ1)

Rest of the population

(proportion λ2)

Overall treatment effect is θ = λ1θ1 + λ2θ2.

We may wish to test:

The null hypothesis for the full population, H0: θ ≤ 0 vs θ > 0,

The null hypothesis for sub-population 1, H1: θ1 ≤ 0 vs θ1 > 0.
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Multiple testing procedures

Suppose k null hypotheses, Hi: θi ≤ 0 for i = 1, . . . , k, are to be considered.

A procedure’s family-wise error rate under a set of values (θ1, . . . , θk) is

Pr{Reject Hi for some i with θi ≤ 0} = Pr{Reject any true Hi}.

The family-wise error rate is controlled strongly at level α if this error rate is at

most α for all possible combinations of θi values. Then

Pr{Reject any true Hi} ≤ α for all (θ1, . . . , θk).

With such strong control, the probability of choosing to focus on the parameter θi∗

and then falsely claiming significance for null hypothesis Hi∗ is at most α.
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Closed testing procedures (Marcus et al, Biometrika, 1976)

For each subset I of {1, . . . , k}, we define the intersection hypothesis

HI = ∩i∈I Hi.

We construct a level α test of each intersection hypothesis HI : this test rejects HI

with probability at most α whenever all hypotheses specified in HI are true.

Closed testing procedure

The simple hypothesis Hj : θj ≤ 0 is rejected if, and only if, HI is rejected for

every set I containing index j.

Proof of strong control of family-wise error rate

For a family-wise error to be committed, we must reject HĨ where Ĩ is the set of

indices of all true hypotheses Hi.

Since HĨ is true, Pr{Reject HĨ} = α and, thus, the probability of a family-wise

error is no greater than α.
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Enrichment: Example

&%
'$
θ1 θ2Sub-population 1

(proportion λ1)

Rest of the population

(proportion λ2)

First, consider a design testing for a whole population effect, θ = λ1θ1 + λ2θ2.

The design has two analyses and one-sided type I error probability 0.025.

Sample size is set to achieve power 0.9 at θ = 20.

Data in each stage are summarised by a Z-value:

Stage 1 Stage 2 Overall

H0 Z1,0 Z2,0 Z0 = 1√
2Z1,0 + 1√

2Z2,0
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Enrichment: Example

Two stage design, testing for a whole population effect, θ.

Stage 1 Stage 2 Overall

H0 Z1,0 Z2,0 Z0 = 1√
2Z1,0 + 1√

2Z2,0

Decision rules:

If Z1,0 < 0 Stop at Stage 1, Accept H0

If Z1,0 ≥ 0 Continue to Stage 2, then

If Z0 < 1.95 Accept H0

If Z0 ≥ 1.95 Reject H0
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Enrichment: Example

Assume the sub-population comprises half the total population, so λ1 = λ2 = 0.5.

Properties of design for the whole population effect, θ:

θ1 θ2 θ Power for

H0: θ ≤ 0

20 20 20 0.90

10 10 10 0.37

20 0 10 0.37

Is it feasible to identify at Stage 1 that θ is low but θ1 may be higher, so one might

switch resources to test a sub-population?
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Enrichment: A closed testing procedure

We wish to be able to consider two null hypotheses:

On rejection, conclude:

H0: θ ≤ 0 Treatment is effective in the whole population

H1: θ1 ≤ 0 Treatment is effective in sub-population 1

To apply a closed testing procedure, we also need a test of the intersection

hypothesis:

H01: θ ≤ 0 and θ1 ≤ 0.

Note, since θ = 0.5 θ1 + 0.5 θ2, either of H0 and H1 may be true on its own.
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Enrichment: An adaptive design

At Stage 1, if θ̂ < 0, stop to accept H0: θ ≤ 0.

If θ̂ > 0 and the trial continues:

If θ̂2 < 0 and θ̂1 > θ̂2 + 8 Restrict to sub-population 1 and test H1 only,

needing to reject H1 and H01.

Else, Continue with full population and test H0,

needing to reject H0 and H01.

The same total sample size for Stage 2 is retained in both cases, increasing the

numbers for the sub-population when enrichment occurs.
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Enrichment: An adaptive design

Each null hypothesis, Hi say, is tested in a 2-stage group sequential test.

With Z-statistics Z1 and Z2 from Stages 1 and 2, Hi is rejected if

Z1 ≥ 0 and 1√
2Z1 + 1√

2Z2 ≥ 1.95.

When continuing with the full population, we use Z-statistics:

Stage 1 Stage 2

H0 Z1,0 Z2,0

H01 Z1,0 Z2,0

where Zi,0 is based on θ̂ from responses in Stage i.

So, there is no change from the original test of H0.
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Enrichment: An adaptive design

With Z-statistics Z1 and Z2 from Stages 1 and 2, Hi is rejected if

Z1 ≥ 0 and 1√
2Z1 + 1√

2Z2 ≥ 1.95.

When switching to sub-population 1, we use:

Stage 1 Stage 2

H1 Z1,1 Z2,1

H01 Z1,0 Z2,1

where Zi,j is based on θ̂j from responses in Stage i.

The need to reject the intersection hypothesis H01 adds an extra requirement to

the simple test of H1.
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Simulation results: Power of non-adaptive and adaptive designs

Non-adaptive Adaptive

θ1 θ2 θ Full popn Sub-pop Full Total

1 only popn

1. 30 0 15 0.68 0.43 0.42 0.85

2. 20 0 10 0.37 0.24 0.26 0.51

3. 20 20 20 0.90 0.03 0.87 0.90

4. 20 10 15 0.68 0.11 0.60 0.71

Cases 1 & 2: Testing focuses (correctly) on H1, but it is still possible to find

an effect (wrongly) for the full population. Overall power is increased.

Case 3: Restricting to the sub-population reduces power for finding an effect in

the full population.

Case 4: Adaptation improves overall power a little.
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Increasing power for finding a sub-population effect

Greater power for the sub-population can be achieved by using Z1,1 rather than

Z1,0 as the Stage 1 statistic in the test of H01.

This gives the following results:

Non-adaptive Adaptive

θ1 θ2 θ Full popn Sub-pop Full Total

1 only popn

1. 30 0 15 0.68 0.47 0.40 0.87

2. 20 0 10 0.37 0.35 0.23 0.58

3. 20 20 20 0.90 0.04 0.74 0.78

4. 20 10 15 0.68 0.16 0.51 0.56

Benefits in Case 2 are balanced by loss of overall power in Cases 3 and 4.

43



'

&

$

%

Increasing power for finding a sub-population effect

As a compromise between the two previous methods, a combination∗ of Z1,0 and

Z1,1 may be used as the Stage 1 statistic for the test of H01.

This leads to the following results:

Non-adaptive Adaptive

θ1 θ2 θ Full popn Sub-pop Full Total

1 only popn

1. 30 0 15 0.68 0.47 0.41 0.88

2. 20 0 10 0.37 0.33 0.25 0.58

3. 20 20 20 0.90 0.04 0.83 0.87

4. 20 10 15 0.68 0.15 0.57 0.72

∗Specifically, (Z1,0 + Z1,1)/
√

(2 +
√

2), which is N(0, 1) under H01.
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Enrichment: Example

The rules for sticking or switching to a sub-population can be adjusted, but we

cannot eliminate the probability of making an error in these decisions.

This is to be expected since the standard error of interim estimates θ̂1 and θ̂2 is

12.3 — much higher than the differences between θ1 and θ2 that interest us.

Conclusion:

Restricting attention to a sub-population can be

effective in improving power.

However, higher overall sample size is needed for

accurate sub-population inference . . .
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Increasing power for finding a sub-population effect

To match the non-adaptive test in cases 2 and 3, and obtain the benefits of

adaptation elsewhere, increase the overall sample size by 30%.

With a combination∗ of Z1,0 and Z1,1 as the Stage 1 statistic for testing H01, we

obtain the following results:

Non-adaptive Adaptive, 1.3 x sample size

θ1 θ2 θ Full popn Sub-pop Full Total

1 only popn

1. 30 0 15 0.68 0.49 0.45 0.94

2. 20 0 10 0.37 0.38 0.30 0.69

3. 20 20 20 0.90 0.03 0.92 0.94

4. 20 10 15 0.68 0.15 0.68 0.82

∗Using (Z1,0 + Z1,1)/
√

(2 +
√

2).
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Conclusions

1. Adaptive Methods provide a useful route to modifying sample size as a

nuisance parameter is estimated.

2. However, they are an inferior option to Group Sequential Tests if one wishes to

respond to estimates of the primary endpoint.

3. Adaptive methods lead to moderate efficiency gains when restricting to a

sub-population. But, remember that interim estimates will have high variance.

We recommend adaptation as part of a pre-planned and

pre-tested trial design — “flexible adaptation” brings

risks as well as opportunities.
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