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Adaptive designs: Why?

Ordinarily, in a clinical trial one specifies at the outset:

Patient population,

Treatment,

Primary endpoint,

Hypothesis to be tested,

Power at a specific effect size.

Adaptive designs allow these elements to be reviewed during the trial.

Because . . . there may be limited information to guide these choices initially,

but more knowledge will accrue as the study progresses.
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Adaptive designs: How?

Two basic ingredients recur in many adaptive methods:

(i) Combination tests

The trial is conducted in two stages: the design of the second stage can

depend on responses in the first stage.

Data from each stage data are summarised through a P-value or Z-statistic.

A combination test produces an overall decision from the two summary

statistics with correct type I error probability.

(ii) Multiple testing procedures

Following design changes, multiple null hypotheses may need to be considered.

In order to avoid inflating error rates, testing procedures must control overall,

“family-wise” error probabilities.
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Adaptive designs: When?

We shall consider adaptive methods that allow the following modifications.

1. Changing sample size in response to estimates of a nuisance parameter

2. Changing sample size in response to interim estimates of the effect size

3. Switching the primary endpoint

4. Switching to a patient sub-population

5. Changing the null hypothesis (superiority/non-inferiority)

6. Treatment selection (combined Phase II/III trials)

For each, we shall outline an adaptive method and discuss when it may offer

useful benefits.
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How — Combination tests: The inverse χ2 test

Reference: Bauer & Köhne, Biometrics, 1994.

Initial design

Stipulate that Bauer & Köhne’s combination test will be used.

Define the null hypothesis H0 (with a one-sided alternative).

Design Stage 1, fixing sample size and test statistic for this stage.

Stage 1

Observe the P-value, P1.

Under H0, P1 ∼ U(0, 1).

Design Stage 2 in the light of Stage 1 data.

Stage 2

Observe the P-value, P2.

Under H0, P2 ∼ U(0, 1) and P2 is independent of P1.
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Bauer & Köhne’s inverse χ2 test

Overall test

If P ∼ U(0, 1), then

− ln(P ) ∼ Exp (1) =
1

2
χ2

2
.

Thus, under H0,

− ln(P1 P2) ∼
1

2
χ2

4

and we combine the two P-values, rejecting H0 if

− ln(P1 P2) >
1

2
χ2

4, 1−α.

This χ2 test was originally proposed for combining results of several studies by

R. A. Fisher (1932) Statistical Methods for Research Workers.

6



'

&

$

%

How — Combination tests: The inverse normal test

Stipulate the inverse normal test with weights w1 and w2, where w2

1
+ w2

2
= 1.

Stage 1

Compute Z1 = Φ−1(P1).

Under H0, Z1 ∼ N(0, 1).

Design Stage 2 in the light of Stage 1 data.

Stage 2

Compute Z2 = Φ−1(P2).

Under H0, Z2 ∼ N(0, 1) and Z2 is independent of Z1.

Overall test

Under H0, Z = w1Z1 + w2Z2 ∼ N(0, 1).

Reject H0 if Z > Φ−1(1 − α).
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1. Sample size re-estimation for nuisance parameters

Type I error and power

Suppose θ represents the effect of a new treatment vs control.

A study is to test H0: θ ≤ 0 against θ > 0 with

one-sided type I error probability α = 0.025, say.

The choice of sample size determines the power curve.

-
θ0 δ

6
1−β

α . . . . . . . . . . . . . . . . . . . . .
Power

Power may also depend on a “nuisance parameter” such as a normal variance or

overall failure rate for a survival response.
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Sample size re-estimation for nuisance parameters

In a two-treatment comparison with normal response, power 1 − β at effect size

θ = δ requires sample size per treatment of

n = (zα + zβ)2 2 σ2/δ2, (1)

where zp denotes Φ−1(1 − p).

Initial design

A Bauer & Köhne two-stage design is specified.

Sample size n0 is determined using a preliminary estimate σ2

0
in (1).

Stage 1 is planned with a sample size of n1 = n0/2.

Stage 1

Yields estimates θ̂1 and σ̂2

1
.

The t-statistic t1 for testing H0: θ ≤ 0 vs θ > 0 is converted to a P-value, P1.
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Sample size re-estimation for nuisance parameters

Stage 1 . . .

Now use the variance estimate σ̂2

1
to re-calculate sample size.

One may simply substitute this value in (1).

Or, also take account of the interim estimate of treatment effect, θ̂1.

This defines an additional sample size of n2 in Stage 2.

Stage 2

Calculate the t-statistic t2 for testing H0 based on Stage 2 data alone and convert

to a P-value, P2.

The overall test — which has type I error rate exactly α — rejects H0 if

− ln(P1 P2) >
1

2
χ2

4, 1−α.

Problem 1: Adaptive designs provide a successful solution.
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Sample size re-estimation for nuisance parameters

We have described a method of sample size re-estimation based on Bauer &

Köhne’s combination test.

Other approaches are also available: designing in terms of “required information”,

then modifying sample size during the trial to reach the target information level.

Internal pilots: Wittes & Brittain (Statistics in Medicine, 1990)

Information monitoring: Mehta & Tsiatis (Drug Information J., 2001)

These modifications are intended to achieve the power curve originally specified.

-
θ0 δ

6
1−β

α . . ... . . . . . . . ... . . . . . .
Power

What if requirements for the power curve change during a trial?
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2. Sample size modification to increase power

Investigators may start out optimistically and design a trial with power to detect a

large treatment effect.

Interim data may then suggest a smaller effect size — still clinically important but

difficult to demonstrate with the chosen sample size.

A Bauer & Köhne two-stage design allows sample size, and hence power, to be

increased after the first stage of the trial.

• Advantage

Adaptive methodology allows rescue of an under-powered study.

• Disadvantages

It is more transparent to design for the power curve that is really desired.

Then, a group sequential design can be used to provide early stopping,

and save sample size, when the effect size is large.
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Sample size modification to increase power

Example (Jennison & Turnbull, Biometrika, 2006, Ex. 2)

A group sequential design, with 5 analyses, to test H0: θ ≤ 0 against θ > 0.

One-sided type I error probability α = 0.025,

Initial design: power 1 − β = 0.9 at θ = δ.

Z(k)

50 150 100 250
0

2

4

−2

−4

Sample 
size

Reject H
0

Accept H
0

Continue
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Sample size modification to increase power

Suppose, at analysis 2, a low interim estimate θ̂2 prompts investigators to consider

the trial’s power at effect sizes below δ, where power 0.9 was originally set:

Lower effect sizes start to appear plausible,

Conditional power under these effect sizes, using the current design, is low.

Applying the method of Cui, Hung and Wang (Biometrics, 1999)

Sample sizes for groups 3 to 5 are multiplied by a factor γ,

Sample sums from these groups are down-weighted by γ−1/2, hence maintaining

the type I error rate.

The value of the factor γ is chosen so that conditional power is 0.9, given current

data, if θ is equal to θ̂2.
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Sample size modification to increase power

Re-design has raised the power curve at all effect sizes.
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Overall power at θ = δ/2 has increased from 0.37 to 0.68.
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Sample size modification to increase power

Reasons for re-design arose purely from observing θ̂2. A group sequential design

responds to such interim estimates — in the decision to stop the trial or to continue.

Investigators could have considered at the design stage how they would respond to

low interim estimates of effect size.

If they had thought this through and chosen the above adaptive procedure, they

could also have examined its overall power curve.

Assuming this power curve were acceptable, how else might it have been achieved?

An alternative group sequential design

Five-group designs matching key features of the adaptive test can be found.

To be comparable, power curve should be as high as that of the adaptive design.

Can expected sample size be lower too?
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Sample size modification to increase power

Power of our “matched” group sequential design is as high as that of the adaptive

design at all effect sizes — and substantially higher at the largest θ values.
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Sample size modification to increase power

The group sequential design has significantly lower expected information than the

adaptive design over a range of effect sizes.

The group sequential design has slightly higher expected information for θ > 0.8 δ,

but this is where its power advantage is greatest.
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Sample size modification to increase power

Jennison & Turnbull (Biometrika, 2006) define an “Efficiency Ratio” to compare

expected sample size, adjusting for differences in attained power.

By this measure, the adaptive design is up to 39% less efficient than the

non-adaptive, group sequential alternative.

Efficiency ratio of adaptive design vs group sequential test

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

70

80

90

100

θ/δ

E
ffi

ci
en

cy
 r

at
io

19



'

&

$

%

Sample size modification to increase power

We have found similar inefficiency relative to group sequential tests in a wide variety

of proposed adaptive designs.

In general, adaptive designs have the advantage of extra freedom to choose group

sizes in a response-dependent manner.

Jennison & Turnbull (Biometrika, 2006) show this adaptation can lead to gains in

efficiency over non-adaptive group sequential tests — but the gains are very slight.

Sample size rules based on conditional power are far from optimal, hence the poor

properties of adaptive designs using such rules.

Problem 2: Specify power properly at the outset: then, group

sequential designs offer a simple and efficient option.
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How — Multiple testing procedures

Adaptation to new treatments, new endpoints, etc., leads to consideration of

multiple null hypotheses.

Suppose there are k null hypotheses, Hi: θi ≤ 0 for i = 1, . . . , k.

A procedure’s family-wise error rate under a set of values (θ1, . . . , θk) is

Pr{Reject Hi for some i with θi ≤ 0} = Pr{Reject any true Hi}.

The family-wise error rate is controlled strongly at level α if this error rate is at

most α for all possible combinations of θi values. Then

Pr{Reject any true Hi} ≤ α for all (θ1, . . . , θk).

With such strong control, the probability of choosing to focus on the parameter θi∗

and then falsely claiming significance for null hypothesis Hi∗ is at most α.
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Closed testing procedures (Marcus et al, Biometrika, 1976)

For each subset I of {1, . . . , k}, we define the intersection hypothesis

HI = ∩i∈I Hi.

We construct a level α test of each intersection hypothesis HI : this test rejects HI

with probability at most α whenever all hypotheses specified in HI are true.

Closed testing procedure

The simple hypothesis Hj : θj ≤ 0 is rejected if, and only if, HI is rejected for

every set I containing index j.

Proof of strong control of family-wise error rate

Let Ĩ be the set of indices of all true hypotheses Hi. For a family-wise error to be

committed, HĨ must be rejected.

Since HĨ is true, Pr{Reject HĨ} = α and, thus, the probability of a family-wise

error is no greater than α.
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3. Switching the primary endpoint

A trial compares a new treatment against control with primary response Endpoint 1.

Denote the treatment effect for Endpoint 1 by θ1.

At an interim point, investigators decide it is more appropriate to use a different

response, Endpoint 2, with treatment effect θ2.

The original null hypothesis H0,1: θ1 ≤ 0 is replaced by H0,2: θ2 ≤ 0.

Investigators wish to test H0,2 against θ2 > 0 and hope to reject H0,2.

Stage 1: Endpoint 1

P-value = P1,1

Stage 2: Endpoint 2

P-value = P2,2
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Change of endpoint

With family-wise error rate set at α, overall rejection of H0,2 requires both H0,2

and H0,12 = H0,1 ∩ H0,2 to be rejected at level α.

��
��
��
��

H0,1: θ1 ≤ 0 H0,2: θ2 ≤ 0

�
���

H0,1 ∩ H0,2: θ1 ≤ 0 and θ2 ≤ 0

Test of H0,2

Using just Stage 2 data, reject the elementary hypothesis H0,2 if P2,2 < α.

Test of H0,12 = H0,1 ∩ H0,2

Combine P1,1 from Stage 1 data and P2,2 from Stage 2 in a level α test of H0,12.

Overall

Reject H0,2: θ2 ≤ 0 overall if H0,2 and H0,12 are rejected individually at level α.
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Change of endpoint: Example

In a study of Altzheimer’s disease, the primary response is defined as decrease in a

mental ability score 8 months from the start of treatment.

Initial results indicate the treatment effect may be more pronounced over the first

4 months.

"!
# 
"!
# 

H0,1: No change at

8 months

H0,2: No change at

4 months

�
�
��

H0,1 ∩ H0,2: No change at all

If an effect at 4 months has clinical significance, it may be appropriate to consider

switching endpoints.
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Example: Non-adaptive design

Define

θ1 = treatment effect vs placebo over 8 months,

θ2 = treatment effect vs placebo over 4 months.

Assume bivariate normal responses with equal variances and correlation 0.5.

Trial design is for Endpoint 1, testing H0,1: θ1 ≤ 0 vs θ1 > 0 with type I error

probability 0.025 and power 0.9 if θ1 = 10.

θ1 Power to reject

H0,1: θ1 ≤ 0

10 0.90

5 0.37

Can we do better when θ1 is low but θ2 is higher?
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Change of endpoint: An adaptive design

At the halfway stage: If θ̂2 > θ̂1 + 5, switch to testing H0,2: θ2 ≤ 0.

Stage 1 Stage 2 Elementary tests reject if

When sticking with θ1

H0,1 Z1,1 Z2,1
1√
2
Z1,1 + 1√

2
Z2,1 > 1.96

H0,2 — —

H0,12 Z1,1 Z2,1
1√
2
Z1,1 + 1√

2
Z2,1 > 1.96 (as for H0,1)

When switching to θ2

H0,1 Z1,1 —

H0,2 — Z2,2 Z2,2 > 1.96

H0,12 Z1,1 Z2,2
1√
2
Z1,1 + 1√

2
Z2,2 > 1.96
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Change of endpoint: An adaptive design

The closed testing procedure protects the family-wise error rate.

When sticking with θ1:

Reject H0,1 overall if elementary tests of H0,1 and H0,12 both reject

— but this reduces to a simple test of H0,1.

When switching to θ2:

Reject H0,2 overall if elementary tests of H0,2 and H0,12 both reject.

θ1 θ2 Power for Power for Power for at least

H0,1 H0,2 one of these

10 10 0.80 0.08 0.88

10 8 0.86 0.02 0.88

5 10 0.24 0.24 0.48 (cf 0.37)

5 15 0.08 0.75 0.83 (cf 0.37)
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Change of endpoint: Adaptive design

Remarks

When switching:

We give up the chance to reject H0,1, even when θ1 is in fact quite high.

Only Stage 2 data are used to test H0,2, limiting the power of this test.

The decision to “switch” is based on θ̂1 and θ̂2, which have substantial variance.

In this example, the standard deviation of θ̂1 − θ̂2 is 4.4.

An alternative approach

One could have planned to observe both endpoints for all subjects and use the full

data on each endpoint in testing H0,1 and H0,2.

An adaptive rule can still be used in defining the test of H0,12.

As before, the closed testing procedure gives overall tests of H0,1 and H0,2.
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Change of endpoint: Alternative design

With planned observation of both endpoints for all subjects:

Stage 1 Stage 2 Elementary tests reject if

When sticking with θ1

H0,1 Z1,1 Z2,1
1√
2
Z1,1 + 1√

2
Z2,1 > 1.96

H0,2 Z1,2 Z2,2
1√
2
Z1,2 + 1√

2
Z2,2 > 1.96

H0,12 Z1,1 Z2,1
1√
2
Z1,1 + 1√

2
Z2,1 > 1.96

When switching to θ2

H0,1 Z1,1 Z2,1
1√
2
Z1,1 + 1√

2
Z2,1 > 1.96

H0,2 Z1,2 Z2,2
1√
2
Z1,2 + 1√

2
Z2,2 > 1.96

H0,12 Z1,1 Z2,2
1√
2
Z1,1 + 1√

2
Z2,2 > 1.96
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Change of endpoint: Alternative design

Using additional data increases power:

θ1 θ2 Power for Power for Power for at least

H0,1 H0,2 one of these

10 10 0.89 0.83 0.90

10 8 0.89 0.69 0.89

5 10 0.36 0.52 0.53 (cf 0.37, 0.48)

5 15 0.37 0.85 0.85 (cf 0.37, 0.83)

Problem 3: Adapting the primary endpoint can increase power.

However, it is best to specify this option in the trial design and

collect relevant data throughout the study.
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4. Switching to a patient sub-population

A trial protocol defines a specific target population.

Suppose it is believed the treatment may be effective in a certain sub-population,

even if it is ineffective in the rest of the population.

Enrichment: Restricting recruitment to a sub-population

At an interim analysis, the options are:

Continue as originally planned, or

Restrict the remainder of the study to a sub-population.

This choice will affect the licence a positive outcome can support.

The possibility of testing several null hypotheses means a closed testing procedure

should be used.
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Enrichment: Example

&%
'$
θ1 θ2Sub-population 1

(proportion λ1)

Sub-population 2

(proportion λ2)

Overall treatment effect is θ = λ1θ1 + λ2θ2.

We may wish to test:

The null hypothesis for the full population, H0,0: θ ≤ 0 vs θ > 0,

The null hypothesis for sub-population 1, H0,1: θ1 ≤ 0 vs θ1 > 0,

The null hypothesis for sub-population 2, H0,2: θ2 ≤ 0 vs θ2 > 0.
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Enrichment: Example

First, we look at a design that only considers the whole population effect, θ.

The design has two analyses and one-sided type I error probability 0.025.

Sample size is set to achieve power 0.9 at θ = 20.

Data in each stage are summarised by a Z-value:

Stage 1 Stage 2 Overall

H0,0 Z1,0 Z2,0 Z0 = 1√
2
Z1,0 + 1√

2
Z2,0

Decision rules:

If Z1,0 < 0 Stop at Stage 1, Accept H0,0

If Z1,0 ≥ 0 Continue to Stage 2, then

If Z0 < 1.95 Accept H0,0

If Z0 ≥ 1.95 Reject H0,0
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Enrichment: Example

Assume equal sub-population proportions, so λ1 = λ2 = 0.5.

Properties of design for the whole population effect, θ:

θ1 θ2 θ Power for

H0,0

20 20 20 0.90

10 10 10 0.37

20 0 10 0.37

0 20 10 0.37

Is it feasible to identify at Stage 1 that θ is low, but it would be worthwhile to

switch resources to test a sub-population?
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Enrichment: An adaptive design

After Stage 1:

If θ̂ < 0, Stop at Stage 1, Accept H0,0

Otherwise

If θ̂2 < 4 and θ̂1 > θ̂2 + 8, Restrict to sub-popn 1: Test H0,1 only.

If θ̂1 < 4 and θ̂2 > θ̂1 + 8, Restrict to sub-popn 2: Test H0,2 only.

Else, Continue with full population: Test H0,0.

(The same total sample size for Stage 2 is retained in all cases)

In a Closed Testing Procedure, hypotheses of interest are:

H0,0: θ ≤ 0 H0,01: θ ≤ 0 and θ1 ≤ 0

H0,1: θ1 ≤ 0 H0,02: θ ≤ 0 and θ2 ≤ 0

H0,2: θ2 ≤ 0 H0,12 = H0,012: θ1 ≤ 0 and θ2 ≤ 0
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Enrichment: An adaptive design

Each null hypothesis, H0 say, is tested in a 2-stage group sequential test.

With Z-statistics Z1 and Z2 from Stages 1 and 2, H0 is rejected if

Z1 ≥ 0 and 1√
2
Z1 + 1√

2
Z2 ≥ 1.95.

When continuing with the full population, we use Z-statistics:

Stage 1 Stage 2

H0,0 Z1,0 Z2,0

H0,01 Z1,0 Z2,0

H0,02 Z1,0 Z2,0

H0,012 Z1,0 Z2,0

where Zi,0 is based on θ̂ from responses in Stage i.
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Enrichment: An adaptive design

When switching to sub-population 1, we use:

Stage 1 Stage 2

H0,1 Z1,1 Z2,1

H0,01 Z1,0 Z2,1

H0,12 = H0,012 Z1,0 Z2,1

When switching to sub-population 2, we use:

Stage 1 Stage 2

H0,2 Z1,2 Z2,2

H0,02 Z1,0 Z2,2

H0,12 = H0,012 Z1,0 Z2,2

where Zi,j is based on θ̂j from responses in Stage i.
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Enrichment: Example

Power of non-adaptive and adaptive designs:

Non-adaptive Adaptive

θ1 θ2 θ Full popn Sub-pop Sub-pop Full Total

1 only 2 only popn

1. 30 0 15 0.68 0.55 0.00 0.32 0.87

2. 20 20 20 0.90 0.06 0.06 0.78 0.90

3. 20 10 15 0.68 0.18 0.01 0.52 0.72

Case 1: Testing focuses (correctly) on H0,1, but it is still possible to find an effect

(wrongly) for the full population.

Case 2: Restricting to one of the sub-populations reduces power for finding an

effect in the full population.
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Enrichment: Example

Non-adaptive Adaptive

θ1 θ2 θ Full popn Sub-pop Sub-pop Full Total

1 only 2 only popn

1. 30 0 15 0.68 0.55 0.00 0.32 0.87

2. 20 20 20 0.90 0.06 0.06 0.78 0.90

3. 20 10 15 0.68 0.18 0.01 0.52 0.72

Case 3: Adaptation improves power overall, but there is a small probability of

restricting to the wrong sub-population.

Why the errors? Standard error of interim estimates θ̂1 and θ̂2 is 12.3.

Problem 4: Switching to a sub-population can improve power.

However, higher overall sample size is needed for

accurate sub-population inference.
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5. Switching between tests for superiority and non-inferiority

A trial may have two possible positive outcomes:

Showing the new treatment is superior to the current standard,

Showing the new treatment is non-inferior to the standard.

Investigators may start a trial intending to show superiority, then decide to adapt to

a new goal of non-inferiority if results are not as good as expected.

Having two hypotheses is not an issue as the two tests are nested:

Superiority — Null hypothesis: θ ≤ 0,

Non-inferiority — Null hypothesis: θ ≤ −d.
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Testing for both superiority and non-inferiority

Differing sample size requirements

Wang, Hung, Tsong & Cui (Statistics in Medicine, 2001) note the non-inferiority

margin d is often smaller than the effect size δ at which power for declaring

superiority is specified.

Thus, a larger sample size is needed to test adequately for non-inferiority.

If Stage 1 data indicate that the key issue is to test for non-inferiority, one may wish

to increase the Stage 2 sample size.

Adaptive re-design

Wang et al. propose a group sequential test with group size determined by the

power for superiority.

They then use the method of Cui, Hung & Wang (1999) to increase group sizes if

interest shifts to proving non-inferiority.
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Testing for both superiority and non-inferiority

A non-adaptive group sequential approach

In principle, one may embed testing for both superiority and non-inferiority in a

group sequential design.

Early stopping may be appropriate:

to reject H0,1: θ ≤ 0 (establishing superiority),

to accept H0,2: θ ≤ −d (failing even to show non-inferiority),

to declare non-inferiority only.

If power for declaring superiority is set at a higher effect size, δ, than the margin of

non-inferiority, d, the stopping rule for declaring superiority will be more aggressive.

Question: Is there significant benefit to allowing adaptive specification of group

sizes in such a group sequential design?
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Testing for both superiority and non-inferiority

A group sequential design to test for either Superiority or Non-inferiority could have

the general form:
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In recent work with Fredrik Öhrn, we have derived optimal designs of this type and

used these to assess the performance of other proposals.
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Testing for both superiority and non-inferiority
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The asymmetry of these designs is important when fixed sample sizes needed for

superiority and non-inferiority goals are different.

We have found little further benefit from adaptively choosing group sizes.

Problem 5: One can test for superiority and non-inferiority.

We recommend a pre-planned group sequential design

for this 3 decision problem.
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6. Treatment selection: Combined Phase II / III trials

A seamless Phase II / III design facilitates progression from treatment selection to

a large confirmatory trial without the usual “white space”.

Such a design may also combine Phase II and Phase III data in the final hypothesis

test for efficacy of the selected treatment.

Since each treatment has its own null hypothesis, a multiple testing procedure is

required to control the overall type I error rate.

Data may be merged through inverse χ2 and inverse normal combination tests

(e.g., Bretz, Schmidli, et al. and Schmidli, Bretz et al, Biometrical Journal, 2006).

Earlier proposals control type I error, and power, directly (e.g., Thall, Simon &

Ellenberg, Biometrika, 1988).

How useful is this data combination?
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Combined Phase II/III trials: Example

Jennison & Turnbull (J. Biopharmaceutical Statistics, 2007) consider a Phase II

comparison of 4 treatments, with 100 observations per treatment and control.

If the treatment performing best in Phase II meets a minimum threshold, it proceeds

to further testing in Phase III, with 500 observations for this treatment and control.

Data are combined by four different strategies:

1. Conventional Separate Phase II and Phase III trials: final decision is based on

the Phase III data alone.

2. BK1 Data from the two phases are combined by an inverse χ2 test.

3. BK2 Data from the two phases are combined by an inverse normal test.

4. TSE A Thall, Simon & Ellenberg design.
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Combined Phase II/III trials: Example

In work with Lisa Hampson, we have studied this example further.

We have found an “optimal” decision rule to give a benchmark for other methods.

Power of four 2-stage selection/testing procedures when three are ineffective and

the other has effect size δ:
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Combined Phase II/III trials: Example
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Differences in power curves correspond to differences in sample size for a given

power of order 10% to 20%.

The conventional procedure — with no data combination — is surprisingly efficient:

slightly worse than the Thall, Simon & Ellenberg design, but superior to inverse χ2

and inverse normal combination tests.

Problem 6: Joint planning of two phases of testing

can be valuable — for a variety of reasons.

Benefits of data combination may not be so great.
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Conclusions

Adaptive methods provide a useful route to modifying sample size as a nuisance

parameter is estimated.

They can lead to moderate efficiency gains when changing primary endpoint or

restricting to a sub-population.

Adaptive or group sequential methods are effective for switching between tests for

superiority and non-inferiority.

Special methods can yield benefits from combining data between phases.

But, remember that interim estimates will have high variance.

We recommend adaptation as part of a pre-planned and

pre-tested trial design — “flexible adaptation” brings

risks as well as opportunities.
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