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Initial choice of sample size

Type I error and power

Suppose θ represents the effect of a new treatment vs control.

A study is to test H0: θ ≤ 0 against θ > 0 with

one-sided type I error probability α = 0.025, say.

The choice of sample size determines the power curve,

-
θ0 δ

6
1−β

α . . . . . . . . . . . . . . . . . . . . .
Power

in particular, the effect size δ where power is 1 − β = 0.9, say.
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Information and sample size

Information for the effect size θ is defined as

I = 1/Var(θ̂).

To achieve power 1 − β at θ = δ, a fixed sample size test needs information

I = (zα + zβ)2/δ2.

Information is related to sample size:

In a two-treatment comparison with normal responses of variance σ2, a

sample size of n per treatment gives

I = n/(2 σ2),

In a survival study, information for the log hazard ratio when d failures

have been observed is approximately

I = d/4.
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Survival data: Accrual and follow up

-
Start of
study

End of
accrual

End of
follow up

Calendar
time

•

•

◦

•

•

◦

•

•

•

◦

•

◦

Subjects enter the study and are randomised to a treatment group.

Survival is measured from entry to the study.

Key: • death time observed,
◦ censored observation.
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Interim analyses in a survival study

-
Analysis

1
Analysis

2
Analysis

3
Calendar

time

•

•

◦

•

•

◦

•

•

•

◦

•

◦

At an interim analysis, subjects are censored if they are still alive at this point.

Information on such patients will continue to accrue at later analyses.
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Interim analysis 1

-
Survival

time

•

◦

◦

◦

•

◦

◦

At the first analysis, we analyse available data on survival from randomisation.

These survival times have a common starting point of zero and “analysis time”

censoring occurs for subjects surviving past the first analysis.
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Interim analysis 2

-
Survival

time

•

•

◦

◦

•

◦

◦

◦

•

◦

◦

◦

At the second analysis, we analyse updated data on survival from randomisation.

These times have a common starting point of zero and “analysis time” censoring

occurs for subjects surviving past the second analysis.

And so on, through further analyses . . .
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The logrank statistic

At stage k, denote the dk failure times (measured from entry to study) by

τ1,k < τ2,k < . . . < τdk,k.

Define for stage k:

riA,k and riB,k Numbers at risk on Treatments A

and B at τi,k−

Ok Observed deaths on Treatment B

Ek =
∑dk

i=1 riB,k/(riA,k + riB,k) “Expected” deaths on Treatment B

Vk =
∑dk

1 riA,kriB,k/(riA,k + riB,k)2 “Variance” of Ok

Zk = (Ok − Ek)/
√

Vk Standardised logrank statistic
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Proportional hazards model

Assume hazard rates hA on Treatment A and hB on Treatment B are related by

hB(t) = λ hA(t).

The log hazard ratio is θ = ln(λ).

Then, approximately,

{Z1, . . . , ZK} are multivariate normal,

Zk ∼ N(θ
√Ik, 1), k = 1, . . . , K,

Cov(Zk1
, Zk2

) =
√

(Ik1
/Ik2

) for k1 < k2,

where

Ik = Vk, the variance of the unstandardised logrank statistic Ok − Ek.
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Proportional hazards model

We can define the estimate of the hazard ratio

θ̂k = Zk/
√
Ik.

Then, approximately,

{θ̂1, . . . , θ̂K} are multivariate normal

θ̂k ∼ N(θ, I−1
k ), k = 1, . . . , K,

Cov(θ̂k1
, θ̂k2

) = I−1
k2

for k1 < k2.

When λ ≈ 1, we have Ik = Vk ≈ dk/4 and the familiar result

θ̂k ∼ N(θ, (dk/4)−1).
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Sample size re-estimation for nuisance parameters

One can design a study in terms of “required information”.

During the trial, sample size or length of follow up for survival data may be modified

to reach the target information level.

Internal pilots: Wittes & Brittain (Statistics in Medicine, 1990)

Information monitoring: Mehta & Tsiatis (Drug Information J., 2001)

Adaptive designs: Bauer & Köhne (Biometrics, 1994)

These modifications are intended to achieve the power curve originally specified.

-
θ0 δ

6
1−β

α . . ... . . . . . . . ... . . . . . .
Power

What if requirements for the power curve change during a trial?
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Changing power in response to external events

Example 1. (JT, Biometrika, 2006, Ex. 1)

A group sequential study to investigate effect size θ using an “error spending” test.

The study will test H0: θ ≤ 0 against θ > 0 with

one-sided type I error probability α = 0.025,

initial design: power 1 − β = 0.9 at θ = δ.

A fixed sample size test would need information

If = (zα + zβ)2/δ2 = 10.51/δ2.

The trial has 5 planned analyses, and spends type I and II error in proportion to I3.

The information level must be able to reach

Imax = 1.049 If = 11.02/δ2.
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Adapting sample size to external events

Suppose θ is a log hazard ratio, so θ̂k ∼ N(θ, 4/dk) approximately.

With δ = 0.42, i.e., power 0.9 at a hazard ratio of 1.52, maximum information is

Imax = 11.02/δ2, equating to 250 failure events.

Then, the test has the following stopping boundary.

Z(k)

50 150 100 250
0

2

4

−2

−4

Number of 
events

Reject H
0

Accept H
0

Continue

Now suppose external information arrives at the time of the second analysis.
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Increasing later group sizes

Suppose, at the time of analysis 2:

The external environment has changed,

Investigators want power 0.9 at θ = δ/2 rather than θ = δ.

Re-design must protect the type I error rate, remembering that investigators knew

the value of Z(2) when deciding to do this.

The method of Cui, Hung and Wang (Biometrics, 1999)

Numbers of events in the remaining groups, 3 to 5, are multiplied by a factor γ,

which may depend on Z(2) — so increments in information are multiplied by γ.

Down-weighting observations from these groups by γ−1/2 maintains the

type I error rate.

Despite down-weighting, the larger numbers of events give increased power.
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The Cui et al. method

In the original design, “group k” provides a score statistic for θ

S(k) ∼ N(I(k) θ, I(k)).

The sum of these for groups 1 to k is the overall score statistic at analysis k.

When group size is increased by a factor γ, we have

S′

(k) ∼ N(γ I(k) θ, γ I(k)).

However,

γ−1/2 S′

(k) ∼ N(γ1/2 I(k) θ, I(k)),

which has the same null distribution under θ = 0 as the original S(k).

The higher mean of γ−1/2 S′

(k) for θ > 0 increases power, as desired.
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Applying the Cui et al. method

Sample size “re-estimation” occurs at analysis 2.

The objective is to deliver power at the new alternative θ = δ/2.

Information (i.e., numbers of events) planned from groups 3 to 5 is multiplied by a

factor γ, the value of which depends on responses observed thus far.

We restrict γ to the range 1 to 6, implying:

No reduction of information,

Total information is at most 4 times the original maximum value.

Within this restriction, we endeavour to achieve a conditional power of 0.9 given

current data under θ = δ/2.
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Conditional properties at the re-design point

Over the range of values for Z(2) in the continuation region (−0.42, 2.97), the

re-designed test has the following features:

Conditional Conditional power Conditional power

θ̂/δ z(2) type I error at θ=δ/2 before γ at θ=δ/2 after

probability re-design re-design

1.40 2.94 0.5707 0.9100 1.00 0.9100

1.20 2.52 0.3856 0.8177 1.70 0.9000

1.00 2.10 0.2329 0.6903 2.65 0.9000

0.80 1.68 0.1272 0.5421 3.74 0.9000

0.60 1.26 0.0630 0.3917 5.00 0.9000

0.40 0.84 0.0279 0.2565 6.00 0.8762

0.20 0.42 0.0109 0.1490 6.00 0.7721

0.00 0.00 0.0036 0.0745 6.00 0.6204

−0.20 −0.42 0.0010 0.0310 6.00 0.4350
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Results of re-design

The re-design is successful in raising the power curve at all effect sizes.
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θ/δ

P
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er

   Original 5 group test

   Adaptive test with conditional

   power 0.9 at θ = 0.5δ

Overall power at θ = δ/2 is 0.78, below the 0.9 aimed for due to previous early

stopping and truncation of γ to the range 1 to 6.
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Is there a cost for learning power objectives late?

The adaptive approach has allowed investigators to respond to new information,

even though the trial was already under way.

Has the delay in learning the power requirement had an impact on efficiency?

If the ultimate objective of power 0.9 at θ = δ/2 had been known when the study

was first planned, a suitable group sequential design could have been chosen.

An alternative group sequential design

We consider an error spending test which matches features of the adaptive test’s

power curve and expected sample size function. This is

A design which spends error ∝ I0.75 with power 0.9 at θ = 0.59 δ,

5 analyses, the first four at 0.1, 0.2, 0.45 and 0.7 times Imax,

Imax = 3.78 If (compared to 4.2 If for the adaptive design).
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A matched group sequential design

Power of the “matched” group sequential design is as high as that of the adaptive

design at all effect sizes.
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A matched group sequential design

The group sequential design has lower expected information than the adaptive

design at all effect sizes.
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   Adaptive test with conditional

   power 0.9 at θ = 0.5δ

   Matched group sequential test

For survival data, information translates to “number of observed events”.

The lower Imax for the group sequential design should imply lower recruitment.
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Comparing efficiencies of sequential designs

Suppose test A has

Type I error probability α and

Power 1 − bA(θ) and expected information EA,θ(I) at effect size θ.

A level α fixed sample test needs I = (zα + zbA(θ))
2/θ2 to achieve this power.

Hence, we define the Efficiency Index of test A at effect size θ to be

EIA(θ) =
(zα + zbA(θ))

2

θ2

1

EA,θ(I)
.

We use this index to define the Efficiency Ratio at θ between tests A and B as

ERA,B(θ) =
EIA(θ)

EIB(θ)
× 100 =

EB,θ(I) (zα + zbA(θ))
2

EA,θ(I) (zα + zbB(θ))2
× 100.
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Comparing efficiencies of sequential designs

The Efficiency Ratio combines information on attained power and expected

information at each effect size θ.

The cost of delay in learning the real power requirement is seen to be an efficiency

loss of 20% at higher effect sizes.

Efficiency ratio of adaptive design vs group sequential test
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Changing power in response to internal events

Example 2. (JT, Biometrika, 2006, Ex. 2)

We start with the same initial group sequential design as in Example 1.

Z(k)

50 150 100 250
0

2

4

−2

−4

Number of 
events

Reject H
0

Accept H
0

Continue

Suppose investigators wish to re-design the remainder of the trial in response to the

interim estimate of effect size, θ̂2, at analysis 2.
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Increasing later group sizes

A lower than anticipated interim estimate θ̂2 prompts investigators to consider the

trial’s power at effect sizes below δ, where power 0.9 was originally set:

Lower effect sizes start to appear plausible,

Conditional power under these effect sizes, using the current design, is low.

Applying the Cui et al. method:

Numbers of events in groups 3 to 5 are multiplied by a factor γ, and increments in

the score statistic from these groups are down-weighted by γ−1/2 to maintain the

type I error rate.

The value of the factor γ is chosen so that conditional power is 0.9, given current

data, if θ is equal to θ̂2.

A decrease (γ < 1) is allowed but an upper limit γ = 6 is imposed, restricting the

number of events to at most 4 times the original maximum.
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Conditional properties at the re-design point

Over the range of values for Z(2) in the continuation region (−0.42, 2.97), the

re-designed test has the following features:

Conditional Conditional power Conditional power

θ̂/δ z(2) type I error at θ= θ̂ before γ at θ= θ̂ after

probability re-design re-design

1.40 2.94 0.5707 0.9998 0.12 0.9000

1.20 2.52 0.3856 0.9959 0.30 0.9000

1.00 2.10 0.2329 0.9597 0.66 0.9000

0.80 1.68 0.1272 0.8051 1.46 0.9000

0.60 1.26 0.0630 0.4908 3.48 0.9000

0.40 0.84 0.0279 0.1825 6.00 0.7085

0.20 0.42 0.0109 0.0365 6.00 0.1432

0.00 0.00 0.0036 0.0036 6.00 0.0036

−0.20 −0.42 0.0010 0.0002 6.00 0.0000

NB, investigators will have focused on conditional properties given Z(2) = z(2).
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Results of re-design

Re-design has raised the power curve at all effect sizes.
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Overall power at θ = δ/2 has increased from 0.37 to 0.68.
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Is there an efficiency cost in following this adaptive approach?

Reasons for re-design arose purely from observing θ̂2. A group sequential design

responds to such interim estimates — in the decision to stop the trial or to continue.

Investigators could have considered at the design stage how they would respond to

low interim estimates of effect size.

If they had thought this through and chosen the above adaptive procedure, they

could also have examined its overall power curve. Assuming this power curve were

acceptable, how else might it have been achieved?

An alternative group sequential design

A design matching key features of the adaptive test is

A design which spends error ∝ I0.75 with power 0.9 at θ = 0.64 δ,

5 analyses, the first four at 0.1, 0.2, 0.45 and 0.7 times Imax,

Imax = 3.21 If (compared to 4.2 If for the adaptive design).
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A matched group sequential design

Power of the “matched” group sequential design is as high as that of the adaptive

design at all effect sizes — and substantially higher at the largest θ values.
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A matched group sequential design

The group sequential design has significantly lower expected information than the

adaptive design over a range of effect sizes.

The group sequential design has slightly higher expected information for θ > 0.8 δ

where its power advantage is greatest.
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Efficiency ratio

We can use the Efficiency Ratio to combine information on attained power and

expected information.

The adaptive design is up to 39% less efficient than the non-adaptive, group

sequential alternative.

Efficiency ratio of adaptive design vs group sequential test
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Recapitulation: Sample size re-estimation

(i) Nuisance parameters

There is a variety of methods to re-estimate the sample size needed to meet a

specific power requirement under a given type I error probability.

(ii) In response to external information

It is good that we have adaptive methods that can do this when necessary.

But, earlier knowledge of the ultimate objective would be preferable.

(iii) In response to internal information

Adaptive methods can “rescue” an under-powered study.

Our example shows this can produce a poor design, with high average “sample

size” for the power achieved: a standard group sequential design is preferable.

We have found this conclusion to hold quite generally.
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Sample size adaptation in response to internal information

Just as in Example 2 above, we have found inefficiencies in a variety of proposed

adaptive designs, including:

Bauer and Köhne (Biometrics, 1994)

Proschan and Hunsberger (Biometrics, 1995),

Shen and Fisher (Biometrics, 1999) — see Jennison and Turnbull (Bmcs, 2006),

Li, Shih, Xie and Lu (Biostatistics, 2002).

When adaptation makes smaller increases in sample size, the gain in power is

smaller but efficiency loss is still present.

In general, adaptive designs have more freedom than group sequential tests since

they can vary the next group size in response to current data.

Hence, the best adaptive designs ought to be superior to group sequential designs

— so why do adaptive tests in the literature fare so poorly?
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“Schmitz” designs

Adaptive group sequential designs (Schmitz, 1993)

These designs have stopping rules, just like group sequential tests, but they also

have rules for choosing the next group size — or number of events — or increment

in information — in response to current data.

Optimal group sequential tests

We can compute the test which minimises expected sample size averaged over a

set of θ values, for given type I error and power and a fixed sequence of group sizes.

Optimal adaptive group sequential tests

We can also find the optimal adaptive, group sequential test with given type I error

and power and a fixed number of groups with data-dependent sample sizes.

Since the class of adaptive tests includes non-adaptive tests as a special case, the

optimal adaptive test is more efficient than the optimal group sequential test.
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Sample size adaptation in response to internal information

Minimum sample sizes for adaptive and non-adaptive designs with K analyses.

Avg E(N)
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K = ∞

Advantages of adaptive designs are small — but they are present.
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Sources of inefficiency in flexible, adaptive designs

1. Use of non-sufficient statistics

Jennison and Turnbull (Biometrika, 2006) prove all admissible designs (adaptive or

non-adaptive) are Bayes procedures. Hence, their decision rules and sample size

rules must be functions of sufficient statistics.

Unequal weighting of observations in adaptive designs means these are not based

on sufficient statistics. Thus, they cannot be optimal designs for any criteria.

The potential benefits of adaptivity are slight and any departure from optimality can

leave room for an efficient non-adaptive design, with the same number of analyses,

to do better.

NB, this is stronger conclusion than that of Tsiatis and Mehta (Biometrika, 2003)

who allow the comparator non-adaptive design to have additional analyses.
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Sources of inefficiency in flexible, adaptive designs

2. Sub-optimal sample size modification rule

Typical sample

size function

for an optimal

adaptive test
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“Conditional power” sample size modification rules differ qualitatively from those of

optimal adaptive designs.
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Final conclusions

(i) Nuisance parameters

There is a variety of methods to re-estimate the sample size needed to meet a

specific power requirement under a given type I error probability.

(ii) In response to external information

It is good to have adaptive methods to do this when necessary.

But, it is preferable to know the ultimate objective at the outset.

(iii) In response to internal information

Adaptive methods can “rescue” an under-powered study.

There is an efficiency cost to such a rescue: it is much better to design the study

with the correct power in the first place.

We do not recommend using this re-design feature to avoid tackling difficult

questions about power at the design stage.
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