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1. Protecting the type I error probability

The importance of avoiding inflation of the type I error rate in an adaptive or flexible

design cannot be over-emphasized.

• ICH E9 (p. 25)

“The procedures selected should always ensure that the overall

probability of type I error is controlled.”

• PhRMA White paper (J. Biopharmaceutical Statistics, 2006)

“The key issue in most contexts is preservation of the type I error rate.”

• Pocock & Hughes (Controlled Clinical Trials, 1989)

“Control of type I error is a vital aid to prevent a flood of false positives

into the medical literature.”
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2. Combining P-values: Bauer & Köhne’s method

Bauer & Köhne (Biometrics, 1994).

Initial design

Stipulate that Bauer & Köhne’s combination test will be used.

Define the null hypothesis H0.

Design Stage 1, fixing sample size and test statistic for this stage.

Stage 1

Observe the P-value, P1.

Under H0, P1 ∼ U(0, 1).

Design Stage 2 in the light of Stage 1 data.

Stage 2

Observe the P-value, P2.

Under H0, P2 ∼ U(0, 1) and P2 is independent of P1.
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Bauer & Köhne’s two-stage method

Overall test

If P ∼ U(0, 1), then

− ln(P ) ∼ Exp (1) =
1

2
χ2

2
.

Thus, under H0,

− ln(P1 P2) ∼
1

2
χ2

4

and we combine the two P-values in an overall test, rejecting H0 if

− ln(P1 P2) >
1

2
χ2

4, 1−α.

This χ2 test was originally proposed for combining results of several studies by

R. A. Fisher (1932) Statistical Methods for Research Workers.
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3. Sample size re-estimation on estimating response variance

Consider a two-treatment comparison with normal responses of unknown variance,

XAi∼ N(µA, σ2) and XBi∼ N(µB , σ2) on treatments A and B, respectively.

Initial design

Investigators decide to test H0: θ = µA − µB ≤ 0 against θ > 0 with type I error

rate α, using a Bauer & Köhne two-stage design.

Sample size, n0 per treatment, is determined that will give power 1 − β at θ = δ

if the variance is equal to their initial estimate σ2

0
.

Stage 1 is planned with a sample size of n1 = n0/2 per treatment.

Stage 1

Yields estimates θ̂1 and σ̂2

1
, plus the t-statistic t1 for testing H0 vs θ > 0.

Convert t1 to a P-value, P1 = Prθ=0{T2 n1−2 > t1}.
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Sample size re-estimation

Stage 1 . . .

Now use the variance estimate σ̂2

1
to re-calculate sample size.

One may simply use this value in the original calculation, in place of σ2

0
.

Or, perhaps, choose the Stage 2 sample size to give conditional power 1 − β,

given P1, assuming θ = θ̂1 and σ2 = σ̂2

1
.

This defines an additional sample size of n2 per treatment arm in Stage 2.

Stage 2

Calculate the t-statistic t2 for testing H0 vs θ > 0 based on Stage 2 data alone.

Convert t2 to a P-value, P2 = Prθ=0{T2 n2−2 > t2}.

The overall test — which has type I error rate exactly α — rejects H0 if

− ln(P1 P2) >
1

2
χ2

4, 1−α.
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Other approaches to sample size re-estimation

Adaptive designs add to the variety of methods for dealing with an unknown

parameter, φ, affecting the sample size needed to attain a specific power.

Internal pilot:

Wittes & Brittain (Statistics in Medicine, 1990) propose a simple “plug in” of the

current estimate φ̂ to update the remaining sample size.

A small inflation of the type I error rate can result from bias in the final φ̂.

Information monitoring:

Mehta & Tsiatis (Drug Information J., 2001) use a similar “plug in” of estimated

information within an error spending group sequential design.

For normal response with unknown σ2, the small error rate inflation can be reduced

by use of better approximations (Denne & Jennison, Biometrika, 2000).
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4. Sample size modification in response to new information

Consider a study to compare failure rates pc and pt on control and experimental

treatments, respectively. Historical data indicate pc ≈ 0.25.

Writing θ = pc − pt, it is desired to test H0: θ ≤ 0 against θ > 0 with type I error

rate α = 0.025 and power 1 − β = 0.9 if θ = 0.05.

Initial design

A Bauer & Köhne two-stage design is specified.

With type I error rate and power as specified above, assuming pc = 0.25, a fixed

sample test needs 1461 subjects per treatment arm.

Stage 1 is planned with 730 subjects per treatment, with a view to re-assessing

requirements for the remainder of the study in the light of their responses.
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Sample size modification

Stage 1

Yields p̂c = 0.253 and p̂t = 0.219.

Hence θ̂ = 0.034 with standard error 0.0222.

A test of H0: θ ≤ 0 has Z-statistic 0.034/0.0222 = 1.53 and P-value

P1 = 1 − Φ(1.53) = 0.0629.

The overall test will reject H0 if − ln(P1 P2) > 0.5 χ2

4, 0.975 = 5.57.

Since − ln(0.0629) = 2.77, results thus far are promising. However, a positive

outcome is by no means certain.

It is learnt that trials of competing treatments have been unsuccessful.

Based on perceived costs and benefits, it is decided to increase the second phase

sample size.

Sample size is chosen to give higher probability of a positive outcome under the

original alternative, θ = 0.05 — and under smaller effect sizes.
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Sample size modification

Planning Stage 2 sample size

pc pt θ Stage 2 Conditional

sample size power

0.25 0.22 0.03 750 0.43

1000 0.51

1250 0.59

0.25 0.21 0.04 750 0.62

1000 0.72

1250 0.80

0.25 0.20 0.05 750 0.78

1000 0.87

1250 0.93
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Sample size modification

Stage 2

Chosen sample size: 1000 patients per treatment arm in Stage 2.

Yields p̂c = 0.251 and p̂t = 0.221 from Stage 2 data alone.

Hence θ̂ = 0.030 with standard error 0.0190.

A test of H0: θ ≤ 0 has Z-statistic 0.030/0.0190 = 1.58 and, thus, P-value

P2 = 1 − Φ(1.58) = 0.0570.

Applying the overall test,

− ln(P1 P2) = − ln(0.0629) − ln(0.0570) = 2.77 + 2.87 = 5.64.

This is greater than 0.5 χ2

4, 0.975 = 5.57, so H0 is rejected and it is concluded

that the new treatment has a lower failure rate.
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5. Increasing sample size for disappointing results

Example: (JT, Biometrika, 2006, Ex. 2)

Consider a study to investigate a new treatment vs control, where responses are

N(µt, σ
2) on treatment, N(µc, σ

2) on control, and θ = µt − µc.

The study will test H0: θ ≤ 0 against θ > 0 with

one-sided type I error probability α = 0.025,

power 1 − β = 0.9 at θ = δ.

A fixed sample size test needs nf observations per treatment where

nf = (zα + zβ)2 2σ2/δ2.

Suppose a group sequential design is specified with 5 analyses.
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A group sequential design

An “error spending” group sequential design

Boundaries are set such that cumulative type I and type II error rates follow a given

function of information (equivalently, sample size).

We assume a ρ-family error spending design is chosen with ρ = 3, then error is

spent in proportion to I3.

This gives a slow rate of spending error early on, so boundaries are wide initially.

Overall sample size

The sample size “inflation factor” for this design is 1.049, that is, the design has a

maximum sample size per treatment of 1.049 nf .

We suppose δ and σ2 are such that this maximum sample size is 250.
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An error spending group sequential test

The 5-group error spending test has the following stopping boundary:

Z(k)

50 150 100 250
0

2

4

−2

−4

Sample 
size

Reject H
0

Accept H
0

Continue

However, in response to the interim estimate of effect size, θ̂2, at the second

analysis, investigators consider changing sample size in the remaining groups.
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Can later group sizes be increased?

Motivation

A low interim estimate θ̂2 prompts investigators to consider the trial’s power at

effect sizes below the point where power 0.9 was originally set since:

lower effect sizes now plausible,

conditional power under these effect sizes, using the current design, is low.

(We assume smaller effect sizes are still of clinical significance.)

Questions

Can group sizes be increased without affecting the type I error rate?

How advisable is this “wait and see” approach?
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Protecting the type I error rate

The method of Cui, Hung and Wang, Biometrics, 1999

As planned, each group 3 to 5 would provide a summary statistic

Y =
50
∑

i=1

Xti −
50
∑

i=1

Xci ∼ N(50 θ, 100 σ2).

Suppose groups 3 to 5 are multiplied by a factor γ. We can define:

Y ′ = γ−1/2

(

50γ
∑

i=1

Xti −

50γ
∑

i=1

Xci

)

∼ N(50 γ1/2θ, 100 σ2).

Using the down-weighted sum Y ′ in place of the original Y will:

retain the original distribution of Y under θ = 0,

increase the mean of Y for θ > 0, and so enhance power.
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Implementing mid-study re-design

The Cui et al. (1999) approach can be applied to increase power when θ̂2 is low.

We shall assume this is done for values of Z(2) in the continuation region

(−0.42, 2.97).

Sample size rule

Suppose the value of γ is chosen to provide conditional power of 0.9 given

current data, if θ is equal to θ̂2.

We allow a decrease in group size (γ < 1).

We impose an upper limit γ = 6, restricting the total sample size to 1000

per treatment, i.e., 4 times the original maximum sample size.
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Conditional properties at the re-design point

The re-designed test has the following features:

Conditional Conditional power Conditional power

θ̂/δ z type I error at θ= θ̂ before γ at θ= θ̂ after

probability re-design re-design

1.40 2.94 0.5707 0.9998 0.12 0.9000

1.20 2.52 0.3856 0.9959 0.30 0.9000

1.00 2.10 0.2329 0.9597 0.66 0.9000

0.80 1.68 0.1272 0.8051 1.46 0.9000

0.60 1.26 0.0630 0.4908 3.48 0.9000

0.40 0.84 0.0279 0.1825 6.00 0.7085

0.20 0.42 0.0109 0.0477 6.00 0.2236

0.00 0.00 0.0036 0.0195 6.00 0.1218

−0.20 −0.42 0.0010 0.0066 6.00 0.0554

NB, investigators will have focused on conditional properties given Z(2) = z.
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Results of re-design

Re-design has raised the power curve.
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Overall power at θ = δ/2 has increased from 0.37 to 0.68.
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Is there an efficiency cost in following this adaptive approach?

Reasons for re-design arose from observing θ̂2. A group sequential test responds

to such interim estimates — in the decision to stop the trial or to continue.

Investigators could have considered at the design stage how they would react to

low interim estimates of effect size.

If they had thought this through and chosen the above adaptive procedure, they

could also have examined its overall power curve. Assuming this power curve is

acceptable, how else might it have been achieved?

An alternative group sequential design

A design matching key features of the adaptive test is

A ρ-family error spending with ρ = 0.75, power 0.9 at θ = 0.64 δ,

5 analyses, the first four at 0.1, 0.2, 0.45 and 0.7 times nmax,

nmax = 3.21 nf (compared to 4.2 nf for the adaptive design).
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A matched group sequential design

Power of the “matched” group sequential design is as high as that of the adaptive

design at all effect sizes — and substantially higher at the largest θ values.
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A matched group sequential design

The group sequential design has significantly lower expected sample size than the

adaptive design over a range of effect sizes.

The group sequential design has slightly higher expected sample size for θ > 0.8 δ

where its power advantage is greatest.
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Efficiency ratio

Attained power and expected sample size can be combined in an “efficiency ratio”

(JT, Biometrika, 2006).

The adaptive design is up to 39% less efficient than the non-adaptive, group

sequential alternative.

Efficiency ratio of adaptive design vs group sequential test
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Sample size adaptation in response to a low θ̂

We have studied a variety of proposed adaptive designs and found similar

inefficiencies to the above example. These include methods of:

Proschan and Hunsberger (Biometrics, 1995),

Shen and Fisher (Biometrics, 1999) — see Jennison and Turnbull (Bmcs, 2006),

Li, Shih, Xie and Lu (Biostatistics, 2002).

Smaller adaptations increase power less but efficiency loss is still present.

Conclusion

Adaptive methods can be used to rescue an under-powered study.

We do not recommend their use for planned sample size modifications.

When there is uncertainty about the likely treatment effect, group sequential

tests achieve power at the appropriate effect size — with early stopping if the

true effect size is very high. (JT, Statistics in Medicine, 2006).
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6. Credibility of a study after adaptive re-design

Study results may lack credibility if data are treated in unusual ways.

Unequal weighting of similar observations

Down-weighting some groups of observations looks strange when all subjects

provide the same amount of statistical information.

Burman and Sonesson (Biometrics, 2006) present extreme examples of

adaptive designs which lead to highly counter-intuitive conclusions.

In one example H0: θ ≤ 0 is rejected, even though the estimate of θ based

on the sample mean is negative!

Use of non-sufficient statistics

Unequal weighting, and many other forms of combination rule, will usually lead to

conclusions based on non-sufficient statistics.
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Making the most of the adaptive toolbox

Adaptive opportunities

Adaptation methods offer new approaches to

treatment selection,

restriction to a sub-population — “enrichment”,

change of endpoint

during the course of a study.

Need for special methods

Special methods are required to account for the testing of multiple hypotheses.

Although some complications are inevitable, the more procedures for adaptation are

pre-specified, the more “reasonable” they can appear.
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