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1. Motivation of interim monitoring

There are reasons of

ethics

administration (accrual, compliance, . . . )

economics

to monitor accumulating data in a clinical trial.

Subjects should not be exposed to unsafe, ineffective or

inferior treatments.

An effective new treatment should be made available as

rapidly as possible.

National and international guidelines call for interim

analyses to be performed — and reported.

It is standard for a Data and Safety Monitoring Board to

oversee a study and consider possible early termination.
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The need for special methods

There is a danger that multiple looks at data can lead to

over-interpretation of interim results

Overall type I error rate applying

repeated significance tests at

α = 5% to accumulating data

Number of tests Error rate

1 0.05
2 0.08
3 0.11
5 0.14

10 0.19
20 0.25

100 0.37
∞ 1.00

Pocock (1983) Clinical Trials, Table 10.1,

Armitage et al. (JRSS, A, 1969), Table 2.
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2. Pocock’s repeated significance test

Pocock (Biometrika, 1977).

To test H0: θ = 0 vs θ 6= 0 for treatment difference θ.

Use standardised test statistics Zk, k = 1, . . . , K.

Stop to reject H0 at analysis k if

|Zk| > c.

If H0 is not rejected by analysis K, stop and accept H0.

-
k

6
Zk

• • • •

• • • •

Reject H0

Reject H0

Accept H0

Here, c is chosen to give the correct type I error rate.
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Scope of Pocock’s test

Pocock gave sample size formulae, and necessary

constants, to meet type I error and power requirements.

He noted that good efficiency gains come from having

just 2 or 3 groups of observations.

Pocock showed size and power are maintained if the same

P -values and sample size formulae are used in tests for

other response distributions:

t-test,

binary data,

exponential data,

Wilcoxon test.

He adapted the method, again via P -values, to deal with

variable group sizes.
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3. Regulatory requirements

The U. S. Federal Register (1985) published regulations

for new drug applications including the requirement that

the analysis of a Phase III trial

“assess . . . the effects of any interim analyses”

This was elaborated in a Guideline (FDA, 1988):

“The process of examining . . . data accumulating

in a clinical trial . . . can introduce bias. Therefore

all interim analyses, formal or informal, by any

study participant, sponsor staff member, or data

monitoring group should be described in full even

if treatment groups were not identified. The

need for statistical adjustment because of such

analyses should be addressed. . . . ”

⇒ Need for a pre-specified stopping rule.

Adjustment, even for purely “administrative” analyses.
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Updated guidelines

The FDA guidelines were updated in the Federal Register

(1998) as

“E9 Statistical Principles for Clinical Trials”.

This was prepared under the auspices of the International

Conference on Harmonization of Technical Requirements

for Registration of Pharmaceuticals for Human Use (ICH).

The document lists recommendations for statistical

principles and methodology applied to clinical trials in the

pharmaceutical industry.

It advocates use of group sequential designs and gives

detailed recommendations for trial conduct, including trial

monitoring, interim analysis, early stopping, sample

size adjustment and the role of an independent data

and safety monitoring board (DSMB).
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4. Types of hypothesis testing problems

Two-sided test:

Testing H0: θ = 0 against θ 6= 0.

One-sided test:

To show treatment A is superior to B,

testing H0: θ ≤ 0 against θ > 0.

Non-inferiority test:

To show treatment A is not clinically

inferior to treatment B,

testing H0: θ ≤ −δ against θ > −δ.
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Two-sided tests

If interested in a difference between treatments in either

direction, we should test

H0: θ = 0 against θ 6= 0,

requiring

Pr{Reject H0 | θ = 0} = α,

Pr{Reject H0 | θ = ±δ} = 1 − β.

A typical boundary is:
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Reject H0

Reject H0

Accept H0

E.g., Wang & Tsiatis (Biometrics, 1997).
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One-sided tests

If we are only interested in showing that a new treatment

is superior to a control, we should test

H0: θ ≤ 0 against θ > 0,

requiring

Pr{Reject H0 | θ = 0} = α,

Pr{Reject H0 | θ = δ} = 1 − β.

A typical boundary is:
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E.g., DeMets & Ware (Biometrika, 1980),

Whitehead (1997) The Design and Analysis of Clinical Trials.

10



Demonstrating non-inferiority

Suppose it is desired to show a new treatment is “no worse

than” the current standard.

If the new treatment has mean µA and the standard µB,

we wish to show µA ≥ µB − δ, where δ is a clinically

acceptable fall in mean response.

Let θ = µA − µB. We require

Pr{Declare non-inferiority | θ = −δ} ≤ α,

Pr{Declare non-inferiority | θ = 0} ≥ 1 − β.

-

θ−δ 0

6

1−β

α
. . . . . . . . . . . . . . . . . . . . . . . . .

Pr{Declare

non-inferiority}

— the previous one-sided test with θ values shifted by −δ.
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5. Types of stopping rule

i) Stopping for a positive outcome

Two-sided test of H0: θ = 0 against θ 6= 0.
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Reject H0

Accept H0

Crossing either the upper or lower boundary leads to

rejection of H0 and conclusion of a treatment difference.
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Types of early stopping

i) Stopping for a positive outcome

One-sided test of H0: θ ≤ 0 against θ > 0.
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Accept H0

Crossing the upper boundary leads to rejection of H0 in

favour of θ > 0 and conclusion that the new treatment is

superior.
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Types of early stopping

ii) Stopping for futility

Two-sided test of H0: θ = 0 against θ 6= 0.
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An inner boundary can be added for a two-sided test.

Crossing this inner boundary leads to early stopping with

acceptance of H0 in order to “abandon a lost cause”.
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Types of early stopping

ii) Stopping for futility

One-sided test of H0: θ ≤ 0 against θ > 0.
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Crossing the lower boundary leads to an early decision to

accept H0.
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Types of early stopping

ii) Stopping for futility

One-sided test of H0: θ ≤ 0 against θ > 0.
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In some instances, it may be desirable to continue and

check other aspects of the new treatment, even though

results on the primary outcome are favourable.

The lower “futility” boundary remains for early termination

when the study is unlikely to lead to a positive conclusion.
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6. Underlying theory

Reference: JT, Ch. 11

Suppose our main interest is in the parameter θ and let θ̂k

be the estimate of θ from data available at analysis k.

The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . , K.

Canonical joint distribution of θ̂1, . . . , θ̂K

Often, θ̂1, . . . , θ̂K are approximately multivariate normal,

θ̂k ∼ N(θ, {Ik}−1), k = 1, . . . , K,

and

Cov(θ̂k1
, θ̂k2

) = Var(θ̂k2
) = {Ik2

}−1 for k1 < k2.
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Joint distribution of z-statistics

Similar results apply to the sequence of standardised

statistics, Zk, for testing a null hypothesis H0: θ = 0.

At analysis k, we have

Zk =
θ̂k√

Var(θ̂k)
= θ̂k

√Ik.

For the sequence of statistics Zk,

(Z1, . . . , ZK) is multivariate normal,

Zk ∼ N(θ
√Ik,1), k = 1, . . . , K,

Cov(Zk1
, Zk2

) =
√
Ik1

/Ik2
for k1 < k2.
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Scope of this distribution theory

The preceding results for the joint distribution of

θ̂1, . . . , θ̂K apply when θ is a parameter in:

a general normal linear model,

a general model fitted by maximum likelihood.

This theory supports the analysis of longitudinal data and

comparisons adjusted for covariates.

Results also apply to survival data, covering

estimates of a treatment effect parameter in Cox’s

proportional hazards regression model,

a sequence of log-rank statistics for comparing two

survival curves.
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7. Computations for group sequential tests

Reference: JT, Ch. 19
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In order to find Pr{Reject H0|θ}, etc., we need to

calculate the probabilities of basic events such as

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3.

Combining such probabilities gives properties of a given

group sequential boundary.

Constants and group sizes can then be chosen to define

a test with a specific type I error probability and power.
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Numerical integration

We can write

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} =

∫ b1

a1

∫ b2

a2

∫ ∞

b3
f1(z1) f2(z2|z1) f3(z3|z2) dz3 dz2 dz1.

Numerical integration replaces integrals by sums,

∫ b

a
f(z) dz =

n∑

i=1

w(i) f(z(i)),

where z(1), . . . , z(n) is a grid of points from a to b.

So, we have

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} ≈

n1∑

i1=1

n2∑

i2=1

n3∑

i3=1

w1(i1) f1(z1(i1)) w2(i2)

f2(z2(i2)|z1(i1)) w3(i3) f3(z3(i3)|z2(i2)).
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Numerical integration

For an event at analysis k, we have a k-fold summation:

n1∑

i1=1

n2∑

i2=1

. . .
nk∑

ik=1

w1(i1) f1(z1(i1)) w2(i2)

f2(z2(i2)|z1(i1)) . . . wk(ik) fk(zk(ik)|zk−1(ik−1)).

The structure of these k nested summations is such that

the computation required is of the order of k − 1 double

summations.

Using Simpson’s rule with 100 to 200 grid points can give

accuracy to 5 or 6 decimal places.

For further details, see JT, Ch. 19.
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8. State of the art

Group sequential tests have been proposed for the testing

problems and types of early stopping listed earlier.

Flexible “error spending” versions are able to handle

unpredictable group sizes or information sequences.

For a thorough account, see Jennison and Turnbull’s

Group Sequential Methods with

Applications to Clinical Trials.

Software packages are available:

PEST, EAST, SEQSTAT, ADDPLAN, . . .
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9. Example of a two treatment comparison,

normal response, 2-sided test

Cholesterol reduction trial

Treatment A: new, experimental treatment

Treatment B: current treatment

Primary endpoint: reduction in serum cholesterol level

over a four week period

Aim: To test for a treatment difference

High power should be attained if the mean cholesterol

reduction differs between treatments by 0.4 mmol/l.
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Design

First, how would we design a fixed-sample study?

Denote responses by

XAi, i = 1, . . . , nA, on treatment A,

XBi, i = 1, . . . , nB, on treatment B.

Suppose each

XAi ∼ N(µA, σ2) and XBi ∼ N(µB, σ2).

Problem: to test H0: µA = µB with

two-sided type I error probability α = 0.05

and power 0.9 at |µA − µB| = δ = 0.4.

We suppose σ2 is known to be 0.5.

(Facey, Controlled Clinical Trials, 1992)
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Fixed sample design

Standardised test statistic

Z =
X̄A − X̄B√

σ2/nA + σ2/nB

.

Under H0, Z ∼ N(0,1) so reject H0 if

|Z| > Φ−1(1 − α/2).

Let µA − µB = θ. If nA = nB = n,

Z ∼ N(
θ√

2σ2/n
, 1)

so, to attain desired power at θ = δ, aim for

n = {Φ−1(1 − α/2) + Φ−1(1 − β)}2 2σ2/δ2

= (1.960 + 1.282)2 (2 × 0.5)/0.42 = 65.67,

i.e., 66 subjects on each treatment.

26



Group sequential design

Specify type of early termination:

Stop early to reject H0

Number of analyses:

5 (fewer if we stop early)

Stopping boundary:

O’Brien & Fleming

Reject H0 at analysis k, k = 1, . . . ,5,

if |Zk| > c
√{5/k},

-

k

6Zk •
• • • •

•
• • • •
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O’Brien & Fleming design

From tables (JT, Table 2.3) or computer software

c = 2.040 for α = 0.05

so reject H0 at analysis k if

|Zk| > 2.040
√

5/k.

Also, for specified power, inflate the fixed sample size by

a factor (JT, Table 2.4)

IF = 1.026

to get the maximum sample size

1.026 × 65.67 = 68.

Divide this into 5 groups of 13 or 14 observations per

treatment.
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A choice of designs with K analyses

O’Brien & Fleming

Reject H0 at analysis k if

|Zk| > c
√

K/k.
-

k

6
Zk •

• • • •

•
• • • •

Pocock

Reject H0 at analysis k if

|Zk| > c.
-

k

6
Zk

• • • • •

• • • • •

Wang & Tsiatis, shape ∆

Reject H0 at analysis k if

|Zk| > c (k/K)∆−1/2.
-

k

6
Zk

• • • • •

• • • • •

(∆ = 0 gives O’Brien & Fleming, ∆ = 0.5 gives Pocock )
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Properties of different designs

Sample sizes are per treatment.

Fixed sample size is 66.

K Maximum Expected sample size
sample size θ = 0 θ =±0.2 θ =±0.4

O’Brien & Fleming

2 67 67 65 56
5 68 68 64 50

10 69 68 64 48

Wang & Tsiatis, ∆ = 0.25

2 68 67 64 52
5 71 70 65 47

10 72 71 64 44

Pocock

2 73 72 67 51
5 80 78 70 45

10 84 82 72 44
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