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1. Internal pilots in studies with a single analysis

The sample size needed to satisfy a power requirement

often depends on an unknown nuisance parameter.

Examples include:

Normal response: Unknown variance, σ2.

Binary response: Since the variance depends on p,

the sample size needed to detect a specific difference

in probabilities p1−p2 = δ depends on (p1+p2)/2.

Survival data: Information is governed by the number

of observed deaths, and this depends on the overall

failure rate and degree of censoring.

“Over-interpretation of results from a small pilot study,

positive or negative, may undermine support for the major

investigation” (W. G. Cochran).
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Internal pilots: Wittes & Brittain

Wittes & Brittain (Statistics in Medicine, 1990) suggest an

“internal” pilot.

Let φ denote a nuisance parameter and suppose

the sample size required under a given value of this

parameter is n(φ).

From a pre-study estimate, φ̂0, calculate an initial

planned sample size of n(φ̂0).

At an interim stage, find a new estimate φ̂1 from the

data obtained so far. Aim for the new target sample

size of n(φ̂1).

Variations on this are possible, e.g., only allow an increase

over the original target sample size.
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Internal pilots: properties

Wittes and Brittain’s method has a complicated effect on

the estimate of variance in the final test statistic.

In general, variance estimates are biased downwards, but

results in Jennison & Turnbull (2000, Ch. 14) show the

type I error rate is only slightly perturbed.

Binary responses

Two-treatment comparison, H0: pA = pB, α = 0.05.

Internal pilots are used to achieve power at alternatives

pB = pA + ∆ for fixed ∆ or pB = pA/ρ for fixed ρ.

Pilot sample size Type I error

per treatment, n0 probability

10 0.057 – 0.059

20 0.051 – 0.061

30 0.049 – 0.057

40 0.051 – 0.053

50 0.049 – 0.053
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Internal pilots: properties

Normal data, estimating σ
2

Two-treatment comparison, H0: µA = µB, α = 0.05.

Internal pilots are used to achieve power at the alternative

µB − µA = ±δ for fixed δ.

Degrees of freedom Type I error

for estimate s21 probability

8 0.052 – 0.065

18 0.050 – 0.057

38 0.052 – 0.053

78 0.051

Blinding: Finding s2 may reveal the estimated effect, θ̂.

This is undesirable as it breaks the blinding at

what is meant to be an administrative analysis,

adjusting the sample size in the knowledge of θ̂

can seriously inflate type I error rates.
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Blinded variance estimation

Suppose the two treatments A and B have responses

XAi ∼ N(µA, σ2) and XBi ∼ N(µB, σ2).

With n observations per treatment, we would usually

estimate σ2 by

s2 =

∑
(XAi − X̄A)2 +

∑
(XBi − X̄B)2

2n − 2
,

but this requires knowledge of the treatment labels.

However, an estimate based on the Sum of Squares for

the pooled data,

S2
P =

∑
(XAi − X̄)2 +

∑
(XBi − X̄)2

= (2n − 2)s2 +
n

2
(X̄A − X̄B)2,

would not reveal the treatment labels.
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Blinded variance estimation

Write the pooled sum of squares as

S2
P = (2n − 2)s2 +

n

2
(X̄A − X̄B)2.

The first term on the RHS involves the estimate s2 of σ2

from unblinded data:

(2n − 2)s2 ∼ σ2 χ2
2n−2.

The second term has a non-central χ2 distribution

(n/2) (X̄A − X̄B)2 ∼ σ2 χ2
1 {n (µA − µB)2/(2σ2)}

which has expectation σ2 + n (µA − µB)2/2.

Ignoring the non-centrality in the second term leads to the

variance estimate

σ̂2 =
S2

P

(2n − 1)
.
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Blinded variance estimation

Alternatively, as the mean of the non-central χ2 term is

σ2 +
n(µA − µB)2

2
,

Zucker et al. (Statist. in Med., 1999) subtract the second

part of this mean from the pooled sum of squares under

the alternative |µA − µB| = ∆.

This yields the “adjusted pooled variance estimate”

S2
P

2n − 1
− n∆2

2(2n − 1)
.

Friede & Kieser (Statist. in Med., 2001) find this adjusted

pooled variance estimate to be:

simple to evaluate,

almost as accurate as s2, the pooled estimate

from unblinded data.
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2. Error-spending group sequential tests

A two-sided testing problem

Let θ be the treatment effect of a new treatment vs a

standard, e.g.,

θ = difference in mean response for normal data, or

θ = log hazard ratio for survival data.

To look for a difference between the new treatment and

standard, test

H0: θ = 0 against θ 6= 0.

Specify type I error rate = α and power 1−β at θ = ±δ.

Suppose it is desirable to stop early to reject H0 — early

stopping for a positive outcome.
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Error-spending group sequential tests

In a group sequential test, one monitors the standardised

Z statistic at a sequence of interim analyses.

A typical testing boundary has the form:
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E(Sample size) can be ∼ 70% of the fixed sample size.

(Larger gains are possible in tests with one-sided

alternatives and early stopping to accept or reject H0.)
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Error-spending group sequential tests

Lan & DeMets (Biometrika, 1983) presented tests which

“spend” type I error as a function of observed information.

Here, information I = 1/Var(θ̂).

Maximum information design:

Error-spending function f(I)
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At analysis k, set boundary to give cumulative type I error

probability f(Ik).

Accept H0 if Imax is reached without rejecting H0.
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Error-spending group sequential tests

Analysis 1:

Observed information I1.

Reject H0 if |Z1| > c1 where

Prθ=0{|Z1| > c1} = f(I1).

-

I1
k

6
Zk

•

•

Analysis 2:

Cumulative information I2.

Reject H0 if |Z2| > c2 where

Prθ=0{|Z1| < c1, |Z2| > c2}

= f(I2) − f(I1).
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3. Information monitoring for normal responses

Suppose response distributions on treatments A and B are

XAi ∼ N(µA, σ2) and XBi ∼ N(µB, σ2).

With nA and nB observations on treatments A and B,

information for θ = µA − µB is

I =
1

Var(θ̂)
=

{
σ2

nA
+

σ2

nB

}−1

.

A fixed sample test H0: θ = 0 against θ 6= 0 with type I

error rate α and power 1−β at θ = ±δ needs information

If = (zα/2 + zβ)
2/δ2.

A group sequential test requires maximum information

Imax = R If ,

where the “inflation factor” R is determined by the

boundary shape and number of planned analyses.
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Information monitoring for normal responses

Investigators can monitor observed information at interim

analyses and modify recruitment to ensure the target

Imax is reached.

-×
I1

×
I2

×
I3

×
I4

×
I5

Imax

Information

The relationship

I =
1

Var(θ̂)
=

{
σ2

nA
+

σ2

nB

}−1

determines the numbers of observations needed to obtain

a specified level of information.

Substituting a current estimate of σ2 gives a present view

of the sample size required to reach Imax.
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4. Mehta & Tsiatis’s group sequential t-tests

Mehta and Tsiatis (Drug Information J., 2001) follow the

information monitoring approach.

At analysis k, estimate σ2 by

s2k =

∑
(XAi − X̄

(k)
A )2 +

∑
(XBi − X̄

(k)
B )2

nAk + nBk − 2
.

and estimate observed information by

Îk =
1

Var(θ̂)
=

{
s2k
nA

+
s2k
nB

}−1

.

Use the observed information sequence

-×
Î1

×
Î2

× ×
. . .

×
Îk

Imax

Information

to create an error-spending boundary, with cumulative

error probability f(Ik) up to analysis k.
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Mehta & Tsiatis

Error spending boundary

Error-spending calculations are really for a sequence of

statistics Zk for normal data with known variance.

To implement the test, define t-statistics

Tk =
X̄

(k)
A − X̄

(k)
B√

s2k(1/nAk + 1/nBk)
,

and test at the significance levels given by the boundary

computed for Zks.

Updating the sample size

In a K-group design: at each analysis k < K, re-calculate

the target for nA5 and nB5 by solving the equation

{
s2k

nA5
+

s2k
nB5

}−1

= Imax

and choose the next group size to work towards this target.
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Mehta & Tsiatis: updating sample size

Example:

Suppose Imax = 140.0 and an initial estimate of σ2 is

σ̂2
0 = 0.6. Solving

{
σ̂2
0

nA5
+

σ̂2
0

nB5

}−1

= Imax

gives nA5 = nB5 = 168, i.e., initial group sizes of

168/5 = 34.

Analysis 1. Observe s21 = 0.42. Re-estimate target

sample size from
{

s21
nA5

+
s21

nB5

}−1

= Imax,

giving nA5 = nB5 = 118.

Aim for this with (118 − 34)/4 = 21 observations per

treatment arm in group 2.
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Mehta & Tsiatis: updating sample size

Analysis 2. Observe s22 = 0.58. Re-estimate target

sample as nA5 = nB5 = 162.

Take (162 − 55)/3 = 36 obs. per arm in group 3.

Analysis 3. Observe s23 = 0.68. Re-estimate target

sample size as nA5 = nB5 = 190.

Take (190 − 91)/2 = 50 obs. per arm in group 4.

Analysis 4. Observe s24 = 0.72. Re-estimate target

sample size as nA5 = nB5 = 202.

Take 202 − 141 = 61 obs. per arm in group 5.

Analysis 5. Observe s25 = 0.69.

Re-estimating target sample size using s25 gives nA5 =

nB5 = 193. We have 202 observations per arm, so the

test is most likely a little over-powered.
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Mehta & Tsiatis: issues

There are several types of approximation going on:

1. We monitor t-statistics but compute the boundary

using the joint distribution of Z-statistics.

This is known to work well in simpler settings (no sample

size re-estimation), especially for O’Brien & Fleming type

boundaries which are wide early on.

2. The estimates ̂Ik may decrease as more responses

are observed — and this happens much more often

than you might expect!

Pragmatic solution:

Do not allow stopping at an analysis k where Îk < Îk−1.

With a fixed total number of analyses, K, if ÎK < ÎK−1

(< Imax), replace ÎK by ÎK−1 and spend all remaining

error probability.
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Mehta & Tsiatis: issues

3. Using estimates of Ik, we mis-specify correlations

of the {Tk} or of the approximating {Zk}.

In fact, Corr(Zk, Zk+1) =
√

(Ik/Ik+1), and this ratio

does not depend on the unknown σ2.

So, we can use the precise value of this ratio rather than

simply plugging in Îk and Îk+1.

4. Re-estimating sample size based on s
2 produces

a downwards bias in s
2, as in the Wittes & Brittain

procedure.

We need to investigate whether this leads to inflation of

the type I error rate.

5. Mehta & Tsiatis report just one example with a

target of over 500 observations per treatment.

Does this indicate problems for smaller sample sizes?

21



Mehta & Tsiatis: a simulation study

Problem: Two-treatment comparison, normal responses

with unknown variance.

To test: H0: θ = 0 vs θ 6= 0, with type I error probability

α = 0.05, aiming for power 0.9 at θ = ±δ.

True variance is σ2 = 1.

We start the procedure with an initial estimate σ2
0.

Tests are constructed using error-spending function

f(Ik) = α (Ik/Imax)
ρ

for various choices of ρ.

Here, ρ = 1 gives a similar boundary to Pocock’s test

(constant significance level)

Boundaries for ρ = 3 are close to those of O’Brien &

Fleming.
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Mehta & Tsiatis: simulation study

Tests with 3 analyses, σ
2

= 1, σ
2
0

= 1.6.

δ Target degrees Type I error rate

of freedom ∗ ρ = 1 ρ = 2 ρ = 3

0.5 176 0.051 0.052 0.052

0.7 90 0.052 0.053 0.054

1.0 44 0.054 0.056 0.058

1.5 20 0.054 0.059 0.061

2.0 12 0.057 0.060 0.061

δ Target degrees Power

of freedom ρ = 1 ρ = 2 ρ = 3

0.5 176 0.899 0.897 0.898

0.7 90 0.899 0.897 0.897

1.0 44 0.900 0.898 0.898

1.5 20 0.913 0.906 0.906

2.0 12 0.924 0.924 0.924

∗Target for final analysis if s2 = σ2; value is for the case ρ = 2, other

cases differ by up to ∼ 5%.
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Mehta & Tsiatis: simulation study

Tests with 5 analyses, σ
2

= 1, σ
2
0

= 1.6.

δ Target degrees Type I error rate

of freedom ρ = 1 ρ = 2 ρ = 3

0.5 178 0.052 0.053 0.053

0.7 92 0.054 0.056 0.056

1.0 46 0.058 0.062 0.063

1.5 22 0.065 0.069 0.070

2.0 12 0.061 0.066 0.067

Notes on inflation of type I error:

Inflation is greater for higher values of ρ — when

boundaries are wide at early analyses, which have low

degrees of freedom for estimating σ2.

Inflation increases with the number of analyses.
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Mehta & Tsiatis: simulation study

To understand the source of type I error inflation, consider

tests with frequent analyses and very little error spent

before the final analysis.

Tests with 20 analyses, σ
2

= 1, σ
2
0

= 1.6.

δ Target degrees Type I error rate

of freedom ρ = 50

0.5 170 0.052

0.7 86 0.057

1.0 44 0.096

1.5 20 0.101

Conclude:

Repeated re-estimation of sample size is problematic

since it enhances the effect of “stopping when the current

estimate of σ2 is unusually low”.

(Cf Chow & Robbins, fixed width CI for a normal mean.)
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5. Conclusions

1. Sample size can be adapted to estimates of nuisance

parameters during the course of a study.

2. This can be done within a group sequential test,

particularly when the error-spending approach is used

with a “maximum information” design.

3. Frequent re-estimation of sample size may lead to

substantial inflation of the type I error rate. A proposed

design should be checked by simulation; since the true

parameter value (e.g., a normal variance) is unknown,

simulations should cover a range of possible values.

4. On occasions, more precise methods are called for,

e.g., Denne & Jennison (Biometrika, 2000) for normal data

with unknown variance.
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