Sample size re-estimation:

Internal pilots and

information monitoring

Christopher Jennison

Dept of Mathematical Sciences,

University of Bath, UK

PSI Conference,

Tortworth Court,

May, 2006

Plan of talk

- 1. Internal pilots
- 2. Error-spending group sequential tests
- 3. Information monitoring
- 4. Mehta & Tsiatis's group sequential *t*-tests
- 5. Conclusions

1. Internal pilots in studies with a single analysis

The sample size needed to satisfy a power requirement often depends on an unknown nuisance parameter.

Examples include:

Normal response: Unknown variance, σ^2 .

Binary response: Since the variance depends on p, the sample size needed to detect a specific difference in probabilities $p_1 - p_2 = \delta$ depends on $(p_1 + p_2)/2$.

Survival data: Information is governed by the number of observed deaths, and this depends on the overall failure rate and degree of censoring.

"Over-interpretation of results from a small pilot study, positive or negative, may undermine support for the major investigation" (W. G. Cochran).

Internal pilots: Wittes & Brittain

Wittes & Brittain (*Statistics in Medicine*, 1990) suggest an "internal" pilot.

Let ϕ denote a nuisance parameter and suppose the sample size required under a given value of this parameter is $n(\phi)$.

From a pre-study estimate, $\hat{\phi}_0$, calculate an initial planned sample size of $n(\hat{\phi}_0)$.

At an interim stage, find a new estimate $\hat{\phi}_1$ from the data obtained so far. Aim for the new target sample size of $n(\hat{\phi}_1)$.

Variations on this are possible, e.g., only allow an increase over the original target sample size.

Internal pilots: properties

Wittes and Brittain's method has a complicated effect on the estimate of variance in the final test statistic.

In general, variance estimates are biased downwards, but results in Jennison & Turnbull (2000, Ch. 14) show the type I error rate is only slightly perturbed.

Binary responses

Two-treatment comparison, H_0 : $p_A = p_B$, $\alpha = 0.05$. Internal pilots are used to achieve power at alternatives $p_B = p_A + \Delta$ for fixed Δ or $p_B = p_A / \rho$ for fixed ρ .

Pilot sample size	Type I error
per treatment, n_0	probability
10	0.057 – 0.059
20	0.051 – 0.061
30	0.049 – 0.057
40	0.051 – 0.053
50	0.049 – 0.053

Internal pilots: properties

Normal data, estimating σ^2

Two-treatment comparison, H_0 : $\mu_A = \mu_B$, $\alpha = 0.05$. Internal pilots are used to achieve power at the alternative $\mu_B - \mu_A = \pm \delta$ for fixed δ .

Degrees of freedom	Type I error	
for estimate s_1^2	probability	
8	0.052 – 0.065	
18	0.050 - 0.057	
38	0.052 – 0.053	
78	0.051	

Blinding: Finding s^2 may reveal the estimated effect, $\hat{\theta}$.

This is undesirable as it breaks the blinding at what is meant to be an administrative analysis, adjusting the sample size in the knowledge of $\hat{\theta}$ can seriously inflate type I error rates.

Blinded variance estimation

Suppose the two treatments A and B have responses $X_{Ai} \sim N(\mu_A, \sigma^2)$ and $X_{Bi} \sim N(\mu_B, \sigma^2)$.

With n observations per treatment, we would usually estimate σ^2 by

$$s^{2} = \frac{\sum (X_{Ai} - \bar{X}_{A})^{2} + \sum (X_{Bi} - \bar{X}_{B})^{2}}{2n - 2}$$

but this requires knowledge of the treatment labels.

However, an estimate based on the Sum of Squares for the pooled data,

$$S_P^2 = \sum (X_{Ai} - \bar{X})^2 + \sum (X_{Bi} - \bar{X})^2$$
$$= (2n - 2)s^2 + \frac{n}{2} (\bar{X}_A - \bar{X}_B)^2,$$

would not reveal the treatment labels.

Blinded variance estimation

Write the pooled sum of squares as

$$S_P^2 = (2n-2)s^2 + \frac{n}{2}(\bar{X}_A - \bar{X}_B)^2.$$

The first term on the RHS involves the estimate s^2 of σ^2 from unblinded data:

$$(2n-2)s^2 \sim \sigma^2 \chi^2_{2n-2}$$

The second term has a non-central χ^2 distribution

$$(n/2) (\bar{X}_A - \bar{X}_B)^2 \sim \sigma^2 \chi_1^2 \{n (\mu_A - \mu_B)^2 / (2\sigma^2)\}$$

which has expectation $\sigma^2 + n (\mu_A - \mu_B)^2/2$.

Ignoring the non-centrality in the second term leads to the variance estimate

$$\widehat{\sigma}^2 = \frac{S_P^2}{(2n-1)}.$$

Blinded variance estimation

Alternatively, as the mean of the non-central χ^2 term is

$$\sigma^2 + \frac{n(\mu_A - \mu_B)^2}{2},$$

Zucker et al. (*Statist. in Med.*, 1999) subtract the second part of this mean from the pooled sum of squares under the alternative $|\mu_A - \mu_B| = \Delta$.

This yields the "adjusted pooled variance estimate"

$$\frac{S_P^2}{2n-1} - \frac{n\Delta^2}{2(2n-1)}.$$

Friede & Kieser (*Statist. in Med.*, 2001) find this adjusted pooled variance estimate to be:

simple to evaluate,

almost as accurate as s^2 , the pooled estimate from unblinded data.

2. Error-spending group sequential tests

A two-sided testing problem

Let θ be the treatment effect of a new treatment vs a standard, e.g.,

 $\theta = \text{difference}$ in mean response for normal data, or

 $\theta = \log$ hazard ratio for survival data.

To look for a difference between the new treatment and standard, test

 $H_0: \theta = 0$ against $\theta \neq 0$.

Specify type I error rate = α and power $1 - \beta$ at $\theta = \pm \delta$.

Suppose it is desirable to stop early to reject H_0 — early stopping for a positive outcome.

Error-spending group sequential tests

In a group sequential test, one monitors the standardised Z statistic at a sequence of interim analyses.

A typical testing boundary has the form:

E(Sample size) can be \sim 70% of the fixed sample size.

(Larger gains are possible in tests with one-sided alternatives and early stopping to accept *or* reject H_0 .)

Error-spending group sequential tests

Lan & DeMets (*Biometrika*, 1983) presented tests which "spend" type I error as a function of observed information. Here, information $\mathcal{I} = 1/\text{Var}(\hat{\theta})$.

Maximum information design:

Error-spending function $f(\mathcal{I})$

At analysis k, set boundary to give cumulative type I error probability $f(\mathcal{I}_k)$.

Accept H_0 if \mathcal{I}_{max} is reached without rejecting H_0 .

Error-spending group sequential tests

Analysis 1: Observed information \mathcal{I}_1 . Reject H_0 if $|Z_1| > c_1$ where $Pr_{\theta=0}\{|Z_1| > c_1\} = f(\mathcal{I}_1)$. Analysis 2:

Cumulative information \mathcal{I}_2 . Reject H_0 if $|Z_2| > c_2$ where $Pr_{\theta=0}\{|Z_1| < c_1, |Z_2| > c_2\}$ $= f(\mathcal{I}_2) - f(\mathcal{I}_1).$

etc, ...

3. Information monitoring for normal responses

Suppose response distributions on treatments A and B are $X_{Ai} \sim N(\mu_A, \sigma^2)$ and $X_{Bi} \sim N(\mu_B, \sigma^2)$.

With n_A and n_B observations on treatments A and B, information for $\theta = \mu_A - \mu_B$ is

$$\mathcal{I} = \frac{1}{\operatorname{Var}(\widehat{\theta})} = \left\{ \frac{\sigma^2}{n_A} + \frac{\sigma^2}{n_B} \right\}^{-1}$$

A fixed sample test H_0 : $\theta = 0$ against $\theta \neq 0$ with type I error rate α and power $1 - \beta$ at $\theta = \pm \delta$ needs information

$$\mathcal{I}_f = (z_{\alpha/2} + z_\beta)^2 / \delta^2.$$

A group sequential test requires maximum information

$$\mathcal{I}_{\max} = R \mathcal{I}_f,$$

where the "inflation factor" R is determined by the boundary shape and number of planned analyses.

Information monitoring for normal responses

Investigators can monitor observed information at interim analyses and modify recruitment to ensure the target \mathcal{I}_{max} is reached.

The relationship

$$\mathcal{I} = \frac{1}{\operatorname{Var}(\widehat{\theta})} = \left\{ \frac{\sigma^2}{n_A} + \frac{\sigma^2}{n_B} \right\}^{-1}$$

determines the numbers of observations needed to obtain a specified level of information.

Substituting a current estimate of σ^2 gives a present view of the sample size required to reach \mathcal{I}_{max} .

4. Mehta & Tsiatis's group sequential *t*-tests

Mehta and Tsiatis (Drug Information J., 2001) follow the information monitoring approach.

At analysis k, estimate σ^2 by

$$s_k^2 = \frac{\sum (X_{Ai} - \bar{X}_A^{(k)})^2 + \sum (X_{Bi} - \bar{X}_B^{(k)})^2}{n_{Ak} + n_{Bk} - 2}$$

and estimate observed information by

$$\widehat{\mathcal{I}}_k = \frac{1}{\operatorname{Var}(\widehat{\theta})} = \left\{ \frac{s_k^2}{n_A} + \frac{s_k^2}{n_B} \right\}^{-1}.$$

Use the observed information sequence

to create an error-spending boundary, with cumulative error probability $f(\mathcal{I}_k)$ up to analysis k.

Mehta & Tsiatis

Error spending boundary

Error-spending calculations are really for a sequence of statistics Z_k for normal data with known variance.

To implement the test, define *t*-statistics

$$T_k = \frac{\bar{X}_A^{(k)} - \bar{X}_B^{(k)}}{\sqrt{s_k^2 (1/n_{Ak} + 1/n_{Bk})}},$$

and test at the significance levels given by the boundary computed for Z_k s.

Updating the sample size

In a *K*-group design: at each analysis k < K, re-calculate the target for n_{A5} and n_{B5} by solving the equation

$$\left\{\frac{s_k^2}{n_{A5}} + \frac{s_k^2}{n_{B5}}\right\}^{-1} = \mathcal{I}_{\max}$$

and choose the next group size to work towards this target.

Mehta & Tsiatis: updating sample size

Example:

Suppose $\mathcal{I}_{max} = 140.0$ and an initial estimate of σ^2 is $\hat{\sigma}_0^2 = 0.6$. Solving

$$\left\{\frac{\hat{\sigma}_0^2}{n_{A5}} + \frac{\hat{\sigma}_0^2}{n_{B5}}\right\}^{-1} = \mathcal{I}_{\max}$$

gives $n_{A5} = n_{B5} = 168$, i.e., initial group sizes of 168/5 = 34.

<u>Analysis 1.</u> Observe $s_1^2 = 0.42$. Re-estimate target sample size from

$$\left\{\frac{s_1^2}{n_{A5}} + \frac{s_1^2}{n_{B5}}\right\}^{-1} = \mathcal{I}_{\max},$$

giving $n_{A5} = n_{B5} = 118$.

Aim for this with (118 - 34)/4 = 21 observations per treatment arm in group 2.

Mehta & Tsiatis: updating sample size

<u>Analysis 2.</u> Observe $s_2^2 = 0.58$. Re-estimate target sample as $n_{A5} = n_{B5} = 162$.

Take (162 - 55)/3 = 36 obs. per arm in group 3.

<u>Analysis 3.</u> Observe $s_3^2 = 0.68$. Re-estimate target sample size as $n_{A5} = n_{B5} = 190$.

Take (190 - 91)/2 = 50 obs. per arm in group 4.

<u>Analysis 4.</u> Observe $s_4^2 = 0.72$. Re-estimate target sample size as $n_{A5} = n_{B5} = 202$.

Take 202 - 141 = 61 obs. per arm in group 5.

Analysis 5. Observe $s_5^2 = 0.69$.

Re-estimating target sample size using s_5^2 gives $n_{A5} = n_{B5} = 193$. We have 202 observations per arm, so the test is most likely a little over-powered.

Mehta & Tsiatis: issues

There are several types of approximation going on:

1. We monitor t-statistics but compute the boundary using the joint distribution of Z-statistics.

This is known to work well in simpler settings (no sample size re-estimation), especially for O'Brien & Fleming type boundaries which are wide early on.

2. The estimates $\widehat{\mathcal{I}}_k$ may decrease as more responses are observed — and this happens much more often than you might expect!

Pragmatic solution:

Do not allow stopping at an analysis k where $\hat{\mathcal{I}}_k < \hat{\mathcal{I}}_{k-1}$. With a fixed total number of analyses, K, if $\hat{\mathcal{I}}_K < \hat{\mathcal{I}}_{K-1}$ (< \mathcal{I}_{max}), replace $\hat{\mathcal{I}}_K$ by $\hat{\mathcal{I}}_{K-1}$ and spend all remaining error probability.

Mehta & Tsiatis: issues

3. Using estimates of \mathcal{I}_k , we mis-specify correlations of the $\{T_k\}$ or of the approximating $\{Z_k\}$.

In fact, $\operatorname{Corr}(Z_k, Z_{k+1}) = \sqrt{(\mathcal{I}_k/\mathcal{I}_{k+1})}$, and this ratio does not depend on the unknown σ^2 .

So, we can use the precise value of this ratio rather than simply plugging in $\hat{\mathcal{I}}_k$ and $\hat{\mathcal{I}}_{k+1}$.

4. Re-estimating sample size based on s^2 produces a downwards bias in s^2 , as in the Wittes & Brittain procedure.

We need to investigate whether this leads to inflation of the type I error rate.

5. Mehta & Tsiatis report just one example with a target of over 500 observations per treatment.

Does this indicate problems for smaller sample sizes?

Mehta & Tsiatis: a simulation study

Problem: Two-treatment comparison, normal responses with unknown variance.

To test: H_0 : $\theta = 0$ vs $\theta \neq 0$, with type I error probability $\alpha = 0.05$, aiming for power 0.9 at $\theta = \pm \delta$.

True variance is $\sigma^2 = 1$.

We start the procedure with an initial estimate σ_0^2 .

Tests are constructed using error-spending function

$$f(\mathcal{I}_k) = \alpha (\mathcal{I}_k / \mathcal{I}_{\max})^{\rho}$$

for various choices of ρ .

Here, $\rho = 1$ gives a similar boundary to Pocock's test (constant significance level)

Boundaries for $\rho = 3$ are close to those of O'Brien & Fleming.

Mehta & Tsiatis: simulation study

Tests with 3 analyses, $\sigma^2 = 1$, $\sigma_0^2 = 1.6$.

δ	Target degrees	Тур	e I erroi	r rate
	of freedom*	ho = 1	$\rho = 2$	$\rho = 3$
0.5	176	0.051	0.052	0.052
0.7	90	0.052	0.053	0.054
1.0	44	0.054	0.056	0.058
1.5	20	0.054	0.059	0.061
2.0	12	0.057	0.060	0.061
δ	Target degrees		Power	
	of freedom	ho = 1	$\rho = 2$	$\rho = 3$
0.5	176	0.899	0.897	0.898
0.7	90	0.899	0.897	0.897
1.0	44	0.900	0.898	0.898
1.5	20	0.913	0.906	0.906
20	12	0 924	0 924	0 924

*Target for final analysis if $s^2 = \sigma^2$; value is for the case $\rho = 2$, other cases differ by up to $\sim 5\%$.

Mehta & Tsiatis: simulation study

Tests with 5 analyses, $\sigma^2 = 1$, $\sigma_0^2 = 1.6$.

δ	Target degrees	Type I error rate		
	of freedom	$\rho = 1$	$\rho = 2$	$\rho = 3$
0.5	178	0.052	0.053	0.053
0.7	92	0.054	0.056	0.056
1.0	46	0.058	0.062	0.063
1.5	22	0.065	0.069	0.070
2.0	12	0.061	0.066	0.067

Notes on inflation of type I error:

Inflation is greater for higher values of ρ — when boundaries are wide at early analyses, which have low degrees of freedom for estimating σ^2 .

Inflation increases with the number of analyses.

Mehta & Tsiatis: simulation study

To understand the source of type I error inflation, consider tests with frequent analyses and very little error spent before the final analysis.

Tests with 20 analyses, $\sigma^2=1$, $\sigma_0^2=1.6$.

δ	Target degrees	Type I error rate
	of freedom	ho = 50
0.5	170	0.052
0.7	86	0.057
1.0	44	0.096
1.5	20	0.101

Conclude:

Repeated re-estimation of sample size is problematic since it enhances the effect of "stopping when the current estimate of σ^2 is unusually low".

(Cf Chow & Robbins, fixed width CI for a normal mean.)

5. Conclusions

1. Sample size can be adapted to estimates of nuisance parameters during the course of a study.

2. This can be done within a group sequential test, particularly when the error-spending approach is used with a "maximum information" design.

3. Frequent re-estimation of sample size may lead to substantial inflation of the type I error rate. A proposed design should be checked by simulation; since the true parameter value (e.g., a normal variance) is unknown, simulations should cover a range of possible values.

4. On occasions, more precise methods are called for, e.g., Denne & Jennison (*Biometrika*, 2000) for normal data with unknown variance.