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\ 1. Group sequential monitoring of clinical trials

A one-sided testing problem

Let 6 be the treatment effect of a new treatment vs a standard, e.g.,
6 —= difference in mean response for normal data, or

6 = log hazard ratio for survival data.

To look for superiority of the new treatment, test

Hy: 6 <0 against 6 > 0.
Specify type | error rate = o« and power 1 — 3 at 6 = 0.

It is desirable to stop early

to accept Hy — early stopping for futility,

/ to reject Hy — early stopping for a positive outcome.
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\ One-sided group sequential tests

A typical group sequential testing boundary has the form:

A
A Reject H

FE (Sample size) can be around 50% to 70% of the fixed sample size,

see, e.g., Jennison & Turnbull (2000) “Group Sequential Methods .. .~

/ Adapting to data, stopping when a decision is possible.




\ 2. Error spending tests /

Canonical joint distrib ution of parameter estimates

Let %\ﬂ be the estimate of 6 based on data at analysis k.

The information for 6 at analysis k is

T = ku E=1,... K.
Var(6y)
In very many situations, @T e @N are approximately multivariate
normal,
0 ~NO,{T;}"), k=1,... K,
and

/ OO<A®/\S“®/§V = <qu®/§v = AN.\SWIH for k1 < ko. \




\ Spending error as a function of Z, /

Observed information Z;. depends on the number of subjects and other

factors, e.g., for survival data, the overall failure rate.
Thus, it may not be possible to predict the actual sequence of information

levels, 71,21, ..., inadvance.

Lan & DeMets (1983) presented two-sided tests with the flexibility to
“spend” type | error probability as a function \ANV of the observed

information:

at analysis k, the current boundary point is set so that

the cumulative type | error probability is f(Zx ).

To extend to one-sided tests, define two functions, f(Z) and g(Z), for

@m:a.:@ type | and type Il error probabilities. \
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\ One-sided error spending tests /

—> —>

Tmax 1L Tmax 1L

At analysis k, set boundary values (a, b ) so that
Prg—o {Reject Hy by analysis k} = f(Zy),
Prg_s {Accept Hy by analysis k} = ¢g(Zy).

Power family of error spending tests: f(Z) and ¢(Z) x (Z/Zmax)’-

/ Adapting to unpredictab le information \




\ Maximum information designs /

Design

Assume, say, /X equally spaced information levels.

Find Z,,,, such that boundaries meet up on reaching Zx = Znq2-

Implementation

Use the error-spending construction with observed Z;s. Continue up to

ZImax and make the boundaries converge, protecting type | error.

N:S@Du

“ ——

74 Zs Is 1. Iy Ls Information

If necessary, extend patient accrual to reach Z,,q.

éw. Changes affecting {Z1,Z5, ... } should not be influenced by @»m\
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\ Error-spending designs and nuisance parameter s /

The target Z,,,.. is fixed but the sample size needed to achieve this can

depend on parameters which are initially unknown.
(1) Normal responses with unkno wn variance

It X; ~ N(ux, 0°), Y; ~ N(py, 0?) and 0 = pux — py,
Ty = (0%/nxp+0%/nyy) "

(2) Survival data, log-rank statistics

Information depends on the number of observed failures,

T =~ {Number of failures by analysis k} /4.

Error spending designs handle these issues automatically.

/ Adapting to nuisance parameters \
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\ 3. Optimal group sequential tests /

There is plenty of choice in defining a boundary to solve a particular testing

problem. Thus, one can seek a boundary with an optimality property.

Formulate the testing problem:

fix type | error rate o and power 1 — S atd = 9,
fix number of analyses, K,
fix maximum sample size (information), if desired.

Find the design which minimises average sample size (information) at one

particular 6 or averaged over several 0s.

This optimisation can be carried out by solving a related Bayes decision

/_u_.o_u_mB using backwards induction (dynamic programming). \
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\ Example of properties of optimal tests

K 1.01

2 80.9
5 12.2
10 69.1

1.05

74.5
65.2
62.1

1.1

72.8
62.2
59.0

R

1.2

73.2
59.8
56.3

1.3

75.3
59.0
55.2

One-sided tests, o = (3 = 0.05, K analyses, Lyqz = R ZLfized
equal group sizes, minimising { £ (Z) + FEs(Z)}/2.

Minimum values of { Ey(Z) + E5(Z)}/2, as a percentage of Z;zcq

Minimum
over R

72.7 at R=1.15
58.7 at R=1.4
54.3 at R=1.6

Note: E/(Z) \, as K ' butwith diminishing returns,
E(Z) ™\, as R 7 uptoa point.

/ Adapting optimall y to obser ved data

\

11



\ Squeezing a little extra efficienc y /

Schmitz (1993) proposed group sequential tests in which group sizes are

chosen adaptively. We describe these on the score statistic scale:

Initially, fix Z1, observe
S1 ~ N(011, I,),

then choose 75 as a function of S7, observe S where
So— 81 ~ N(0(Zs —14), (o — 1a) ),

etc, etc.

Specify sampling rule and stopping rule to achieve desired overall type |

error rate and power.

N /
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\ Examples of “Sc hmitz” designs /

Totest Hy: 6 = 0 versus Hy: 6 > 0 with type | error rate o« = 0.025
and power 1 — 3 =10.9 at 6 = 6.

Aim for low values of

| Es@)16) a0,
where f(6) is the density of a N (8, 62 /4) distribution.

Constraints:

Maximum sample information = 1.2 X fixed sample information.

Maximum number of analyses = K.

Again, find optimal designs by solving related Bayes decision problems.

N /

13




-

O A~ WDN

10

o

Efficienc y of “Sc hmitz” designs

Optimal
adaptive
design
(Schmitz)

/2.5
64.8
61.2
58.0
55.9

efficiency gains are slight.

Optimal
non-adaptive,
optimised
group sizes

73.2
65.6
62.4
59.4
57.2

Optimal average MANV as a percentage of the fixed sample information.

Optimal

~

non-adaptive,

equal group
sizes

74.8
66.1
62.7
59.8
57.5

Varying group sizes adaptively makes for a complex procedure and the

Adapting group sizes optimall y to obser ved data

\
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\ 4. Recent advances in flexible/adaptive methods /

Mid study re-design to increase power

During the course of a study, reasons may arise to change the power.
Suppose you design a study with power 0.9 at 8 = 0*. If a competing
treatment is withdrawn, you may wish to increase sample size to attain

power 0.9 at 0 = 0™ < J§*.

Can you do this during a fixed sample or group sequential

study without biasing the type | error rate?

Denne (2001) and Miller & Schafer (2001) show this is possible as long as

the re-design preser ves the conditional type | error probability .

The methods of Bauer & Kohne (1994), Fisher (1998), Cui, Hung & Wang
é@@@v are described differently, but they also possess this property. \
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Re-design in response to an interim estimate , 6

Motivation can be:

® trying to be efficient.

® (o rescue an under-powered study,

maybe because the treatment is completely new.

It is good to be able to rescue a poorly designed study.

But, group sequential tests already base the decision for early
/ stopping on % — and optimal GSTs do this optimally!

~

AN

Sample size may be modified in response to an estimate of effect size, 6.

Often, designs are set up to attain a given conditional power under 6 = 6.

® a “wait and see” approach to choosing a study’s power requirement,

The conditional type | error rate approach safeguards overall type | error.

\
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\ 5. Example of inefficienc y in an adaptive design /

Scenario (of the type described by Cui, Hung & Wang, 1999)

A test is to have type | error probability o = 0.025.

Investigators are optimistic the effect size, 6, will be as high as 0* = 20.
But, effect sizes as low as 8 = 0™ = 15 are clinically relevant and worth

detecting.

First, consider a fixed sample study attaining power 0.9 at = 0* = 20.

Suppose this requires a sample size ny = 100.

An adaptive design starts out as a fixed sample test with n s = 100
observations, but data are examined after the first 50 responses to see if

there is a need to “adapt”.

N /
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\ Cui et al. adaptive design

At an interim stage, after 50 observations, the estimated effect size is 6.

If 9 < 0.20™ = 4, stop the trial for futility, accepting Hy.

Otherwise, re-design the remainder of the trial, preserving the

conditional type | error rate given 61:

choose the remaining sample size to give conditional

power 0.9 if in fact 6 = 61,

truncate this additional sample size to the interval
(50, 500) — no decrease in sample size is allowed

and the total sample size is at most 550.
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\ Power of the Cui et al. adaptive test /

© Adaptive test

* Fixed sample test, n=100

0 0.2 0.4 0.8 1 12

0I5
The adaptive test improves on the power of the fixed sample test,
achieving power 0.85at 6 = 0** =15 (i.e., 8/0* = 0.75).

If continuing past stage one, total sample size ranges from 100 to 550.

N /
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\ A conventional group sequential test /

Similar overall power can be obtained by a non-adaptive GST with X = 2

analyses, designed to attain power 0.9 when 6 = 14.

We have compared a power family, error spending test with p = 1:

type | error rate is « = 0.025,

taking the first analysis after 68 observations and the second analysis

after 225 gives a test with power 0.9 at 6 = 14.

This test dominates the Cui et al. adaptive design with respect to both
power and ASN. It also has a much lower maximum sample size — 225

compared to 550.

N /
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\ Cui et al. adaptive test vs non-adaptive GST /

200

150

ASN

100~

+ 2-group GST + 2-group GST

50

o .
© Adaptive test Adaptive test

Il Il Il Il J L L
0 0.2 0.4 0.8 1 12 o 0.2 0.4

The conventional GST has:

higher power,
lower average sample size function,

much smaller maximum sample size.

/_/\_m:v\ other proposals for adaptive designs show similar inefficiencies. \
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\ 6. Conclusions /

Error Spending tests using Information Monitoring can adapt to

e unpredictable information levels,
® nuisance parameters,

® observed data, i.e., efficient stopping rules.

In addition, recent adaptive methods allow

® re-design in response to external developments,
® re-sizing to rescue an under-powered study,

® an on-going approach to study design.

But, these adaptive designs will not improve on the efficiency of “standard”

/@occ Sequential Tests — and they can be substantiall y inferior. \
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