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Features of sound designs

The authors focus on the validity of inference following

flexible designs.

A related question is their efficiency:

• Institutional Review Boards (Ethics Committees) and

studies’ Monitoring Boards should be concerned that

patients are used as effectively as possible.

• Flexibility in design can come at the price of reduced

efficiency — a test of the same size and power could

be conducted with, on average, fewer subjects.
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Example of a flexible, adaptive design

Shen & Fisher (Biometrics, 1998) propose a variance

spending test in which Z-statistics from successive

groups of observations are combined as

Z = w1Z1 + w2Z2 + . . . + wmZm.

Each wj can depend on responses in groups 1 to j − 1.

The final wm is chosen to that w2
1 + . . . + w2

m = 1.

Then, Z ∼ N(0,1) under H0: θ = 0.

Rejecting H0 for Z > Φ−1(1 − α) ensures type I error

probability α.
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Variance spending design

Shen & Fisher start from a fixed sample design with nf

observations which gives power 0.9, say, at θ = δ.

They observe interim estimates of θ.

If θ̂ < δ, sample size is increased beyond nf in order to

try and achieve power 0.9 under the true θ.

Weights wj are amended accordingly.

We consider an example with up to 10 groups of

observations and a maximum sample size of 2nf .

(Full details are in our written discussion.)
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Variance spending design
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The adaptation is successful in increasing power beyond

that of the fixed sample test.

Note: The variance spending test is pre-specified, this

power curve can be computed in advance — and one can

consider other procedures achieving similar power.
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Variance spending design
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   5 & 10 group, non−adptv designs

Non-adaptive, group sequential tests can produce a

similar power curve . . .

(Power curves for 5 and 10 group designs are identical.)
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Variance spending design
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. . . and the group sequential tests have smaller expected

sample sizes by 10 to 15%.

Conclude: The variance spending design is inefficient.

This is quite typical for an adaptive design aiming for

conditional power under effect size θ̂.
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Efficiency of adaptive and non-adaptive designs

Reference: Jennison & Turnbull (Biometrika, 2006)

Suitably defined adaptive designs can be efficient —

and make small improvements on non-adaptive group

sequential tests with the same number of groups, K.
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6

100

90

80

70

60

50

Non-adaptive

K = 1

K = 2

K = 3

K = 4

K = 6

K = 10

K = ∞

Adaptive

K = 1

K = 2

K = 3

K = 4

K = 6

K = 10

K = ∞

8



Sources of inefficiency in flexible, adaptive designs

1. Use of non-sufficient statistics

Example: The variance spending statistic

Z = w1Z1 + w2Z2 + . . . + wmZm.

With “adaptive” weights wj, this statistic is not a function

of the sample sum.

JT (2006) show that all admissible designs (adaptive or

non-adaptive) are Bayes procedures.

Hence, admissible designs have decision rules and

sample size rules based on sufficient statistics.

Designs based on non-sufficient statistics are, thus,

inadmissible.
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Sources of inefficiency

2. Sub-optimal sample size modification rule

Typical sample

size function
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“Conditional power” sample size modification rules differ

qualitatively from those of optimal adaptive designs.
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Sources of inefficiency

Burman & Sonneson’s Example 4

The authors propose a Likelihood Ratio test for this

example.

The test is Bayes, and hence admissible among decision

rules given this sample size modification rule.

However, the sample size rule itself is inadmissible

among all possible adaptive design rules.

We have found two-stage, non-adaptive group sequential

designs with similar power and expected sample sizes

lower by 10 to 30%.
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Conclusion

Burman & Sonneson state:

“The most fundamental question is . . . not

whether flexible designs are efficient but rather

what inference following a flexible design is valid.”

We would not wish this view to imply that inefficient

statistical procedures are “acceptable”.

Validity and efficiency are important and inter-related, and

both should be central to the discussion.
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