Discussion on

Are Flexible Designs Sound?

Christopher Jennison

Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj

Bruce Turnbull

Department of Statistics, Cornell University http://legacy.orie.cornell.edu/~bruce

Joint Statistical Meetings, Seattle,

August 8, 2006

Features of sound designs

The authors focus on the *validity* of inference following flexible designs.

A related question is their *efficiency:*

- Institutional Review Boards (Ethics Committees) and studies' Monitoring Boards should be concerned that patients are used as effectively as possible.
- Flexibility in design can come at the price of reduced efficiency — a test of the same size and power could be conducted with, on average, fewer subjects.

Example of a flexible, adaptive design

Shen & Fisher (*Biometrics*, 1998) propose a *variance spending* test in which *Z*-statistics from successive groups of observations are combined as

$$Z = w_1 Z_1 + w_2 Z_2 + \ldots + w_m Z_m.$$

Each w_j can depend on responses in groups 1 to j - 1.

The final w_m is chosen to that $w_1^2 + \ldots + w_m^2 = 1$.

Then, $Z \sim N(0, 1)$ under H_0 : $\theta = 0$.

Rejecting H_0 for $Z > \Phi^{-1}(1 - \alpha)$ ensures type I error probability α .

Variance spending design

Shen & Fisher start from a fixed sample design with n_f observations which gives power 0.9, say, at $\theta = \delta$.

They observe interim estimates of θ .

If $\hat{\theta} < \delta$, sample size is increased beyond n_f in order to try and achieve power 0.9 under the true θ .

Weights w_i are amended accordingly.

We consider an example with up to 10 groups of observations and a maximum sample size of $2 n_f$.

(Full details are in our written discussion.)

The adaptation is successful in increasing power beyond that of the fixed sample test.

Note: The variance spending test is pre-specified, this power curve can be computed in advance — and one can consider other procedures achieving similar power.

Variance spending design

Non-adaptive, group sequential tests can produce a similar power curve ...

(Power curves for 5 and 10 group designs are identical.)

Variance spending design

... and the group sequential tests have smaller expected sample sizes by 10 to 15%.

Conclude: The variance spending design is inefficient.

This is quite typical for an adaptive design aiming for conditional power under effect size $\hat{\theta}$.

Efficiency of adaptive and non-adaptive designs

Reference: Jennison & Turnbull (*Biometrika*, 2006) Suitably defined adaptive designs can be efficient and make small improvements on non-adaptive group sequential tests with the same number of groups, *K*.

Sources of inefficiency in flexible, adaptive designs

1. Use of non-sufficient statistics

Example: The variance spending statistic

 $Z = w_1 Z_1 + w_2 Z_2 + \ldots + w_m Z_m.$

With "adaptive" weights w_j , this statistic is not a function of the sample sum.

JT (2006) show that all admissible designs (adaptive or non-adaptive) are Bayes procedures.

Hence, admissible designs have decision rules and sample size rules based on sufficient statistics.

Designs based on non-sufficient statistics are, thus, inadmissible.

Sources of inefficiency

2. Sub-optimal sample size modification rule

"Conditional power" sample size modification rules differ qualitatively from those of optimal adaptive designs.

Sources of inefficiency

Burman & Sonneson's Example 4

The authors propose a Likelihood Ratio test for this example.

The test is Bayes, and hence admissible among decision rules *given* this sample size modification rule.

However, the *sample size rule* itself is inadmissible among all possible adaptive design rules.

We have found two-stage, non-adaptive group sequential designs with similar power and expected sample sizes lower by 10 to 30%.

Conclusion

Burman & Sonneson state:

"The most fundamental question is ... not whether flexible designs are efficient but rather what inference following a flexible design is valid."

We would not wish this view to imply that inefficient statistical procedures are "acceptable".

Validity and efficiency are important and inter-related, and **both** should be central to the discussion.