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1. Markov chain Monte Carlo sampling (MCMC)

Aim: To sample from a complex distribution π(x) by

running a Markov chain with ergodic distribution π.

Typically, X is high-dimensional and π not particularly

tractable.

The minimal requirement is that π(x) can be evaluated,

up to a multiplicative constant, for any specified x.

Method: Create a Markov chain on the state space Ω

with transition matrix P satisfying

π P = π.

Let πn denote the distribution of the state Xn after n

transitions from an initial state x0.

Then, if the Markov chain is irreducible and aperiodic,

πn → π as n → ∞.
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Detailed balance

It is convenient to work with Markov chains with the

property of detailed balance,

π(x)P (x, y) = π(y)P (y, x) for all x, y in Ω.

The key property π P = π follows since

∫
Ω

π(x)P (x, y) dx =

∫
Ω

π(y)P (y, x) dx = π(y).

Chains with this property were constructed by Metropolis

et al. (1953). Hastings (1970) enhanced their generality

— hence the Metropolis-Hastings algorithm.

The Gibbs sampler of Geman & Geman (1984) is a special

case of the Metropolis-Hastings algorithm.

A very neat implementation of the Gibbs sampler lies at

the heart of the BUGS software (Spiegelhalter, Thomas,

Best & Gilks, 1996).
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The Metropolis-Hastings algorithm

From state Xn = x, generate a proposal y from the kernel

q(x, y) and calculate the “acceptance probability”

α(x, y) = min{1,
π(y) q(y, x)

π(x) q(x, y)
}.

With probability α(x, y), accept and move to Xn+1 = y,

with probability 1−α(x, y), reject and stay at Xn+1 = x.

Detailed balance: We need to show, for all x 6= y,

π(x) q(x, y)α(x, y) = π(y) q(y, x)α(y, x).

The LHS is

π(x) q(x, y) min{1,
π(y) q(y, x)

π(x) q(x, y)
}.

It is straightforward to check this is equal to

π(y) q(y, x) min{1,
π(x) q(x, y)

π(y) q(y, x)
},

which equals the RHS.
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A variety of “move types”

We may wish to use several “types” of move, indexed by

a parameter φ ∈ Φ, with transition matrix Pφ for move

type φ.

As long as each Pφ satisfies detailed balance, we can

deduce that π Pφ = π, i.e.,
∫
Ω

π(x)Pφ(x, y) dx = π(y).

Transitions can be generated using a pre-fixed sequence

of move types φ. Or, the type of each transition may be

selected at random (independently of the current state x).

In either case, the chain has ergodic distribution π, as long

as the chain is irreducible.

In the second case, with φ generated from f(φ), the

overall transition matrix is

P =

∫
Φ

f(φ) Pφ dφ.
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A variety of move types

Thus, to show that πP = π, write

∫
Ω

π(x)P (x, y) dx =
∫
Ω

π(x)
∫
Φ

f(φ) Pφ(x, y) dφ dx

=

∫
Φ

f(φ)

∫
Ω

π(x)Pφ(x, y) dx dφ

=

∫
Φ

f(φ) π(y) dφ

= π(y).

A simple example of separate move types is the updating

of single elements of the vector x. This is usually done

systematically, cycling through the elements in order.

More interesting variety occurs if some moves operate

locally, proposing small displacements in x, while other

moves aim farther afield in the hope of a more substantial

change in x.
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2. Mixing problems

Efficient sampling needs πn to converge rapidly to π.

The Markov chain must forget its initial state quickly and

rapidly produce near-independent samples.

Problem 1. Two modes
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To move between modes, updating one element of x at a

time, requires a visit to a state with very low π(x) — and

there is very little probability of accepting such a move.
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Mixing problems

Problem 2. Very thin region of support for π

Example: Over-parameterisation, leading almost to a

functional relation in parameters’ posterior distribution.
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Traversing the modal region of π with updates of x(1) and

x(2) requires a great many small steps.
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Mixing problems

Problem 3. Limiting case of problem 2 — support

of π confined to a sub-space of Ω

Example: An exact functional relation in the posterior

distribution of a parameter vector.
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Can we apply MCMC methods to sample a distribution

defined on a manifold?
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3. Mode jumping

Modes of π are small in a high-dimensional space.

The kernel q(x, y) generates jumps into the unknown.
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The current state x has fairly high π(x) but proposals y

are unlikely to hit the centre of another mode, so

α(x, y) = min{1,
π(y) q(y, x)

π(x) q(x, y)
} ≈ 0.
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Mode jumping

Paradox: There are simple ways to move from y to a y′

with much higher π(y′), e.g., run n iterations of small-step

M-H updates.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x(1)

x(
2)

•

x

•
y •

y′

But then it is not feasible to calculate q(x, y′) for use in the

formula for α(x, y′).
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Our proposed method

Creating the proposal, y

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x(1)

x(
2)

•

x

•
x1

•
x2

•

y

φ ∼ f(φ)

x1 = x + φ deterministic step,

x2 ∼ g(x1, x2) e.g., n MCMC steps,

y ∼ h(x2, y) h a local approximation

to π(y) near the point x2.
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Proposed method
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We need to find a suitable acceptance probability α(x, y)

• NOT computing the overall distribution of y given x,

• but conditioning, in a sense, on φ and the random

path from x1 to x2,

• leaving just h(x2, y).

The trick is to generate analogous parts of a return path

from y to x and “condition” on these too.
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Proposed method
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φ ∼ f(φ)

x1 = x + φ y1 = y − φ

x2 ∼ g(x1, x2) y2 ∼ g(y1, y2)

y ∼ h(x2, y) x ∼ h(y2, x).

Assuming f(φ) = f(−φ), set acceptance probability

for y, α(x, y), to be

αφ,x1,x2,y1,y2
(x, y) = min{1,

π(y)h(y2, x)

π(x)h(x2, y)
}.
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Proposed method

Note that for this choice of α(x, y),

π(x) h(x2, y) αφ,x1,x2,y1,y2
(x, y)

= π(x) h(x2, y) min{1,
π(y)h(y2, x)

π(x)h(x2, y)
}

= π(y) h(y2, x) min{1,
π(x)h(x2, y)

π(y)h(y2, x)
}

= π(y) h(y2, x) α−φ,y1,y2,x1,x2
(y, x)

— by the same piece of algebra that justifies the standard

Metropolis-Hastings algorithm.
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Proof of detailed balance

We need to show that, for x 6= y,

P{At x under π then → y} = P{At y under π then → x}.
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Here

LHS = π(x)

∫
dφ f(φ)

∫
dx2 g(x1, x2) h(x2, y)

∫
dy2 g(y1, y2) αφ,x1,x2,y1,y2

(x, y),

where x1 = x + φ and y1 = y − φ.
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Proof of detailed balance

Rearranging terms,

LHS = π(x)
∫

dφ f(φ)
∫

dx2 g(x1, x2) h(x2, y)

∫
dy2 g(y1, y2) αφ,x1,x2,y1,y2

(x, y)

=

∫
dφ f(φ)

∫
dx2 g(x1, x2)

∫
dy2 g(y1, y2)

π(x) h(x2, y) αφ,x1,x2,y1,y2
(x, y)

=
∫

dφ f(φ)
∫

dx2 g(x1, x2)
∫

dy2 g(y1, y2)

π(y) h(y2, x) α−φ,y1,y2,x1,x2
(y, x)

= π(y)

∫
d(−φ) f(−φ)

∫
dy2 g(y1, y2) h(y2, x)

∫
dx2 g(x1, x2) α−φ,y1,y2,x1,x2

(y, x) = RHS.
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4. Example 1
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Mixture of 9 bivariate normal distributions in window

(0,100) × (0,100). Each bivariate normal distribution

has V ar(X(1)) = V ar(X(2)) = 0.12 and correlation

ρ = 0.25.

Plan to use two move types: (1) small changes within a

mode and (2) jumps between modes.
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Example 1

For large steps, move to a point chosen uniformly within a

circle of radius 50, centred on the current state.

1. It is not surprising that large steps with no adaptation

are nearly always rejected.

2. With adaptation, large steps are frequently accepted:

x

y
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Example 1: Details of adaptation

1) The random walk stage “x1 to x2” comprises 10 M-H

updates of both elements of x with N(0,42) proposals

followed by 10 updates with N(0,1) proposals.

In both cases, the target distribution is an “annealed”

version of π proportional to π(x)5.

2) In calculating the local approximation to π at x2, we

fit a univariate distribution in each component direction,

matching the density π at three points.

The two univariate distributions are combined assuming

the two components of X to be independent — to

demonstrate that this local fit will often be only an

approximation.
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Example 1: Results

After 1000 iterations, shared between small steps, large

steps (unadapted), and adaptive large steps:

MCMC path, complete
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A total of 42 out of 333 adaptive large steps were

successful in giving an accepted jump between modes.
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Example 1: Results

From a longer simulation, we find:

Success Average no. Evaluations

rate of function per mode

evaluations jump

Unadapted 0.00009 1 11,111

Adapted 0.20 59 295

Hence, the adapted method improves on the unadapted

method’s efficiency by a factor of 38.
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Higher dimensional versions of Example 1

Suppose π(x) is a distribution on x ∈ <n and the form

of π within each dimension does not change with n.

Unadapted method

The volume of the mode decreases exponentially in n.

The expected number of attempts before a random shot

hits the mode increases exponentially in n.

Adapted method

The number of function evaluations for a useful rate of

mode-jumping is liable to scale linearly in n.

Relative efficiency of the adapted method increases

substantially with n, e.g., to values of 1,000 or 50,000.

For more awkward distributions π, the adapted method

may need longer MCMC sequences to allow time to travel

to a mode and find an x with high π(x) within the mode.
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5. Relation to Tjelmeland & Hegstad (2001)
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T & H’s algorithm has steps:

1. Large step from x to x1 = x + φ.

2. Hill climbing from x1 to x2.

3. Sample y from h(x2, y), an approximation

to π(y) at x2.
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Relation to Tjelmeland & Hegstad
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4. Construct a reverse step to y1 = y − φ.

5. Hill climbing from y1 to y2.

6. Fit a local approximation h(y2, x) to π(x) at y2.

7. Accept the move from x to y with probability

α(x, y) = min{1,
π(y)h(y2, x)

π(x)h(x2, y)
}.
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Relation to Tjelmeland & Hegstad
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T & H prove detailed balance within move type φ (defined

to include a random choice of step +φ and −φ).

The path from x1 to x2 is deterministic, so randomness

in y is only in sampling from h(x2, y).

The return path has to be constructed in order to discover

where the hill climbing algorithm from y1 reaches, and to

compute the local approximation to π there, h(y2, x).
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Relation to Tjelmeland & Hegstad
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Richard argued that, in our method, the random paths

x1 → x2, for all possible values x1, can be included in

the definition of the “move type”.

Hence, T & H’s proof is enough to prove detailed balance

when the x1 → x2 transition is stochastic!

The formal proof, with multiple integrals, establishes this

to be true but our motivation was from Richard’s less

standard argument.
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6. Harder examples

Key to applying our method is the ability to construct a

good approximation h(x2, y) to π(y) near x2.

Suppose π is a mixture distribution with k modes,

π(y) =
∑
k

pk fk(y),

where the fk are probability densities and Σpk = 1.

Suppose also we are able to obtain h(x, y) ≈ fk(y) when

y is near mode k — note, we do not find the factor pk.

For x and y2 near mode k and x2 and y near mode k′,

α(x, y) = min{1,
π(y) h(y2, x)

π(x) h(x2, y)
}

≈ min{1,
pk′ fk′(y) fk(x)

pk fk(x) fk′(y)
}

= min{1,
pk′

pk

},

which is just right for moves between these two modes.
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Harder examples

Implicit construction of h(x2, y)

For a discrete distribution π

Apply a cycle of the Gibbs sampler starting in state x2 and

updating each element of x in turn.

Multiplying together the conditional distributions gives the

distribution h(x2, y) which has, implicitly, been sampled.

For π a continuous distribution

An analogous procedure can be implemented, sampling

from a local approximation to the conditional distribution

of each element at each stage.

Difficulties arise when the product of conditional

distributions is not a good local approximation to π.
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Example 2
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Having reached x2, fitting h(x2, y) as a multivariate

normal distribution, using values of π near x2, will not give

a good local approximation to π(y).

1) Local information can give a good choice of directions

for a sequence of updates.

2) It will be wise to wait for each update before fitting an

approximation to π in a new direction.
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Example 2
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A sampling scheme to generate h(x2, y)

1. Fit a multivariate normal distribution to π, using values

of π at points near x2. In fact, we only need the fitted

variance matrix — which is easy to obtain.

2. Find principal components of the variance matrix and

use these to define directions e1 and e2.

3. Fit a univariate normal distribution, h1, approximating

the conditional distribution of π along the e1 axis.
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Example 2
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Sampling scheme continued

4. Sample from the conditional distribution, h1, of π along

the e1 axis to produce the point x3.

5. Note the density h1(x3).

6. Fit a univariate normal distribution, h2, approximating

π along the line through x3 in direction e2.
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Example 2

40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

x(1)

x(
2)

•

x2

e1

•

x3

e2

h2

•

y

Sampling scheme continued

7. Sample the conditional distribution, h2, of π along the

line through x3 in direction e2 to produce the proposal y.

8. Note the density h2(y).

9. Combine the conditional densities to obtain

h(x2, y) = h1(x3)h2(y).
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Results for Example 2
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Implementing this scheme for distributions in <2, <4 and

<6 led to earlier remarks on high-dimensional problems:

If modes of π occupy a very small volume of the state

space, adapted updates offer a large efficiency gain.

Adaptation needs longer MCMC sequences to find modal

states if modes exhibit curvature and high correlations.

Oddly shaped “basins of attraction” can imply a forward

and return step do not come back to the original mode.
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7. Distributions with “thin” support

The scheme for constructing a sample from h(x2, y) is of

use in its own right to sample within a single mode.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x(1)

x(
2)

If elements of x are almost deterministically related, π is

nearly confined to a lower dimensional sub-space of <n.

M-H updates are hard to achieve and, even then, only very

small steps are likely to be accepted.

N.B. You don’t know the distribution looks like this, all you

can do is calculate the value π(x) for chosen x values.
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Distributions with thin support
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The “h(x2, y)” construction gives the whole proposal step.

An initial series of M-H steps along the e2 direction can be

included, to get nearer to the thin region of support. Like

the previous g(x1, x2), the probability of this path does

not appear in α(x, y).
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Distributions with thin support

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

x(1)

x(
2)

•

x

•

x1

•

y

e1
•

y1

e2

In the reverse step, the directions for the sequence of

updates are fixed, as is the displacement from y to x.

The acceptance probability is

α(x, y) = min{1,
π(y) h1(y, y1)h2(y1, x)

π(x) h1(x, x1)h2(x1, y)
}.
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Distributions with thin support

MCMC path, complete
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The path from a sequence of 1000 adaptive updates.

The acceptance rate for these proposals was 42%.
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8. Distributions on manifolds

In the limit as the support of π decreases, we reach

the special case where π is supported on a manifold, a

surface within <n of dimension less than n.
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The preceding method converges to a limiting form —

or view this directly as a M-H sampler on the manifold.

40



Distributions on manifolds
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The second step is to “find the manifold” in direction e2.

If there is more than one intersection, the only concern is

whether the return move finds the original x.

Higher dimensions:

If the manifold is an m-dimensional surface in <n, then

e1 is the m-dimensional tangent plane at x and e2 is the

(n − m)-dimensional space ⊥ e1.
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Distributions on manifolds
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Acceptance probability:

Denote the density of x1 given x by h1(x, x1).

The position of y is determined by x1.

This transformation has a scale change of sin(θ), so the

density on the manifold is h(x, y) = h1(x, x1) sin(θ).

Similarly h(y, x) = h1(y, y1) sin(θ).

Thus, the acceptance probability for the move x to y is

α(x, y) = min{1,
π(y) h1(y, y1)

π(x) h1(x, x1)
}.
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9. Conclusions

It is possible to create a M-H algorithm where an initial

proposal can be updated to improve its likelihood under π

before the accept/reject decision is taken.

An element of our proposed method can overcome

difficulties in providing M-H steps within pathological

distributions, either with very thin support or confined to

a manifold.

Applications to explore further:

jumps between dimensions in a variable

dimension state space,

many other interesting problems . . .
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