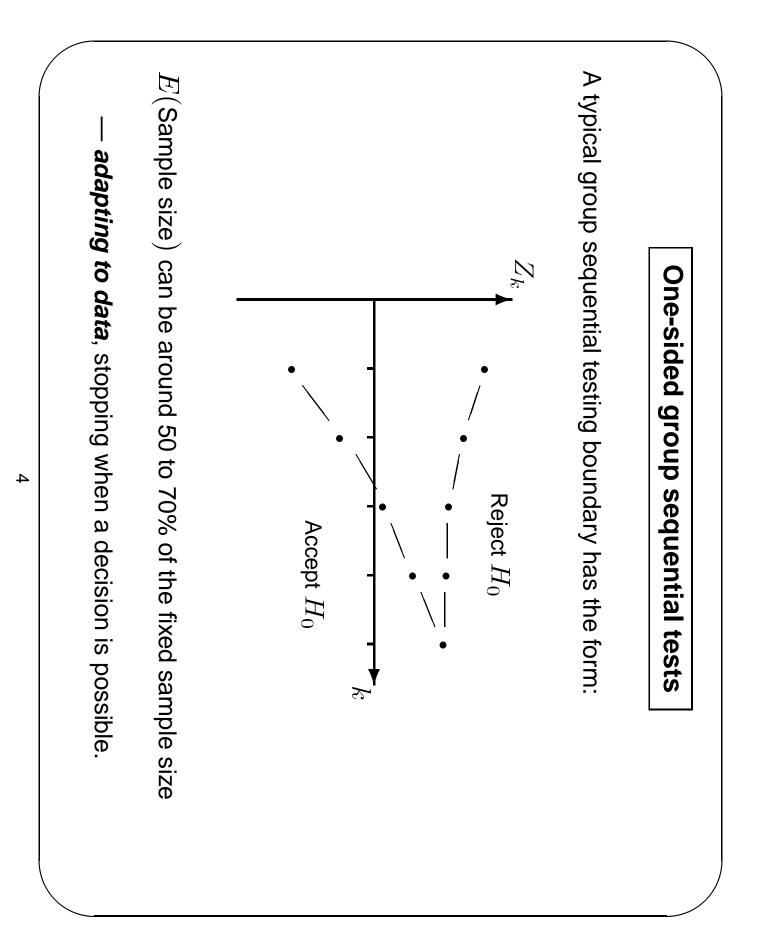
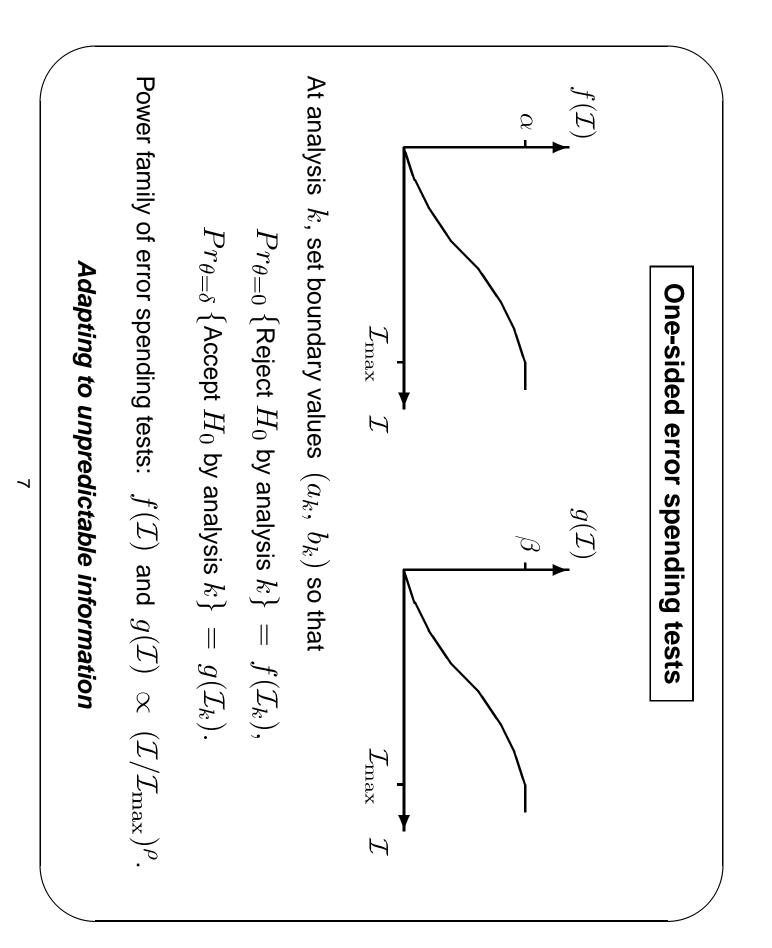
EQUENTIAL nnison, ersity of Bath, UK bull, lew York ls 005 005 005 005 005
--

to reject H_0 — early stopping for a positive outcome.
to accept H_0 — early stopping for futility,
It is desirable to stop early
Specify type I error rate $= lpha $ and power $ 1 - eta $ at $ heta = \delta .$
$H_0: \theta \leq 0 \text{against} \theta > 0.$
To look for superiority of the new treatment, test
heta= log hazard ratio for survival data.
heta= difference in mean response for normal data, or
Let $ heta$ be the treatment effect of a new treatment vs a standard, e.g.,
A one-sided testing problem
1. Group sequential monitoring of clinical trials



1
$Cov(\widehat{ heta}_{k_1},\widehat{ heta}_{k_2}) = Var(\widehat{ heta}_{k_2}) = \{\mathcal{I}_{k_2}\}^{-1} ext{for } k_1 < k_2.$
and
$\widehat{ heta}_k \sim N(heta, \{\mathcal{I}_k\}^{-1}), k = 1, \dots, K,$
normal,
In very many situations, $\widehat{ heta}_1,\ldots,\widehat{ heta}_K$ are approximately multivariate
$egin{array}{lll} \mathcal{I}_k &=& \overline{\mathrm{Var}(\widehat{ heta}_k)}, & k=1,\ldots,K. \end{array}$
1
The <i>information</i> for $ heta$ at analysis k is
Let $\hat{ heta}_{k}$ be the estimate of $ heta$ based on data at analysis k .
Canonical joint distribution of parameter estimates
2. Error spending tests

Spending error as a function of \mathcal{I}_k
Observed information \mathcal{I}_k depends on the number of subjects and other
factors, e.g., for survival data, the overall failure rate.
Thus, it may not be possible to predict the actual sequence of information
levels, $\mathcal{I}_1, \mathcal{I}_2, \ldots$, in advance.
Lan & DeMets (Biometrika, 1983) presented two-sided tests with the
flexibility to "spend" type I error probability as a function $f(\mathcal{I})$ of the
observed information:
at analysis k , the current boundary point is set so that
the cumulative type I error probability is $f({\mathcal I}_k).$
To extend to one-sided tests, define two functions, $f(\mathcal{I})$ and $g(\mathcal{I}),$ for
spending type I and type II error probabilities.



N.B. Changes affecting $\{\mathcal{I}_1, \mathcal{I}_2, \dots\}$ should not be influenced by $\hat{ heta}_k$ s.
If necessary, extend patient accrual to reach $\mathcal{I}_{max}.$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
=.
Implementation Use the error-spending construction with observed $\mathcal{T}_{n.S.}$ Continue up to
Find \mathcal{I}_{max} such that boundaries meet up on reaching $\mathcal{I}_K = \mathcal{I}_{max}.$
Assume, say, K equally spaced information levels.
Design
Maximum information designs

Adapting to nuisance parameters
Error spending designs handle these issues automatically.
$\mathcal{I}_k~pprox~\{$ Number of failures by analysis $k\}/4.$
Information depends on the number of observed failures,
(2) Survival data, log-rank statistics
$\mathcal{I}_k \ = \ (\sigma^2 / n_{X,k} + \sigma^2 / n_{Y,k})^{-1}.$
If $X_i\sim N(\mu_X,\sigma^2),Y_i\sim N(\mu_Y,\sigma^2)$ and $ heta=\mu_X-\mu_Y,$
(1) Normal responses with unknown variance
The target \mathcal{I}_{max} is fixed but the sample size needed to achieve this can depend on parameters which are initially unknown.
Error-spending designs and nuisance parameters

problem using backwards induction (dynamic programming).
This optimisation can be carried out by solving a related Bayes decision
narticular θ or averaged over several θ s
Find the design which minimises average sample size (information) at one
fix maximum sample size (information), if desired.
fix number of analyses, K ,
fix type I error rate $lpha$ and power $1-eta$ at $ heta=\delta,$
Formulate the testing problem:
problem. Thus, one can seek a boundary with an optimality property.
There is plenty of choice in defining a boundary to solve a particular testing
3. Optimal group sequential tests

data	Adapting optimally to observed	ally to c	optima	apting	Adi	
•	$E(\mathcal{I})\searrow$ as $R\nearrow$ up to a point.	\checkmark up t	s R	∠́ a	$E(\mathcal{I})$	
but with diminishing returns,	with dimi		as $K \nearrow$		Note: $E(\mathcal{I})\searrow$	Note
54.3 at R =1.6	55.2	56.3	59.0	62.1	69.1	10
58.7 at R =1.4	59.0	59.8	62.2	65.2	72.2	Сī
72.7 at R =1.15	75.3	73.2	72.8	74.5	80.9	N
$\begin{array}{c} \textit{Minimum}\\ \textit{over}~R \end{array}$	1.3	R 1.2	1.1	1.05	1.01	K
ercentage of ${\cal I}_{fixed}$	Minimum values of $\{E_0(\mathcal{I})+E_\delta(\mathcal{I})\}/2$, as a per	$\mathbb{P}_{\delta}(\mathcal{I})\}/$	$\mathcal{I}) + E$	of $\{E_0($	values c	Minimum
$_{nax}= {}^{m {\mathcal L}} {}^{fixed},$ /2.	lyses, \mathcal{I}_n $E_\delta(\mathcal{I})\}_i$	K anal $(\mathcal{I}) +$	0.05, g $\{E_0$	$\beta = \beta =$	ts, α = zes, mi	One-sided tests, $lpha=eta=0.05$, K analyses, \mathcal{I}_{max} equal group sizes, minimising $\{E_0(\mathcal{I})+E_\delta(\mathcal{I})\}/2$.
	Example of properties of optima	erties of	prope	ple of	Exam	

Squeezing a little extra efficiency	
Schmitz (1993) proposed group sequential tests in which group sizes are	
chosen adaptively. We describe these on the score statistic scale:	
Initially, fix \mathcal{I}_1 , observe	
$S_1 \sim N(\theta \mathcal{I}_1, \mathcal{I}_1),$	
then choose \mathcal{I}_2 as a function of $S_1,$ observe S_2 where	
$S_2-S_1\simN(heta(\mathcal{I}_2-\mathcal{I}_1),(\mathcal{I}_2-\mathcal{I}_1)),$	
etc, etc.	
Specify sampling rule and stopping rule to achieve desired overall type I	

Examples of "Schmitz" designs
To test $H_0: \theta = 0$ versus $H_1: \theta > 0$ with type I error rate $\alpha = 0.025$
and power $1 - \beta = 0.9$ at $\theta = \delta$.
Aim for low values of
$\int \ E_{\theta}(\mathcal{I})f(\theta)\ d\theta,$
where $f(heta)$ is the density of a $N(\delta, \delta^2/4)$ distribution.
Constraints:
Maximum sample information $=1.2 imes$ fixed sample information.
Maximum number of analyses $= K$.
Again, find optimal designs by solving related Bayes decision problems.

	Efficiency	Efficiency of "Schmitz" designs	ns
Optimal av	erage $E(\mathcal{I})$ as a p	Optimal average $E(\mathcal{I})$ as a percentage of the fixed s	sample information.
	Optimal	Optimal	Optimal
	adaptive	non-adaptive,	non-adaptive,
K	design	optimised	equal group
	(Schmitz)	group sizes	sizes
N	72.5	73.2	74.8
ယ	64.8	65.6	66.1
4	61.2	62.4	62.7
Ø	58.0	59.4	59.8
10	55.9	57.2	57.5
Varying gro	oup sizes adaptively	Varying group sizes adaptively makes for a complex procedure and the	procedure and the
efficiency g	efficiency gains are slight.		
	Adapting supe	Adapting super-optimally to observed data	d data

4. Recent advances in flexible/adaptive methods
Mid study re-design to increase power
During the course of a study, reasons may arise to change the power.
Suppose you design a study with power 0.9 at $ heta=\delta^*.$ If a competing
treatment is withdrawn, you may wish to increase sample size to attain
power 0.9 at $ heta=\delta^{**}<\delta^*.$
Can you do this during a fixed sample or group sequential
study without biasing the type I error rate?
Denne (2001) and Müller & Schäfer (2001) show this is possible as long as
the re-design preserves the conditional type I error probability.
The methods of Bauer & Köhne (1994), Fisher (1998), Cui, Hung & Wang
(1999) are described differency, but filey also possess fills property.

suppling on v — and oplinial Gons do uns oplinially:
But, group sequential tests already base the decision for early
It is good to be able to rescue a poorly designed study.
The conditional type I error rate approach safeguards overall type I error.
Schemes for modifying sample size have been proposed, often fixing conditional power under $\theta=\widehat{\theta}.$
 trying to be efficient.
 a "wait and see" approach to choosing a study's power requirement,
 to rescue an under-powered study,
Motivation may be:
Re-design in response to an interim estimate, $\hat{ heta}$

there is a need to "adapt".
observations, but data are examined after the first 50 responses to see if
An adaptive design starts out as a fixed sample test with $n_f=100$
Suppose this requires a sample size $n_f=100.$
First, consider a fixed sample study attaining power 0.9 at $ heta=\delta^*=20.$
detecting.
But, effect sizes as low as $ heta=\delta^{**}=15$ are clinically relevant and worth
Investigators are optimistic the effect size, $ heta$, will be as high as $\delta^*=20.$
A test is to gave type I error probability $lpha=0.025.$
Scenario (of the type described by Cui, Hung & Wang, 1999)
5. Example of inefficiency in an adaptive design

Cui
et
al.
ad
lap
ťi
0 0
les
ğ

At an interim stage, after 50 observations, the estimated effect size is $\widehat{ heta}_1$.

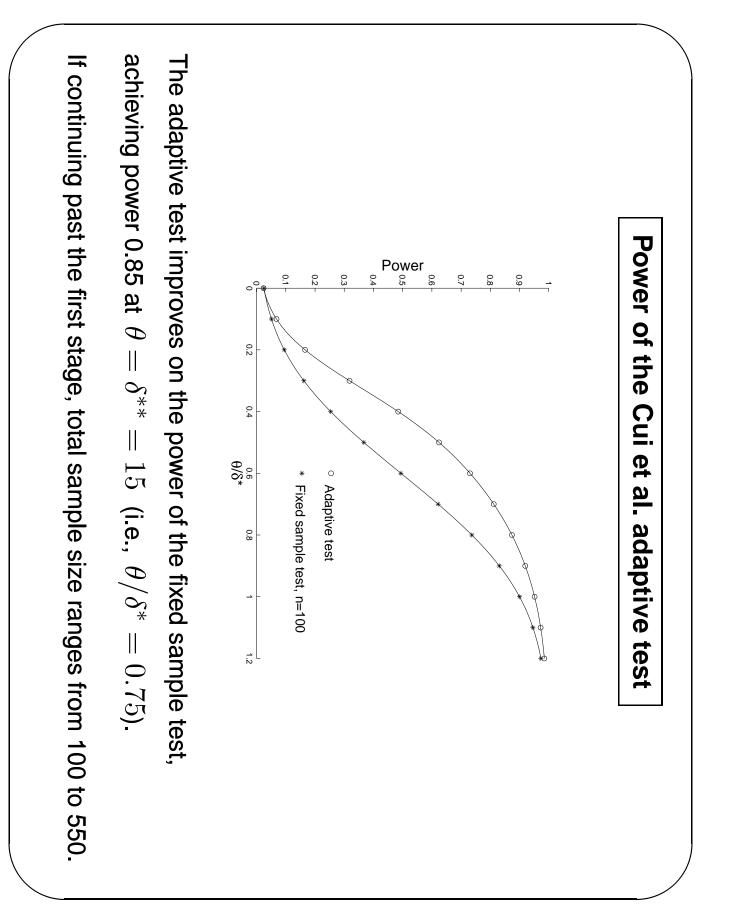
If $\hat{ heta}_1 < 0.2 \, \delta^* = 4$, stop the trial for futility, accepting H_0 .

conditional type I error rate given θ_1 : Otherwise, re-design the remainder of the trial, preserving the

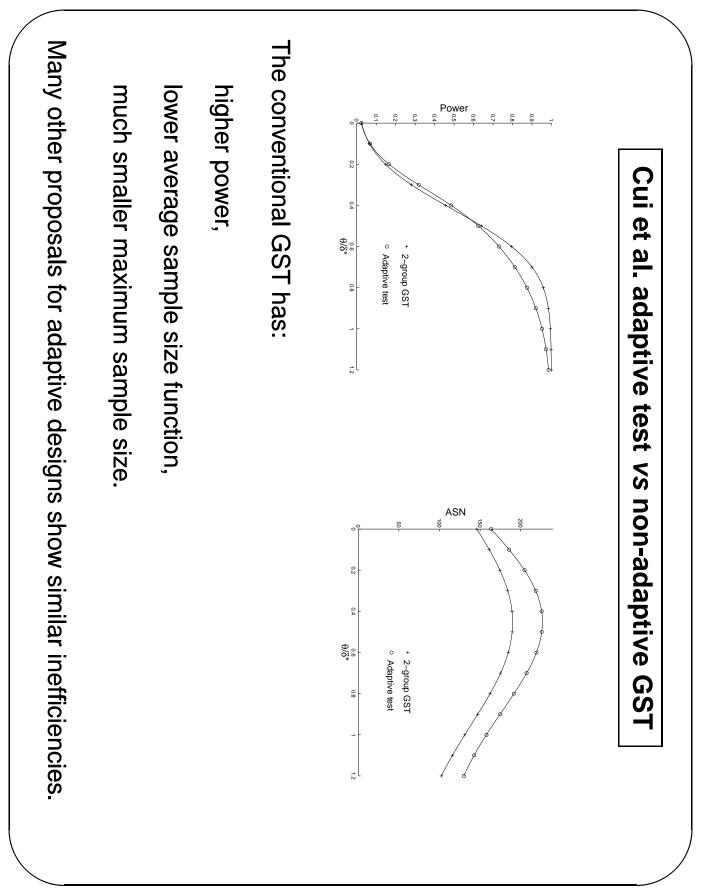
 $\text{ if in fact } \theta = \theta_1, \\$ choose the remaining sample size to give conditional power 0.9

truncate this additional sample size to the interval (50, 500) — no decrease in sample size is allowed and the total sample

size is at most 550



compared to 550.
power and ASN. It also has a much lower maximum sample size — 225
This test dominates the Cui et al. adaptive design with respect to both
after 225 gives a test with power 0.9 at $ heta=14.$
taking the first analysis after 68 observations and the second analysis
up = 1 = 101 ate is u = 0.020,
type learner rate is $c_1 = 0.095$
We have compared a power family, error spending test with $ ho=1$:
analyses, designed to attain power 0.9 when $ heta=14.$
Similar overall power can be obtained by a non-adaptive GST with $K=2$
A conventional group sequential test



6. Conclusions
Error Spending tests using Information Monitoring can adapt to
 unpredictable information levels,
 nuisance parameters,
 observed data, i.e., efficient stopping rules.
In addition, <i>recent adaptive methods</i> allow
 re-design in response to external developments,
 re-sizing to rescue an under-powered study,
 an on-going approach to study design.
But, these adaptive designs will not improve on the efficiency of "standard"
Group Sequential Tests — and they can be substantially inferior.

Schmitz N (1993) Ontimal Sequentially Planned Decision Procedures Lecture Notes in Statistics 79 Springer-Verlag: New York
Müller, H-H. and Schäfer, H. (2001). Adaptive group sequential designs for clinical trials: Combining the advantages of adaptive and of classical group sequential procedures. <i>Biometrics</i> 57 , 886–891.
Lan, K.K.G. and DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials. <i>Biometrika</i> 70, 659–663.
(Preprints available at http://www.bath.ac.uk/ \sim mascj/ or http://www.orie.cornell.edu)
Jennison, C. and Turnbull, B.W. (2005). Adaptive and non-adaptive group sequential tests. Submitted for publication.
Jennison, C. and Turnbull, B.W. (2005). Meta-analyses and adaptive group sequential designs in the clinical development process. <i>J. Biopharmaceutical Statistics</i> 15 , to appear.
Jennison, C. and Turnbull, B.W. (2005). Efficient group sequential designs when there are several effect sizes under consideration. <i>Statistics in Medicine</i> 25 , to appear.
Jennison, C. and Turnbull, B.W. (2003). Mid-course sample size modification in clinical trials based on the observed treatment effect. Statistics in Medicine 23, 971–993.
Jennison, C. and Turnbull, B.W. (2000). <i>Group Sequential Methods with Applications to Clinical Trials</i> , Chapman & Hall/CRC, Boca Raton.
Fisher, L.D. (1998). Self-designing clinical trials. Statistics in Medicine 17, 1551–1562.
Denne, J.S. (2001). Sample size recalculation using conditional power. Statistics in Medicine 20, 2645–2660.
Cui, L., Hung, H.M.J. and Wang, S-J. (1999). Modification of sample size in group sequential clinical trials. Biometrics 55, 853–857.
Bauer, P. and Köhne, K. (1994). Evaluation of experiments with adaptive interim analyses. <i>Biometrics</i> 50 , 1029–1041. Correction <i>Biometrics</i> 52 , (1996), 380.
References