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\ Motiv ation

In a drug development programme:

e Many compounds will be tested.

e Dose finding studies (Phase llb) are conducted for compounds

showing some efficacy.

e A Phase lll study compares the new treatment at the selected dose

level against the appropriate control, active or placebo.

To approve a new treatment, regulatory bodies (MHRA, FDA) usually

require two positive Phase Il studies plus supporting evidence from the

preceding development process.
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\ Efficienc y

There are opportunities for efficient study design in:

e selecting the best of several versions of the treatment in Phase lIb,
® comparing one or more treatments vs control in Phase lII.

One may wish to employ
e mid-study elimination of poorly performing treatments,

e an overall sequential stopping rule.

One may also wish to merge the Phase Ilb and Phase Il trials.
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\ Plan of talk /

1. Selection procedures with no control treatment

2. Selection methods with testing against a control

3. Seamless transition from Phase lIb to Phase |l|
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Suppose for each “population” or “treatment” ¢ = 1, ..., k,

1. Selection procedures with no contr ol treatment

»vm‘s.f ;X‘@.w“ ce Y ZA%S Q.wv.

Aim: To select the population ¢ with the largest mean 6;.

The equivalent of power is a requirement on the probability of correct

selection under certain sets of means (61, ..., 0%).

Methods will include:
e Early elimination of weak treatments.

e Response-dependent treatment allocation to reduce the inferior
/ treatment number and total sample size.
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\ Earlier work /

Paulson (Ann. Math. Statist., 1964)

Elimination procedures based on continuous sequential comparisons

of 2 populations at a time.

Robbins and Siegmund (JASA, 1974)

Adaptive sampling for a 2 population comparison with continuous

monitoring.

Jennison, Johnstone and Turnbull (Purdue Symposium, 1982)

Combining the above.

Update: To take advantage of group sequential tests, error spending,

/ modern computation. \
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Paulson’ s procedure /

Compare all pairs Treatment? vs Treatment j.

—sn _
m: B M_up Ax__ x_._ )

Eliminate Population |

Eliminate Population i

/ If0; = 6; — 9, then Pr{Pop. ¢ eliminates Pop. j} = a/(k — 1). \
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\ Paulson’ s procedure: Probability of correct selection /

Indiff erence zone formulation

X
X
X
X
X
b

Y

Suppose 0, < 0, —o fori=1,...,k— 1.
Then

Pr{Population k is eliminated at some stage }

VAN

MU\.THH Pr{Pop. i eliminates Pop. k at some stage}

1=

< (k-1);773 = o
\ : \




\ Paulson’ s procedure: Group sequential monitoring

Compare treatments at regular interim analyses.
_<h _
Sn= 2o Ax__ x_._ )

Eliminate Population |

© o

o ©)

Eliminate Population i

Choose a group sequential boundary with error rate «/(k — 1) at

/m& — 6; = %0 and good early stopping under likely (61, ..., 60).




\ Adaptive sampling in Paulson’ s procedure /

Motiv ation
Observations on the leading population are used in £k — 1 comparisons.

Allocating more observations to the leader can
e Reduce total sample size

® Reduce observations on inferior treatments
— ethical for medical studies

— we learn more about better treatments.

Need:

/._.:moa\ to support adaptive sampling in each pair-wise comparison. \
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\ Adaptive sampling in a group sequential test

Jennison and Turnbull (Sequential Analysis, 2001)

For a 2-treatment comparison with
9 .

»vmws. ~ ZA%MQ Q.MV s.

1,2, .

At analysis m out of M, with ny,,, observations on population 1 and

N9, ON population 2,

@/H3|®/MSHMNH§|MNMS ~ ZA%H|%§ QMAF L v

Nim nam

~ ZA%H — 0o, N.slepvu say.
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\ Adaptive sampling /

The score statistic

Sm = Ly(01m — O2m) ~ N{O01— 02} L, I1y).
Without adaptive sampling, {51, 52, ... } is distributed as a Brownian
motion with drift 81 — 6o observed at 71,7, .

This remains true if group sizes N1, — 11 m—1 and N2y, — N2 m—1
depend on 61 ,,—1 — 62 ,,—1 — but sampling cannot depend more

generally on (61 m—1, 02 m—1).
Theory generalises to normal linear models containing 67 and 6s.

This extends Robbins and Siegmund (1974) to the group sequential case.

N /
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\ Adaptive sampling: Problem 1

Problem 1

With £ > 3, sampling rules of interest do not satisfy

“m th group sizes for populations 1 and 2 depend
only on %ﬁSlH — @MSL._.
Solution
e Fix sampling ratios at the start of each group,
e estimate ¢; — 6/; within each group of data,
e combine estimates with weights variance .

This equates to fitting a linear model with additive “stage” effects

/| also recommended to avoid bias from time trends.
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\ Adaptive sampling: Problem 1 /

JT (2001) assess performance of 2-treatment tests:

With stage effects in the model, one cannot compensate later on for
sub-optimal sampling ratios in early stages. Savings in Inferior Treatment

Numbers are reduced by about a half.
e Fitting stage effects to avoid bias from a time trend is reasonable.
e But, if such a trend is not really present, data are being used

inefficiently — ethically questionable for medical studies

JJT (1982) took a “heuristic” line, running simulations of their methods

without stage effects and there was no apparent harm to error rates.

N /
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Problem 2

Solution A

Adaptive sampling: Problem 2

Information levels for comparing populations 2 and j

LijayLij2y Lij3zy -,

depend on the sampling rule, which involves .S;; 1, S;j 2, 5i;3,

Standard group sequential designs, including error spending tests, do not

allow such a dependence.

Reported studies of such “data-dependent analysis times” show only minor

/mmmoﬁm on error probabilities — trust these studies and ignore the proble

G
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Adaptive sampling: Problem 2

Solution B

o

Denne (Statistics in Medicine, 2001),

Mduller and Schafer (Biometrics, 2001).

Procedure
e Set up an error spending test for anticipated {Z, Z5,

e Recursively for m =1,2,...,

~

Recent designs which “adapt” to observed data offer a precise solution:

L

— At analysis m, compute conditional error probabilities given .S,

— Runstages m + 1 to M as an error spending test with this

conditional error.

\

16




\ A sampling rule (JJT, 1982)

In comparing /N — 1 populations with a control, the most efficient

allocation is

v/ N — 1 observations on the control to

1 observation on each other population.

Adaptive rule:

At stage m, with [V,,, non-eliminated populations, sample

Vv N,, — 1 observations on the leading population to

1 observation on each other population.

o
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A group sequential Paulson procedure with adaptive sampling

Eliminate populations using Paulson’s pair-wise comparisons.

Run these comparisons as error spending group sequential tests.

a) Base tests on overall population means (cf JJT, 1982)

Sample in stage m to achieve ratios v/N,, —1 : 1 : ... : 1

of total observations on the V,,, surviving populations.

b) Combine stage-wise estimates of each 8; — 0,

Sample in ratios v/N,, —1 : 1 : ... : 1 within stage m.

Go_u_mB 1 is dealt with properly in (b); Problem 2 is ignored (Solution >_v\
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\ Beyond the indiff erence zone /

X
X
X
X
X
X
Y

What if there is a ¢; within 0 of the highest 6,7

It should be OK to select a population within 0 of the best. But can a

non-optimal population eliminate the best, then be eliminated itself?

Kao and Lai (Comm. Statist. Th. Meth., 1980) provide a solution, raising

the boundary for any pair-wise elimination before the final decision.

This method works for Paulson’s procedure with adaptive sampling and

@: be extended to choosing the best s populations out of k. \
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Ideas to take forwar d to comparisons with a contr ol /

Paulson’s scheme offers a simple approach to sequential elimination of

treatments.
Pair-wise comparisons plus “Bonferroni” is not badly conservative.

Using efficient group sequential tests in each pair-wise comparison

leads to good overall performance.
Adaptive treatment allocation can help reduce sample size.

Dealing with power is not simple when you need to consider a

procedure’s behaviour under all possible vectors of treatment means.

\
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\ 2. Selection methods with testing against a contr ol

Aim: Conduct a single study to select a treatment (e.g., dose level) and

test for superiority to a control.
Two-stage procedures are proposed by:

Thall, Simon and Ellenberg (Biometrika, 1988)
Schaid, Wieand and Therneau (Biometrika, 1990)
Stallard and Todd (Statist. in Medicine, 2003)

Stage 1:
Compare k experimental treatments and 1 control.

Stage 2:

/__n appropriate, continue with selected treatments vs the control.

~

\
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\ Selection and testing /

The 3 papers consider 3 different response types (binary, survival, general)

but generic normal test statistics are used in each case.

We shall look at the TSE procedure in detail:

Index control treatment by 0, experimental treatments by 1,... k.

Stage 1
Take m7 observations per treatment and control.

Denote standardised statistic for comparing treatment j against control by

Hﬁ and let the maximum of these be 1 ;= 1.

If L« 1 > (1, select treatment 7* and proceed to Stage 2,
/ if T+« 1 < (', stopandaccept Hp: g =01 = ... = 0. \
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\ Selection and testing /

Stage 2

Take no further observations on selected treatment, 5™, and control.

Combine data from both stages in the standardised statistic H?M.

If T« 2 > Csq, reject Hy and conclude 6« > 0,
if T+ 2 < (3, accept Hy.

Values of nq, ng, C7 and C5 need to be chosen to satisfy type | error
and power conditions.

There is additional freedom to tune the procedure’s performance, e.g.,

@:_B_mm expected sample size in certain situations. \
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\ Type | error and power /

The experimental treatment 7™ is said to be “chosen” if

treatment ;™ is selected at the end of Stage 1, and

Hy is rejected in favour of 6« > 6 at Stage 2.

The type | error rate is
Prg {Any experimental treatment is chosen }

C:qumo” %o = %H = ...= %w

Power depends on the full vector 8 = (6¢, 01, ...,0;).

N /

24




Type | error and power

Consider cases of 0

The power function is

/ 1 — 3(0) = Prg {An acceptable choice is made }.

where:

at least one treatment is acceptable,

no %,w. lies in the interval A%o + 01, Op + %wv

Marginal Clinically significant
Improvement Improvement
| | |
0, 0o + 01 6o + 09

Any treatment with 6; > 8 + 02 is said to be “acceptable”.

\
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\ Type | error and power /

TSE show that, over cases as described above, 1 — 3(8) is minimised

under the least favourable configuration:

01 =...=0,_1=60y+9; and 6O = 6y + 9.

They call this configuration 8 and specify a value for 1 — 3(0™) as their

power condition.

Numerical integration is feasible under Hy and 8*. Hence, parameters
ni, no, Cp and C5 satisfying the type | error and power conditions can

be found.

Tests minimising expected sample size averaged over these two cases are

Gc:n_ by searching feasible parameter combinations. \
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\ Thall, Simon and Ellenber g’'s procedure

Comments on the TSE two-stage procedure

Inclusion of the control treatment in Stage 1 is important: it allows results

from that stage to be pooled with the data on treatment 5™ vs the control

In Stage 2.

The type Il errors under 8* comprise

mostly: failure to reject H,

to a smaller degree: choosing a sub-optimal treatment as

superior to the control.

N /
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\ Schaid, Wieand and Therneau (Biometrika, 1990) /

Schaid et al allow more options at the end of Stage 1.:

stop to accept Hy,

stop and choose an experimental treatment as superior to the control.

More than one experimental treatment may continue to Stage 2. This is
appropriate for a survival study where differences may appear in longer

term survival.

Type | error and power properties are found by pairwise comparisons with

the control, combined by Bonferroni’'s inequality.

N /
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process.

o

Stallar d and Todd (Statist. in Medicine, 2003)

Stallard and Todd select just one treatment at the end of Stage 1.

They allow further interim analyses during Stage 2 at which termination

may occur either to accept or to reject Hy.

These analyses are defined as a group sequential test with a specified

error spending function.

an experimental treatment against the control (at the end of Stage 1),

followed by increments in this score according to the usual stochastic

~

Computations are based on the null distribution of the maximum score for

\
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3. Seamless transition from Phase |lIb to Phase llI

place of a Phase llb trial and Stage 2 the ensuing Phase llI trial.

These proposals can be extended. One could:

() Combine all the various ingredients of the 3 methods

(i) Allow sequential monitoring and elimination of inferior

treatments throughout

(i) Introduce unequal/data-dependent treatment allocation.

ﬂ_osm find “optimal” versions.

~

The proposals of TSE, SWT and ST can be used with Stage 1 taking the

It would be difficult to compute properties of such complex designs — let

\
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\ Modelling the dose-response curve /

When comparing dose-levels, it is natural to expect efficacy to change

fairly smoothly as dose increases.

In their ASTIN trial, Krams et al (2003) adopted a simple nonparametric
dose-response model and developed a Bayesian approach to design,

monitoring and analysis.

The resulting adaptive experimental design contains the elements of the
TSE, SWT and ST proposals.

Computation is quite a task, but a close-to-optimal adaptive sampling

scheme can be found. Frequentist properties of the design are found by

simulation and parameters tuned to give a specified Type | error probability.

N /
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\ Combining two or more Phase Il studies /

There is efficiency in using a single control arm to assess several active
treatments.

But, when a treatment proves successful, the remaining lifetime of its
patent is paramount to the developers — so, savings in trial costs are

unhelpful if they cause a delay in reaching a positive outcome.

Whatever you decide to do:

Problem formulation is crucial — what do you really wish to achieve?

Keeping some simplification can help to:

make computations feasible,

/ give an easily interpretable method. \

32




-

o

References /

Denne, J. S. (2001). Sample size recalculation using conditional power.

Statistics in Medicine 20, 2645—-2660.

Jennison, C., Johnstone, I. M. and Turnbull, B. W. (1982) Asymptotically optimal

procedures for sequential adaptive selection of the best of several normal
means. In Statistical Decision Theory and Related Topics lll, Vol. 2, (eds S.
S. Gupta and J. Berger) New York: Academic Press 2, 55-86.

Jennison, C. and Turnbull, B. W. (2000) Group Sequential Tests with Applications

to Clinical Trials, Chapman and Hall/CRC, 390 pages.

Jennison, C. and Turnbull, B. W. (2001) Group sequential tests with

outcome-dependent treatment assignment. Sequential Analysis, 20,
209-234.

\

33




\ References, contin ued /

Kao, S. C. and Lai, T. L. (1980). Sequential selection procedures based on

confidence sequences for normal populations. Comm. Statist. Theory and
Methods, A9(16), 1657-1676.

Krams, Lees, Hacke, Grieve, Orgogozo and Ford (2003). Acute stroke therapy
by inhibition of neutrophils (ASTIN). Stroke, 34, 2543—-2548.

Mduller, H-H. and Schéafer, H. (2001). Adaptive group sequential designs for
clinical trials: Combining the advantages of adaptive and of classical group

sequential procedures. Biometrics 57, 886—891.

Paulson, E. (1964) A sequential procedure for selecting the population with the

largest mean from & normal populations. Ann. Math. Statist., 35, 174-180.

N /

34




\ References, contin ued /

Proschan, M. A., Follmann, D. A and Geller, N. L. (1994). Monitoring
multi-armed trials. Statistics in Medicine, 13, 1441-1452.

Robbins, H. and Siegmund, D. O. (1974). Sequential tests involving two
populations. J. Amer. Statist. Assoc., 69, 132—-139.

Schaid, D. J., Wieand, S. and Therneau, T. M. (1990). Optimal two-stage

screening designs for survival comparisons. Biometrika, 77, 507-513.

Stallard, N. and Todd, S. (2003). Sequential designs for phase lll clinical trials

incorporating treatment selection. Statistics in Medicine, 22, 689-703.

Thall, P. F,, Simon, R. and Ellenberg, S. S. (1988). Two-stage selection and

testing designs for comparative clinical trials. Biometrika, 75, 303—-310.

N /

35




