25 January 2005 ©2005 Jennison, Turnbull
Cornell University, Ithaca, New York
Professor Bruce Turnbull,
and
Dept of Mathematical Sciences, University of Bath, UK
Professor Christopher Jennison,
OLD AND NEW
ADAPTIVITY IN CLINICAL TRIAL DESIGNS:

_

Adaptivity

- emerges; e.g., scores in a linear rank test, logrank vs Gehan test Adaptive choice of test statistic as information on assumptions
- Adaptive allocation to achieve balance within strata
- Adaptive allocation to assign fewer patients to an inferior treatment
- Adaptivity to accruing information on nuisance parameters
- Adaptivity to accruing information on safety/secondary endpoints
- Adaptivity to adjust power based on accruing information on primary endpoints
- Adaptivity to to drop arms in a multi-arm study based on accruing information on primary endpoints
- And more

7. Conclusions
6. Example of inefficiency in an adaptive designs
5. More recent adaptive proposals
Adapting optimally to observed data
4. Most efficient group sequential tests
Adapting to nuisance parameters
Adapting to unpredictable information
3. Error-spending tests
2. Distribution theory, the role of "information"
Adapting to observed data
1. Interim monitoring of clinical trials
Outline of Presentation

1. Interim monitoring of clinical trials	
It is standard practice to monitor progress of clinical trials for reasons of	
ethics, administration (accrual, compliance) and economics.	
Special methods are needed since multiple looks at accumulating data can	
lead to over-interpretation of interim results	
Methods developed in manufacturing production were first transposed to	
clinical trials in the 1950s.	
Traditional sequential methods assumed continuous monitoring of data,	
whereas it is only practical to analyse a clinical trial on a small number of	
occasions.	
The major step forward was the advent of <i>Group Sequential</i> methods in the 1970s.	

Reject H_0
•
Accent Ho
Z_k Reject H_0
Choose c to give overall type I error rate = α .
if H_0 has not been rejected by analysis $K,$ stop and accept $H_0.$
Stop to reject H_0 at analysis k if $ Z_k > c$,
Use standardised test statistics $Z_k, \ k=1,\ldots,K$.
To test $H_0: \theta = 0$ vs $\theta \neq 0$, where θ represents the treatment difference.
Pocock's repeated significance test (1977)

Types of hypothesis testing problems
Two-sided test:
testing H_0 : $\theta = 0$ against $\theta \neq 0$.
One-sided test:
testing H_0 : $\theta \leq 0$ against $\theta > 0$.
Equivalence tests:
one-sided — to show treatment A is as good as treatment B, within a margin δ (non-inferiority).
two-sided — to show two treatment formulations
are equal within an accepted tolerance.

Types of early stopping

- 1. Stopping to reject H_0 : No treatment difference
- Allows rapid progress from a positive outcome
- Avoids exposing further patients to the inferior treatment
- Appropriate if no further checks are needed on safety or long-term effects.
- 2. Stopping to accept H_0 : No treatment difference
- Stopping "for futility" or "abandoning a lost cause"
- Saves time and effort when a study is unlikely to lead

to a positive conclusion.

One-sided tests
To look for superiority of a new treatment, test
$H_0 \colon \theta \leq 0 \text{against} \theta > 0.$
If the new treatment if not effective, it is not appropriate to keep sampling to find out whether $\theta=0$ or $\theta<0$.
Specify type I error rate and power
$Pr\{ ext{Reject} H_0 heta = 0\} = lpha,$
$Pr\{ ext{Reject} H_0 heta = \delta\} = 1 - eta.$
A sequential test can reduce expected sample size under $\theta = 0, \ \theta = \delta,$ and at effect sizes in between.

ശ

2. Joint distribution of parameter estimates
Let $\hat{\theta}_k$ be the estimate of the parameter of interest, $\theta,$ based on data at analysis $k.$
The information for $ heta$ at analysis k is
$\mathcal{I}_k \ = \ rac{1}{Var(\widehat{ heta}_k)} , \ \ k = 1, \dots, K.$
Canonical joint distribution of $\ \widehat{ heta}_1,\ldots,\widehat{ heta}_K$
In very many situations, $\widehat{ heta}_1,\ldots,\widehat{ heta}_K$ are approximately multivariate
normal,
$\widehat{ heta}_k \sim N(heta, \{\mathcal{I}_k\}^{-1}), k = 1, \dots, K,$
and $Cov(\widehat{ heta}_{k_1},\widehat{ heta}_{k_2}) = Var(\widehat{ heta}_{k_2}) = \{\mathcal{I}_{k_2}\}^{-1}$ for $k_1 < k_2$.

$$\label{eq:constraint} \begin{array}{l} \textbf{Canonical joint distribution of z-statistics} \\ \textbf{In a test of } H_0: \theta = 0, \text{ the standardised statistic at analysis k is} \\ & Z_k = \frac{\widehat{\theta}_k}{\sqrt{\forall ar(\widehat{\theta}_k)}} = \widehat{\theta}_k \sqrt{\mathcal{I}_k}. \\ & For this, \\ & (Z_1, \ldots, Z_K) \text{ is multivariate normal,} \\ & Z_k \sim N(\theta \sqrt{\mathcal{I}_k}, 1), \quad k = 1, \ldots, K, \\ & \mathsf{Cov}(Z_{k_1}, Z_{k_2}) = \sqrt{\mathcal{I}_{k_1}/\mathcal{I}_{k_2}} \quad \text{for $k_1 < k_2$.} \end{array}$$

$$\label{eq:canonical joint distribution of score statistics} \end{tabular}$$
 The score statistics $S_k = Z_k \sqrt{\mathcal{I}_k}$, are also multivariate normal with $S_k \sim N(\theta \, \mathcal{I}_k, \, \mathcal{I}_k), \ k = 1, \dots, K.$ The score statistics possess the "independent increments" property, $\operatorname{Cov}(S_k - S_{k-1}, \, S_{k'} - S_{k'-1}) = 0 \ \text{ for } k \neq k'.$ It can be helpful to know the score statistics behave as Brownian motion with drift θ observed at times $\mathcal{I}_1, \dots, \mathcal{I}_K.$

Sequential distribution theory
The preceding results for the joint distribution of $\widehat{ heta}_1,\ldots,\widehat{ heta}_K$ can be
demonstrated directly for:
heta a single normal mean,
$ heta=\mu_A-\mu_B,$ the effect size in a comparison of two normal means.
The results also apply when $ heta$ is a parameter in:
a general normal linear,
a general model fitted by maximum likelihood (large sample theory).
So, we have the theory to support general comparisons, including
adjustment for covariates if required.

Maximum information design
• Specify the error spending function $f(\mathcal{I})$
• For each $k = 1, 2,$, set the boundary at analysis k to give
Precise rules are available to protect the type I error rate if the information
sequence over-runs the target \mathcal{I}_{max} , or if the study ends without reaching
reaching this target. See slides 20 and 21 or Chapter 7 of Jennison &
Turnbull (2000).

Implementing error spending	tests
Analysis 1:	Z_k
Observed information ${\mathcal I}_1.$	•
Reject H_0 if $ Z_1 > c_1$ where	\mathcal{I}_1 k
$Pr_{\theta=0}\{ Z_1 > c_1\} = f(\mathcal{I}_1).$	•
Analysis 2:	Z1.
Cumulative information \mathcal{I}_2 .	•
Reject H_0 if $ Z_2 > c_2$ where	$\mathcal{I}_1 \mathcal{I}_2 \overset{k}{\longrightarrow} \overset{k}{\longrightarrow}$
$Pr_{\theta=0}\{ Z_1 < c_1, Z_2 > c_2\} = f(\mathcal{I}_2) - f(\mathcal{I}_1).$	•
etc.	
Adapting to unpredictable inform	nation

Implementing one-sided error spending tests

- 1. Computation of (a_k, b_k) does **not** depend on future information levels, $\mathcal{I}_{k+1}, \mathcal{I}_{k+2}, \ldots$
- 2. A "maximum information design" continues until a boundary is crossed or an analysis with $\mathcal{I}_k \geq \mathcal{I}_{\max}$ is reached.
- 3. The value of \mathcal{I}_{max} is chosen so that boundaries converge at the final analysis under a typical sequence of information levels, e.g.,

$$\mathcal{I}_k = (k/K)\mathcal{I}_{\max}, \quad k = 1, \dots, K$$

For type I error rate α and power $1 - \beta$ at $\theta = \delta$,

$$\mathcal{I}_{\max} = R \frac{(z_{\alpha} + z_{\beta})^2}{\delta^2}$$

where R is the "inflation factor" for this design.

Error-spending designs and nuisance parameters
(1) Survival data, log-rank statistics
Information depends on the number of observed failures,
$\mathcal{I}_k pprox rac{1}{4} egin{array}{c} Number ext{ of failures by analysis } k \ \end{pmatrix}.$
With fixed dates for analyses, continue until information reaches $\mathcal{I}_{max}.$
\mathcal{I}_{max}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
If the overall failure rate is low or censoring is high, one may decide to
extend the patient accrual period.
Changes affecting $\{\mathcal{I}_1,\mathcal{I}_2,\dots\}$ can be based on observed information;
they should not be influenced by the estimated treatment effect.

to provide this level of information depends on the unknown variance σ^2 . information $\mathcal{I}_{\max} = R \mathcal{I}_f$. A group sequential design with inflation factor $\,R\,$ needs maximum and power 1-eta at $heta=\delta$ requires information In a two treatment comparison, a fixed sample test with type I error rate $\,lpha$ (2) Normal responses with unknown variance The maximum required information is fixed — but the sample size needed Error-spending designs and nuisance parameters Adapting to nuisance parameters $\mathcal{I}_{f} =$ $(z_{\alpha}+z_{\beta})^2$ δ^2

(estimated) information.
At interim analyses, apply the error spending boundary based on observed
N.B., state \mathcal{I}_{max} in the protocol, not initial targets for n_A and n_B .
$\left\{ \left(rac{1}{n_A} + rac{1}{n_B} ight) \hat{\sigma}^2 ight\}^{-1} = \mathcal{I}_{ ext{max}}.$
the final analysis has
As updated estimates of σ^2 are obtained: Adjust future group sizes so
equal to an initial estimate, σ_0^2 .
Initially: Set maximum sample sizes to give information $\mathcal{I}_{ ext{max}}$ if σ^2 is
$\mathcal{I} \ = \ \left\{ \left(rac{1}{n_A} + rac{1}{n_B} ight) \sigma^2 ight\}^{-1}.$
The information from n_A observations on treatment A and n_B on B is
Adjusting sample size as variance is estimated

4. Optimal group sequential tests
"Optimal" designs may be used directly — or they can serve as a
benchmark for judging efficiency of designs with other desirable features.
Optimising a group sequential test:
Formulate the testing problem:
fix type I error rate $lpha$ and power $1-eta$ at $ heta=\delta,$
fix number of analyses, K ,
fix maximum sample size (information), if desired.
Find the design which minimises average sample size (information) at

backwards induction (dynamic programming)
backwards induction (dynamic programming).
costs for a wrong decision. Write a program to solve this Bayes problem by
Create a Bayes decision problem with a prior on $ heta$, sampling costs and
Derivation of optimal group sequential tests

				لا د		
	a point.	⁴ up to	R		$E(\mathcal{T})$	
iing returns,	with diminish	× but v		as	Note: $E(\mathcal{I})$	
52.0 at $R=1.6$	53.3	54.6	57.4	60.5	67.6	20
54.3 at R =1.6	55.2	56.3	59.0	62.1	69.1	10
58.7 at R =1.4	59.0	59.8	62.2	65.2	72.2	ĊJ
72.7 at R =1.15	75.3	73.2	72.8	74.5	80.9	Ν
Minimum over R	1.3	R 1.2		1.05	1.01	K
ntage of ${\cal I}_{fix}$	′2, as a perce	$\mathbb{P}_{\delta}(\mathcal{I})\}/$	$\mathcal{I}) + E$	of $\{E_0($	inimum values c	M
	$\mathbb{E}_{\delta}(\mathcal{I})\}/2.$	$\mathcal{I}) + I$	$\{E_0($	nimising	oup sizes, mir	equal gr
$= R \mathcal{I}_{fix}$,	'ses, \mathcal{I}_{max} :	K analy).05, <i>I</i>	$\beta = 0$	ed tests, $\alpha =$	One-sid
ests	f optimal te	rties o	prope	ole of	Exam	

$\frac{1-e^{-\gamma - k/2max}}{1-e^{-\gamma}}.$
Error spent is proportional to $-2\pi T$. π
Error spending, γ -family (Hwang et al, 1994)
Error spent is proportional to $\mathcal{I}_k^ ho,\; ho$ determines the inflation factor $R.$
Error spending, $ ho$ -family
Parametric family indexed by Δ , boundaries for S_k involve \mathcal{I}_k^{Δ} , each Δ implies an "inflation factor" R such that $\mathcal{I}_{max} = R \mathcal{I}_{fix}$.
Pampallona & Tsiatis
One-sided tests:
Assessing families of group sequential tests

Squeezing a little extra efficiency
Schmitz (1993) proposed group sequential tests in which group sizes are
chosen adaptively:
Initially, fix \mathcal{I}_1 ,
observe $S_1 \sim N(heta \mathcal{I}_1, \mathcal{I}_1),$
then choose \mathcal{I}_2 as a function of $S_1,$ observe S_2 where
$S_2 - S_1 \sim N(\theta(\mathcal{I}_2 - \mathcal{I}_1), (\mathcal{I}_2 - \mathcal{I}_1)),$
and so forth.
Specify sampling rule and stopping rule to achieve desired overall type I
error rate and power.

problems.
Again, optimal designs can be found by solving related Bayes decision
Maximum number of analyses $= K$.
Maximum sample information $= 1.2 imes$ fixed sample information.
Constraints:
where $f(heta)$ is the density of a $N(\delta, \ \delta^2/4)$ distribution.
$\int E_{\theta}(N)f(\theta) d\theta,$
Aim for low values of
and power $1 - \beta = 0.9$ at $\theta = \delta$.
To test $H_0: heta=0$ versus $H_1: heta>0$ with type I error rate $lpha=0.025$
Examples of "Schmitz" designs

1 data	r-optimally to observec	Adapting super	
		gains are slight.	efficiency
ocedure and the	' makes for a complex pr	roup sizes adaptively	Varying g
57.5	57.2	55.9	10
58.3	58.0	56.6	8
59.8	59.4	58.0	0
62.7	62.4	61.2	4
66.1	65.6	64.8	ω
74.8	73.2	72.5	Ν
Optimal non-adaptive, equal group sizes	Optimal non-adaptive, optimised group sizes	Optimal adaptive design (Schmitz)	K
mple information.	ercentage of the fixed sa	iverage $E(\mathcal{I})$ as a pe	Optimal a
v	of "Schmitz" design	Examples	

ယ္သ

<u>о</u>
Re
č
en
ta
da
p t
Ĭ
n
net
the
ğ
S

"Adaptivity" \neq "Flexibility"

- very much like "Schmitz" designs. Hunsberger (1995), Li et al. (2002), Hartung and Knapp (2003) are interim data is pre-determined: particular designs of Proschan and Pre-planned extensions. The way the design changes in response to
- stages: Bauer (1989), Bauer & Köhne (1994). Partially pre-planned. The time of the first interim analysis is pre-specified, as is the method for combining results from different
- any re-design: Fisher (1998), Cui et al. (1999), Denne (2001) or Müller different stages is implicit in the original design and carried over into Re-design may be unplanned. The method of combining results from & Schäfer (2001).

Bauer & Köhne's two-stage scheme

 Investigators decide at the design stage to split the trial into two parts.

 Each part yields a one-sided P-value and these are combined.

 e Run part 1 as planned. This gives

$$P_1 ~ U(0, 1)$$
 under H_0 .

 • Make design changes.
 $P_2 ~ U(0, 1)$ under H_0 .

 • Run part 2 with these changes, giving
 $P_2 ~ U(0, 1)$ under H_0 .

 conditionally on P_1 and other part 1 information.

 • Combine P_1 and P_2 by Fisher's combination test:

 $-\log(P_1 P_2) ~ \frac{1}{2} \chi_4^2$ under H_0 .

B & K: Major design changes before part 2
With major changes, the two parts are rather like separate studies in a
drug development process, such as:
Phase IIb Compare several doses and select the best.
Use a rapidly available endpoint (e.g., tumour response).
Phase III Compare selected dose against control.
Use a long-term endpoint (e.g., survival).
Applying Fisher's combination test for P_1 and P_2 gives a meta-analysis of the two stages with a pre-specified rule.
Note: Each stage has its own null hypothesis and the overall H_0 is the
intersection of these.

B & K: Minor design changes before stage 2
With only minor changes, the form of responses in stage 2 stays close to
the original plan.
Bauer & Köhne's method provides a way to handle this.
Or, an error spending test could be used:
Slight departures from the original design will perturb the observed
information levels, which can be handled in an error spending design.
After a change of treatment definition, one can stratify with respect to
patients admitted before and after the change. As long as the overall score
statistic can be embedded in a Brownian motion, one can use an error
spending test with a maximum information design.

B & K: Nuisance parameters
Example. Normal response with unknown variance, σ^2 .
Aiming for type I error rate $lpha$ and power $1-eta$ at $ heta=\delta$, the necessary
sample size depends on σ^2 .
One can choose the second stage's sample size to meet this power
requirement assuming variance is equal to s_1^2 , the estimate from stage 1.
P_1 and P_2 from t -tests are independent $U(0,1)$ under H_0 — exactly.
Other methods:
(a) Many "internal pilot" designs are available.
(b) Error spending designs can use estimated information (from s^2).
(c) The two-stage design of Stein (1945) attains both type I error and
power precisely!

External factors or internal, secondary information
Bauer and Köhne design
At an interim stage suppose, for reasons not concerning the primary $\tilde{\tilde{x}}$
endpoint, investigators wish to achieve power $1-\beta$ at $\theta=\tilde{\delta}$ rather than $\theta=\delta$ ($\tilde{\delta}<\delta$).
If this happens after part 1 of a B & K design, the part 2 sample size can be increased, e.q., to give conditional power $1-eta$ at $ heta= ilde{\delta}.$
If no re-design was planned
Recent work shows similar re-design, maintaining the type I error rate, is possible within a fixed sample study or a group sequential design by
preserving conditional type I error probability under $ heta=0$
— see Denne (2001) or Müller & Schäfer (2001).

Responding to $\hat{ heta}$, an estimate of the primary endpoint
Motivation may be:
 to rescue an under-powered study,
 a "wait and see" approach to choosing a study's power requirement,
 trying to be efficient.
Many methods have been proposed to do this, often by fixing conditional power under $\theta=\widehat{\theta}.$
If re-design is unplanned, the conditional type I error rate approach is available.
It is good to be able to rescue a poorly designed study.
But, group sequential tests already base the decision for early stopping on $\widehat{ heta}$ — and optimal GSTs do this optimally!

The variance spending method
L. Fisher (1998), Cui et al. (1999),
For a study with two parts, combine P_1 and P_2 by the weighted inverse
normal method (Mosteller and Bush, 1954):
$Z_1 = \Phi^{-1}(1 - P_1),$
$Z_2 = \Phi^{-1}(1 - P_2),$
combined in the overall statistic
$Z = w_1 Z_1 + w_2 Z_2$
where w_1 and w_2 are pre-specified with $w_1^2 + w_2^2 = 1$.
Then $Z\sim N(0,1)$ under $H_0.$

Variance spending method — normal observations	
Suppose observations are independent, normally distributed.	
The overall statistic $Z=w_1Z_1+w_2Z_2$ is the usual efficient test	
statistic if	
$w_i \propto \sqrt{{ ext{sample size in stage }i}}, i=1, \ 2.$	
But, after flexible, adaptive re-design this is typically not the case.	
In one standard scenario:	
$\widehat{ heta}_1$ at stage 1 is smaller than hoped for,	
second stage sample size is increased to enhance power under $\theta=\widehat{\theta}_1,$	
hence, second stage observations receive lower weight than their fir	с т
stage counterparts.	

6. Example of inefficiency in an adaptive design
Example. A Cui, Hung & Wang (1999) style example.
Scenario.
We wish to design a test with type I error probability $lpha=0.025.$
Investigators are optimistic the effect, $ heta$, could be as high as $\delta^*=20.$
However, effect sizes as low as about $\theta \geq \delta^{**} = 15$ are clinically relevant
and worth detecting (cf the example cited by Cui et al).
First, consider a fixed sample study attaining power 0.9 at $ heta=\delta^*=20.$
We suppose this requires a sample size $n_f=100.$
An adaptive design starts out as a fixed sample test with $n_f=100$
observations, but the data are examined after the first 50 responses to see
if there is a need to "adapt".

Cui et al. adaptive design
Denote the estimated effect based on the first 50 observations by $\widehat{ heta}_1.$
If $\widehat{ heta}_1 < 0.2 \delta^* = 4$, stop the trial for futility, accepting $H_0.$
Otherwise, re-design the remainder of the trial, preserving the conditional type I error rate given $\widehat{ heta}_1$ — thereby maintaining overall type I error rate $lpha$.
Choose the remaining sample size to give conditional power 0.9 if in fact $\theta=\widehat{\theta}_1.$
Then, truncate this additional sample size to the interval (50, 500), so no decrease in sample size is allowed and we keep the total sample size to at
most 550.

A conventional group sequential test
Similar overall power can be obtained by a non-adaptive GST designed to attain power 0.9 when $\theta=14.$
We have compared a power family, error spending test with $ ho=1$:
type I error rate is $\alpha = 0.025$,
taking the first analysis after 68 observations and the second analysis after 225 gives a test meeting the requirement of power 0.9 at $ heta=14.$
This test dominates the Cui et al. adaptive design with respect to both
power and ASN. It also has a much lower maximum sample size — 225 compared to 550.

Conditional power and overall power
It might be argued that only conditional power is important once a study is
under way so overall power is irrelevant once data have been observed.
However:
Overall power integrates over conditional properties in just the right way.
It is overall power that is available at the design stage, when a stopping
rule and sampling rule (even an adaptive one) are chosen.
As the example shows, "chasing conditional power" can be a trap leading
to very large sample sizes when the estimated effect size is low — and,
given the variability of this estimate, the true effect size could well be zero.
To a pharmaceutical company conducting many trials, long term
performance is determined by overall properties, i.e., the power and
average sample size of each study.

Tests — and they can be substantially inferior.
But, they will not improve on the efficiency of "standard" Group Sequential
allow an on-going approach to study design.
support re-sizing to rescue an under-powered study,
facilitate re-sizing for nuisance parameters,
Recently proposed adaptive methods can
to external developments or internal evidence from secondary endpoints.
Methods preserving conditional type I error allow re-design in response
 observed data, i.e., efficient stopping rules.
 nuisance parameters,
 unpredictable information levels,
Error Spending tests using Information Monitoring can adapt to
7. Conclusions

References
Bauer, P. (1989). Multistage testing with adaptive designs (with discussion). <i>Biometrie und Informatik in Medizin und Biologie</i> 20, 130–148.
Bauer, P. and Köhne, K. (1994). Evaluation of experiments with adaptive interim analyses. <i>Biometrics</i> 50 , 1029–1041. Correction <i>Biometrics</i> 52 , (1996), 380.
Chi, G.Y.H. and Liu, Q. (1999). The attractiveness of the concept of a prospectively designed two-stage clinical trial. <i>J. Biopharmaceutical Statistics</i> 9 , 537–547.
Cui, L., Hung, H.M.J. and Wang, S-J. (1999). Modification of sample size in group sequential clinical trials. <i>Biometrics</i> 55, 853–857.
Denne, J.S. (2001). Sample size recalculation using conditional power. Statistics in Medicine 20, 2645–2660.
ICH Topic E9. Note for Guidance on Statistical Principles for Clinical Trials. ICH Technical Coordination, EMEA: London, 1998.
Fisher, L.D. (1998). Self-designing clinical trials. Statistics in Medicine 17, 1551–1562.
Fisher, R.A. (1932). Statistical Methods for Research Workers, 4th Ed., Oliver and Boyd, London.
Hartung, J. and Knapp, G. (2003). A new class of completely self-designing clinical trials. Biometrical Journal 45, 3-19.
Hwang, I.K., Shih, W.J. and DeCani, J.S. (1990). Group sequential designs using a family of type I error probability spending functions. Statist. Med., 9 , 1439–1445.
Jennison, C. and Turnbull, B.W. (1993). Group sequential tests for bivariate response: Interim analyses of clinical trials with both efficacy and safety endpoints. <i>Biometrics</i> 49 , 741–752.
Jennison, C. and Turnbull, B.W. (2000). <i>Group Sequential Methods with Applications to Clinical Trials</i> , Chapman & Hall/CRC, Boca Raton.
Jennison, C. and Turnbull, B.W. (2003). Mid-course sample size modification in clinical trials based on the observed treatment effect. Statistics in Medicine 23, 971–993.

Schmitz, N. (1993). Optimal Sequentially Planned Decision Procedures. Lecture Notes in Statistics, 79, Springer-Verlag: New York.	Proschan, M.A. and Hunsberger, S.A. (1995). Designed extension of studies based on conditional power. Biometrics 51, 1315–1324.	Pocock, S.J. (1977). Group sequential methods in the design and analysis of clinical trials. <i>Biometrika</i> , 64 , 191–199.	Pampallona, S. and Tsiatis, A.A. (1994). Group sequential designs for one-sided and two-sided hypothesis testing with provision for early stopping in favor of the null hypothesis. <i>J. Statist. Planning and Inference</i> , 42 , 19–35.	Müller, H-H. and Schäfer, H. (2001). Adaptive group sequential designs for clinical trials: Combining the advantages of adaptive and of classical group sequential procedures. <i>Biometrics</i> 57, 886–891.	Mehta, C. R. and Tsiatis, A. A. (2001). Flexible sample size considerations using information-based interim monitoring. <i>Drug Information J.</i> 35 , 1095–1112.	Li, G., Shih, W. J., Xie, T. and Lu. J. (2002). A sample size adjustment procedure for clinical trials based on conditional power. <i>Biostatistics</i> 3, 277–287.	 a. Efficient group sequential designs when there are several effect sizes under consideration. b. Adaptive and non-adaptive group sequential tests. c. Meta-analyses and adaptive group sequential designs in the clinical development process. 	Jennison, C. and Turnbull, B.W. (2004a,b,c). Preprints available at http://www.orie.cornell.edu (Click on "Technical Reports", "Faculty Authors", "Turnbull" and finally on "Submit").
---	---	---	--	---	---	--	---	--