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A
daptivity

�

A
daptive

choice
ofteststatistic

as
inform

ation
on

assum
ptions

em
erges;e.g.,scores

in
a

linear
rank

test,logrank
vs

G
ehan

test

�

A
daptive

allocation
to

achieve
balance

w
ithin

strata

�

A
daptive

allocation
to

assign
few

er
patients

to
an

inferior
treatm

ent

�

A
daptivity

to
accruing

inform
ation

on
nuisance

param
eters

�

A
daptivity

to
accruing

inform
ation

on
safety/secondary

endpoints

�

A
daptivity

to
adjustpow

er
based

on
accruing

inform
ation

on
prim

ary

endpoints

�

A
daptivity

to
to

drop
arm

s
in

a
m

ulti-arm
study

based
on

accruing

inform
ation

on
prim

ary
endpoints

�

A
nd

m
ore

....
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O
utline

of
P

resentation

1.
Interim

m
onitoring

ofclinicaltrials

A
dapting

to
observed

data

2.
D

istribution
theory,the

role
of“inform

ation”

3.
E

rror-spending
tests

A
dapting

to
unpredictab

le
inform

ation

A
dapting

to
n

uisance
param

eters

4.
M

ostefficientgroup
sequentialtests

A
dapting

optim
ally

to
observed

data

5.
M

ore
recentadaptive

proposals

6.
E

xam
ple

ofinefficiency
in

an
adaptive

designs

7.
C

onclusions
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1.
Interim

m
onitoring

of
clinical

trials

Itis
standard

practice
to

m
onitor

progress
ofclinicaltrials

for
reasons

of

ethics,adm
inistration

(accrual,com
pliance)

and
econom

ics.

S
pecialm

ethods
are

needed
since

m
ultiple

looks
ataccum

ulating
data

can

lead
to

over-interpretation
ofinterim

results

M
ethods

developed
in

m
anufacturing

production
w

ere
firsttransposed

to

clinicaltrials
in

the
1950s.

Traditionalsequentialm
ethods

assum
ed

continuous
m

onitoring
ofdata,

w
hereas

itis
only

practicalto
analyse

a
clinicaltrialon

a
sm

allnum
ber

of

occasions.

T
he

m
ajor

step
forw

ard
w

as
the

adventofG
roup

S
equential

m
ethods

in

the
1970s.
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P
ococ

k’s
repeated

significance
test

(1977)

To
test�� :���

�
vs�� �� ,w

here�

represents
the

treatm
entdifference.

U
se

standardised
teststatistics�	 ,
 �

������

.

S
top

to
reject��

atanalysis


if� �	���
� ,

if ��

has
notbeen

rejected
by

analysis �

,stop
and

accept �� .
C

hoose�

to
give

overalltype
Ierror

rate
=�

.

��

����
�
�
�
�

�
�
�
�

R
eject��

R
eject ��

A
ccept ��
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Types
of

h
ypothesis

testing
prob

lem
s

Tw
o-sided

test:

testing�� :� �
�

against�� �� .
O

ne-sided
test:

testing �� :�� �

against��
� .

E
quivalence

tests:one-sided
—

to
show

treatm
entA

is
as

good

as
treatm

entB
,w

ithin
a

m
argin�

(non-inferiority).

tw
o-sided

—
to

show
tw

o
treatm

entform
ulations

are
equalw

ithin
an

accepted
tolerance.
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Types
of

early
stopping

1.
S

topping
to

reject�� :
N

o
treatm

entdifference

�

A
llow

s
rapid

progress
from

a
positive

outcom
e

�

A
voids

exposing
further

patients
to

the
inferior

treatm
ent

�

A
ppropriate

ifno
further

checks
are

needed
on

safety

or
long-term

effects.

2.
S

topping
to

accept �� :
N

o
treatm

entdifference

�

S
topping

“for
futility”

or
“abandoning

a
lostcause”

�

S
aves

tim
e

and
effortw

hen
a

study
is

unlikely
to

lead

to
a

positive
conclusion.
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O
ne-sided

tests

To
look

for
superiority

ofa
new

treatm
ent,test

�� :�� �

against��
� .

Ifthe
new

treatm
entifnoteffective,itis

notappropriate
to

keep
sam

pling
to

find
outw

hether� �
�

or� � .
S

pecify
type

Ierror
rate

and
pow

er

!"# R
eject ��� � �

�$ �
�

,

!"# R
eject��� � �

�$ �
�&%
'

.

A
sequentialtestcan

reduce
expected

sam
ple

size
under���

� ,���
� ,

and
ateffectsizes

in
betw

een.
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O
ne-sided

tests

A
typicalboundary

one-sided
testing

boundary:

�(

� )*
�

�
�
�
�

�
�

�
� ++

,,- -
. .

. .

R
eject /0

A
ccept/0

12 S
am

ple
size3

can
be

around
50

to
70%

ofthe
fixed

sam
ple

size

—
adapting

to
data

,stopping
w

hen
a

decision
is

possible.

9



2.
Joint

distrib
ution

of
param

eter
estim

ates

Let 4�	
be

the
estim

ate
ofthe

param
eter

ofinterest,��

based
on

data
at

analysis

.

T
he

inform
ation

for�
atanalysis


is
5	 �

�
V

ar2 4�	3 � 
 �
�� ���

C
anonical

joint
distrib

ution
of 4�6� � 4�7

In
very

m
any

situations, 4�6��� 4�7
are

approxim
ately

m
ultivariate

norm
al,

4�	98
:2 ��# 5	$ ;63 � 
 �
�� � �
�

and

C
ov2 4�	< � 4�	= 3 �

V
ar2 4�	= 3 �

# 5	= $ ;6
for
6  
> 

10



C
anonical

joint
distrib

ution
of?

-statistics

In
a

testof�� :� �
� ,the

standardised
statistic

atanalysis


is

�	 �

4�	V
ar2 4�	3 �

4�	 5	 

For
this,

2 �6� � �73

is
m

ultivariate
norm

al,

�	 8
:2 � 5	� �3 � 
 �
�� � �

,

C
ov2 �	< � �	= 3 �

5	< @ 5	=

for
6  
> .
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C
anonical

joint
distrib

ution
of

score
statistics

T
he

score
statisticsA	 �

�	 5	 ,are
also

m
ultivariate

norm
alw

ith

A	 8
:2 � 5	� 5	3 � 
 �
�� � �

T
he

score
statistics

possess
the

“independentincrem
ents”

property,

C
ov2 A	 %

A	 ;6� A	�B %
A	�B;63 �
�

for
� �
DC

Itcan
be

helpfulto
know

the
score

statistics
behave

as
B

row
nian

m
otion

w
ith

drift�

observed
attim

es 56� � 57
.
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S
equential

distrib
ution

theory

T
he

preceding
results

for
the

jointdistribution
of 4�6� � 4�7

can
be

dem
onstrated

directly
for:

�

a
single

norm
alm

ean,

���
E F %
E G
�

the
effectsize

in
a

com
parison

oftw
o

norm
alm

eans.

T
he

results
also

apply
w

hen�
is

a
param

eter
in:

a
generalnorm

allinear,

a
generalm

odelfitted
by

m
axim

um
likelihood

(large
sam

ple
theory).

S
o,w

e
have

the
theory

to
supportgeneralcom

parisons,including

adjustm
entfor

covariates
ifrequired.13



S
urviv

aldata

T
he

canonicaljointdistributions
also

arise
for:

param
eter

estim
ates

in
C

ox’s
proportionalhazards

regression
m

odel

a
sequence

oflog-rank
statistics

(score
statistics)

for
com

paring
tw

o

survivalcurves

—
and

toH -statistics
form

ed
from

these.

For
survivaldata,observed

inform
ation

is
roughly

proportionalto
the

num
ber

offailures
seen.

S
pecialtypes

ofgroup
sequentialtestare

needed
to

handle
unpredictable

and
unevenly

spaced
inform

ation
levels.

14



3.
E

rror
spending

tests

Lan
&

D
eM

ets
(B

iom
etrika,1983)

presented
tw

o-sided
tests

w
hich

“spend”

type
Ierror

probability
as

a
function

ofobserved
inform

ation.

T
he

error
spending

function,I2 53 ,gives
the

type
Ierror

probability
to

be

spentup
to

the
currentanalysis

�J*

JKL M

�
NO JPQ

R RTS S
U UWV V

V V
U UWS S

R R

15



M
axim

um
inform

ation
design

�

S
pecify

the
error

spending
functionI2 53

�

For
each
 �

� ,2,
,setthe

boundary
atanalysis


to
give

cum
ulative

type
Ierror

probabilityI2 5	3 .

�

A
ccept ��

if 5XY Z
is

reached
w

ithoutrejecting �� .
P

recise
rules

are
available

to
protectthe

type
Ierror

rate
ifthe

inform
ation

sequence
over-runs

the
target5XY Z

,or
ifthe

study
ends

w
ithoutreaching

reaching
this

target.
S

ee
slides

20
and

21
or

C
hapter

7
ofJennison

&

Turnbull(2000).
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Im
plem

enting
error

spending
tests

A
nalysis

1:

O
bserved

inform
ation56 .

R
eject ��

if� �6���
�6

w
here

!"[ \�#� �6���
�6$ �
I2 563 

�
]^

�

� ��
��

A
nalysis

2:

C
um

ulative
inform

ation 5> .
R

eject��

if� �>���
�>

w
here

!"[ \�#� �6�  �6�� �>� � �>$ �
I2 5>3 %
I2 563 

�
]^ ]_
�

� ��
�

�
�

�

etc.

A
dapting

to
unpredictab

le
inform

ation

17



O
ne-sided

error
spending

tests

D
efineI2 53

and`2 53

for
spending

type
Iand

type
IIerror

probabilities.

�J
JKL M

�
NO JPQR R Uba a

a a
U R R

�J
JKL M

�
cO JPdR R Uba a

a a
U R R

A
tanalysis


,setboundary
values2fe	�hg	3

so
that

!"[ \�# R
eject��

by
analysis
$ �

I2 5	3 �

!"[ \i# A
ccept��

by
analysis
$ �

`2 5	3 
P

ow
er

fam
ily

oferror
spending

tests:I2 53

and`2 53fj
2 5@ 5XY Z3bk

.

18



Im
plem

enting
one-sided

error
spending

tests

1.
C

om
putation

of2fe	�hg	3

does
not

depend
on

future
inform

ation

levels,5	l 6� 5	l >� 

.

2.
A

“m
axim

um
inform

ation
design”

continues
untila

boundary
is

crossed

or
an

analysis
w

ith 5	 m
5XY Z

is
reached.

3.
T

he
value

of5XY Z

is
chosen

so
thatboundaries

converge
atthe

final

analysis
under

a
typicalsequence

ofinform
ation

levels,e.g.,

5	 �
2 
@ �
3 5XY Z� 
 �
�� � �

For
type

Ierror
rate�

and
pow

er�&%
'

at���
� ,

5XY Z �
n 2 Ho p

Hq 3 >
� >
�
w

heren

is
the

“inflation
factor”

for
this

design.

19



O
ver-running

If57 �
5XY Z

,solving
fore7

andg7

is
liable

to
givee7 � g7

.

�(

� )*
�

�
�
�
�rs tvus

�
�

�
� ++

,,- -
- -

- -. . . . . . . .

R
eject/0

A
ccept/0

K
eepingg7

as
calculated

guarantees
type

Ierror
probability

ofexactly�

.

S
o,reducee7

tog7

—
and

gain
extra

pow
er.

O
ver-running

m
ay

also
occur

if57 �
5XY Z

butthe
inform

ation
levels

deviate
from

the
equally

spaced
values

(say)
used

in
choosing 5XY Z

.

20



U
nder-running

Ifa
finalinform

ation
level 57  5XY Z

is
im

posed,solving
fore7

and

g7

is
liable

to
givee7  g7

.

�(

� )*
�

�
�
�
� rstus

�
�

�
� ++

,,- -
. .

w w . . . . . . . .
R

eject /0
A

ccept/0
A

gain,w
ithg7

as
calculated,the

type
Ierror

probability
is

exactly�

.

T
his

tim
e,increasee7

tog7

—
attained

pow
er

w
illbe

justbelow � %
'

.

21



E
rror-spending

designs
and

n
uisance

param
eters

(1)
S

urviv
aldata,

log-rank
statistics

Inform
ation

depends
on

the
num

ber
ofobserved

failures,
5	yx

�z # N
um

ber
offailures

by
analysis
$ 

W
ith

fixed
dates

for
analyses,continue

untilinform
ation

reaches 5XY Z

.

�

{J|
{J}

{J~
{J�
{J�
{J�

J���
Inform

ation

Ifthe
overallfailure

rate
is

low
or

censoring
is

high,one
m

ay
decide

to

extend
the

patientaccrualperiod.

C
hanges

affecting# 56� 5>��$

can
be

based
on

observed
inform

ation;

they
should

not
be

influenced
by

the
estim

ated
treatm

enteffect.

22



E
rror-spending

designs
and

n
uisance

param
eters

(2)
N

orm
al

responses
w

ith
unkno

w
n

variance

In
a

tw
o

treatm
entcom

parison,a
fixed

sam
ple

testw
ith

type
Ierror

rate�

and
pow

er� %
'

at� �
�

requires
inform

ation

5� �
2 Ho p
Hq 3 >

� >


A
group

sequentialdesign
w

ith
inflation

factorn

needs
m

axim
um

inform
ation5XY Z �

n 5� .
T

he
m

axim
um

required
inform

ation
is

fixed
—

butthe
sam

ple
size

needed

to
provide

this
levelofinform

ation
depends

on
the

unknow
n

variance� >.

A
dapting

to
n

uisance
param

eters

23



A
djusting

sam
ple

siz
e

as
variance

is
estim

ated

T
he

inform
ation

from�F

observations
on

treatm
entA

and�G

on
B

is

5 �

��F p
��G

� > ;6

Initially:
S

etm
axim

um
sam

ple
sizes

to
give

inform
ation 5XY Z

if� >

is

equalto
an

initialestim
ate,� >� .

A
s

updated
estim

ates
of� >

are
obtained:

A
djustfuture

group
sizes

so

the
finalanalysis

has

��F p
��G
�� > ;6�

5XY Z 
N

.B
.,state5���

in
the

protocol,notinitialtargets
for�F

and�G

.

A
tinterim

analyses,apply
the

error
spending

boundary
based

on
observed

(estim
ated)

inform
ation.

24



4.
O

ptim
al

group
sequential

tests

“O
ptim

al”
designs

m
ay

be
used

directly
—

or
they

can
serve

as
a

benchm
ark

for
judging

efficiency
ofdesigns

w
ith

other
desirable

features.

O
ptim

ising
a

group
sequentialtest:

Form
ulate

the
testing

problem
:

fix
type

Ierror
rate�

and
pow

er� %
'

at���
� ,

fix
num

ber
ofanalyses,�

,

fix
m

axim
um

sam
ple

size
(inform

ation),ifdesired.

F
ind

the
design

w
hich

m
inim

ises
average

sam
ple

size
(inform

ation)
at

one
particular�

or
averaged

over
several�

s.

25



D
eriv

ation
of

optim
al

group
sequential

tests

C
reate

a
B

ayes
decision

problem
w

ith
a

prior
on� ,sam

pling
costs

and

costs
for

a
w

rong
decision.

W
rite

a
program

to
solve

this
B

ayes
problem

by

backw
ards

induction
(dynam

ic
program

m
ing).

S
earch

for
a

setofcosts
such

thatthe
B

ayes
testhas

the
desired

frequentistproperties:
type

Ierror
rate�

and
pow

er � %
'

at���
� .

T
his

is
essentially

a
Lagrangian

m
ethod

for
solving

a
constrained

optim
isation

problem
—

the
key

is
thatthe

unconstrained
B

ayes
problem

can
be

solved
accurately

and
quickly.26



E
xam

ple
of

properties
of

optim
al

tests

O
ne-sided

tests,� �
' �
� ��

,�

analyses,5��� �
n 5����

,

equalgroup
sizes,m

inim
ising# 1�2 53 p

1i2 53$@��

.

M
inim

um
values

of���0O JP�� ��O JP����

,as
a

percentage
ofJ����

�

M
inim

um

�

1.01
1.05

1.1
1.2

1.3
over�

2
80.9

74.5
72.8

73.2
75.3

72.7
at�

=
1.15

5
72.2

65.2
62.2

59.8
59.0

58.7
at�

=
1.4

10
69.1

62.1
59.0

56.3
55.2

54.3
at�

=
1.6

20
67.6

60.5
57.4

54.6
53.3

52.0
at�

=
1.6

N
ote:12 53

as�

butw
ith

dim
inishing

returns,

12 53

asn

up
to

a
point.

27



A
ssessing

fam
ilies

of
group

sequential
tests

O
ne-sided

tests:

P
am

pallona
&

T
siatis

P
aram

etric
fam

ily
indexed

by�
,boundaries

forA	

involve5 �	

,

each �

im
plies

an
“inflation

factor”n

such
that 5��� �

n 5���� 

E
rror

spending,¡

-fam
ily

E
rror

spentis
proportionalto5 k	 �¡

determ
ines

the
inflation

factorn

.

E
rror

spending,¢

-fam
ily

(H
w

ang
etal,1994)

E
rror

spentis
proportionalto� %

£ ;¤�¥�¦ ¥§u¨

�&%
£ ;¤
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F
am

ilies
of

tests

Tests
w

ith� �
�� ,� �
� ��

,� %
' �
� © .

� �0O JP�� ��O JP����

as
a

percentage
ofJ����

1.0
1.1

1.2
1.3

1.4

60 65 70

PSfrag
replacem

ents

optim
al

ª

fam
ily

«

fam
ily

¬ fam
ily

12


B

oth
error

spending
fam

ilies
are

highly
efficientbutP

am
pallona

&
T

siatis

tests
are

sub-optim
al.

A
dapting

optim
ally

to
observed

data

29



S
queezing

a
little

extra
efficienc

y

S
chm

itz
(1993)

proposed
group

sequentialtests
in

w
hich

group
sizes

are

chosen
adaptively:

Initially,fix56 ,
observeA6 8

:2 � 56� 563 ,
then

choose5>

as
a

function
ofA6�

observeA>

w
here

A> %
A6 8
:2 �2 5> %
563 �2 5> %
5633 ,

and
so

forth.

S
pecify

sam
pling

rule
and

stopping
rule

to
achieve

desired
overall

type
I

error
rate

and
pow

er.

30



E
xam

ples
of

“S
c

hm
itz”

designs

To
test�� :���

�
versus�6 :��

�

w
ith

type
Ierror

rate� �
� � ��

and
pow

er � %
' �
� ©

at���
� .

A
im

for
low

values
of

1[2 :3 I2 �3f®��

w
hereI2 �3

is
the

density
ofa:2 �� � >@ z3

distribution.

C
onstraints:

M
axim

um
sam

ple
inform

ation �
��
¯

fixed
sam

ple
inform

ation.

M
axim

um
num

ber
ofanalyses �

�

.

A
gain,optim

aldesigns
can

be
found

by
solving

related
B

ayes
decision

problem
s.

31



E
xam

ples
of

“S
c

hm
itz”

designs

O
ptim

alaverage12 53

as
a

percentage
ofthe

fixed
sam

ple
inform

ation.

O
ptim

al
O

ptim
al

O
ptim

al
adaptive

non-adaptive,
non-adaptive,

�

design
optim

ised
equalgroup

(S
chm

itz)
group

sizes
sizes

2
72.5

73.2
74.8

3
64.8

65.6
66.1

4
61.2

62.4
62.7

6
58.0

59.4
59.8

8
56.6

58.0
58.3

10
55.9

57.2
57.5

V
arying

group
sizes

adaptively
m

akes
for

a
com

plex
procedure

and
the

efficiency
gains

are
slight.

A
dapting

super-optim
ally

to
observed

data
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E
xam

ples
of

“S
c

hm
itz”

designs

Tests
of�� :� �

�
versus�6 :��

�

w
ith

type
Ierror

rate� �
� � ��

,

pow
er �&%

' �
� °

at���
� ,and � ��

analyses.

D
esigns

m
inim

ise
average

A
S

N# 1[ \�2 53 p
1[ \i2 53 p
1[ \>i2 53$@²±

.

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

50 55 60 65 70 75

R

Average ASN

A
: ρ−

fam
ily test, equal group sizes

B
: ρ−

fam
ily test, optim

al 1st group

C
: O

ptim
al non−

adaptive test

D
: O

ptim
al adaptive test

K
 =

 2
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E
xam

ples
of

“S
c

hm
itz”

designs

Tests
of�� :� �

�
versus�6 :��

�

w
ith

type
Ierror

rate� �
� � ��

,

pow
er �&%

' �
� °

at���
� ,and � �
�

analyses.

D
esigns

m
inim

ise
average

A
S

N# 1[ \�2 53 p
1[ \i2 53 p
1[ \>i2 53$@²±

.

1
1.2

1.4
1.6

1.8
2

30 35 40 45 50 55 60 65

R

Average ASN

A
: ρ−

fam
ily test, equal group sizes

B
: ρ−

fam
ily test, optim

al 1st group

C
: O

ptim
al non−

adaptive test

D
: O

ptim
al adaptive test

K
 =

 5
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5.
R

ecent
adaptive

m
ethods

“A
daptivity”

� �

“F
le

xibility”

�

P
re-planned

extensions.
T

he
w

ay
the

design
changes

in
response

to

interim
data

is
pre-determ

ined:
particular

designs
ofP

roschan
and

H
unsberger

(1995),Lietal.(2002),H
artung

and
K

napp
(2003)

are

very
m

uch
like

“S
chm

itz”
designs.

�

P
artially

pre-planned.
T

he
tim

e
ofthe

firstinterim
analysis

is

pre-specified,as
is

the
m

ethod
for

com
bining

results
from

different

stages:
B

auer
(1989),B

auer
&

K
öhne

(1994).

�

R
e-design

m
ay

be
unplanned.

T
he

m
ethod

ofcom
bining

results
from

differentstages
is

im
plicitin

the
originaldesign

and
carried

over
into

any
re-design:

F
isher

(1998),C
uietal.(1999),D

enne
(2001)

or
M

üller

&
S

chäfer
(2001).
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B
auer

(1989)
and

B
auer

&
K

öhne
(1994)

...

...proposed
m

id-course
design

changes
to

one
or

m
ore

of

Treatm
entdefinition

C
hoice

ofprim
ary

response
variable

S
am

ple
size:

—
in

order
to

m
aintain

pow
er

under
an

estim
ated

nuisance
param

eter

—
to

change
pow

er
in

response
to

external

inform
ation

—
to

change
pow

er
for

internalreasons

a)
secondary

endpoint,e.g.,safety

b)
prim

ary
endpoint,i.e., �� .
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B
auer

&
K

öhne’s
tw

o-sta
g

e
sc

hem
e

Investigators
decide

atthe
design

stage
to

splitthe
trialinto

tw
o

parts.

E
ach

partyields
a

one-sided
P

-value
and

these
are

com
bined.

�

R
un

part1
as

planned.
T

his
gives
!6 8
³2 �� �3

under�� .

�

M
ake

design
changes.

�

R
un

part2
w

ith
these

changes,giving

!> 8
³2 �� �3

under �� ,
conditionally

on!6

and
other

part1
inform

ation.

�

C
om

bine !6

and !>

by
F

isher’s
com

bination
test:

%
´µ¶2 !6 !>3 8

��
· >¸

under�� .
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B
&

K
:

M
ajor

design
chang

es
before

part
2

W
ith

m
ajor

changes,the
tw

o
parts

are
rather

like
separate

studies
in

a

drug
developm

entprocess,such
as:

P
hase

IIb
C

om
pare

severaldoses
and

selectthe
best.

U
se

a
rapidly

available
endpoint(e.g.,tum

our
response).

P
hase

III
C

om
pare

selected
dose

againstcontrol.

U
se

a
long-term

endpoint(e.g.,survival).

A
pplying

F
isher’s

com
bination

testfor!6
and!>

gives
a

m
eta-analysis

of

the
tw

o
stages

w
ith

a
pre-specified

rule.

N
ote:

E
ach

stage
has

its
ow

n
nullhypothesis

and
the

overall ��

is
the

intersection
ofthese.
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B
&

K
:

M
inor

design
chang

es
before

sta
g

e
2

W
ith

only
m

inor
changes,the

form
ofresponses

in
stage

2
stays

close
to

the
originalplan.

B
auer

&
K

öhne’s
m

ethod
provides

a
w

ay
to

handle
this.

O
r,an

error
spending

test
could

be
used:

S
lightdepartures

from
the

originaldesign
w

illperturb
the

observed

inform
ation

levels,w
hich

can
be

handled
in

an
error

spending
design.

A
fter

a
change

oftreatm
entdefinition,one

can
stratify

w
ith

respectto

patients
adm

itted
before

and
after

the
change.

A
s

long
as

the
overallscore

statistic
can

be
em

bedded
in

a
B

row
nian

m
otion,one

can
use

an
error

spending
testw

ith
a

m
axim

um
inform

ation
design.
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B
&

K
:

N
uisance

param
eters

E
xam

ple
.

N
orm

al
response

w
ith

unkno
w

n
variance

,� >.

A
im

ing
for

type
Ierror

rate�

and
pow

er�&%
'

at���
� ,the

necessary

sam
ple

size
depends

on� >.

O
ne

can
choose

the
second

stage’s
sam

ple
size

to
m

eetthis
pow

er

requirem
entassum

ing
variance

is
equalto¹ >6 ,the

estim
ate

from
stage

1.

!6

and !>

fromº -tests
are

independent³2 �� �3

under ��

—
exactly.

O
ther

m
ethods:

(a)
M

any
“internalpilot”

designs
are

available.

(b)
E

rror
spending

designs
can

use
estim

ated
inform

ation
(from¹ >).

(c)
T

he
tw

o-stage
design

ofS
tein

(1945)
attains

both
type

Ierror
and

pow
er

precisely!
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E
xternal

factors
or

internal,
secondar

y
inform

ation

B
auer

and
K

öhne
design

A
tan

interim
stage

suppose,for
reasons

notconcerning
the

prim
ary

endpoint,investigators
w

ish
to

achieve
pow

er� %
'

at���
»�

rather

than���
�

( »� � ).
Ifthis

happens
after

part1
ofa

B
&

K
design,the

part2
sam

ple
size

can

be
increased,e.g.,to

give
conditionalpow

er � %
'

at���
»� .

If
no

re-design
w

as
planned

R
ecentw

ork
show

s
sim

ilar
re-design,m

aintaining
the

type
Ierror

rate,is

possible
w

ithin
a

fixed
sam

ple
study

or
a

group
sequentialdesign

by

preserving
conditionaltype

Ierror
probability

under� �
�

—
see

D
enne

(2001)
or

M
üller

&
S

chäfer
(2001).
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R
esponding

to 4¼

,an
estim

ate
of

the
prim

ar
y

endpoint

M
otivation

m
ay

be:

�

to
rescue

an
under-pow

ered
study,

�

a
“w

aitand
see”

approach
to

choosing
a

study’s
pow

er
requirem

ent,

�

trying
to

be
efficient.

M
any

m
ethods

have
been

proposed
to

do
this,often

by
fixing

conditional

pow
er

under� �
4� .

Ifre-design
is

unplanned,the
conditionaltype

Ierror
rate

approach
is

available.

Itis
good

to
be

able
to

rescue
a

poorly
designed

study.

B
ut,group

sequentialtests
already

base
the

decision
for

early

stopping
on 4�

—
and

optim
alG

S
T

s
do

this
optim

ally!
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T
he

variance
spending

m
ethod

L.F
isher

(1998),C
uietal.(1999),...

For
a

study
w

ith
tw

o
parts,com

bine !6

and !>

by
the

w
eighted

inverse

norm
alm

ethod
(M

osteller
and

B
ush,1954):

�6 �
½ ;62 � %
!63 �

�> �
½ ;62 � %
!>3 �

com
bined

in
the

overallstatistic

� �
¾6 �6 p
¾> �>

w
here¾6

and¾>

are
pre-specified

w
ith¾ >6 p

¾ >> �
� .

T
hen� 8

:2 �� �3

under�� .
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V
ariance

spending
m

ethod
—

norm
al

observations

S
uppose

observations
are

independent,norm
ally

distributed.

T
he

overallstatistic� �
¾6 �6 p
¾> �>

is
the

usualefficienttest

statistic
if

¾� j
sam

ple
size

in
stage¿�

¿ �
�� �

B
ut,after

flexible,adaptive
re-design

this
is

typically
notthe

case.

In
one

standard
scenario:

4�6

atstage
1

is
sm

aller
than

hoped
for,

second
stage

sam
ple

size
is

increased
to

enhance
pow

er
under

���
4�6 ,

hence,second
stage

observations
receive

low
er

w
eightthan

their
first

stage
counterparts.
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6.
E

xam
ple

of
inefficienc

y
in

an
adaptive

design

E
xam

ple
.

A
C

ui,H
ung

&
W

ang
(1999)

style
exam

ple.

S
cenario.

W
e

w
ish

to
design

a
testw

ith
type

Ierror
probability� �

� � ��

.

Investigators
are

optim
istic

the
effect,� ,could

be
as

high
as�ÁÀ��

� .
H

ow
ever,effectsizes

as
low

as
about�m

�ÂÀÀ�
��

are
clinically

relevant

and
w

orth
detecting

(cfthe
exam

ple
cited

by
C

uietal).

F
irst,consider

a
fixed

sam
ple

study
attaining

pow
er

0.9
at���

�ÂÀ��
� .

W
e

suppose
this

requires
a

sam
ple

size�� �
��� .

A
n

adaptive
design

starts
outas

a
fixed

sam
ple

testw
ith��Ã�

���

observations,butthe
data

are
exam

ined
after

the
first50

responses
to

see

ifthere
is

a
need

to
“adapt”.
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C
ui

et
al.

adaptive
design

D
enote

the
estim

ated
effectbased

on
the

first50
observations

by 4�6 .
If 4�6  � �

�ÂÀ�
z ,stop

the
trialfor

futility,accepting�� .
O

therw
ise,re-design

the
rem

ainder
ofthe

trial,preserving
the

conditional

type
Ierror

rate
given 4�6

—
thereby

m
aintaining

overalltype
Ierror

rate�

.

C
hoose

the
rem

aining
sam

ple
size

to
give

conditionalpow
er

0.9
ifin

fact

���
4�6 .

T
hen,truncate

this
additionalsam

ple
size

to
the

interval(50,500),so
no

decrease
in

sam
ple

size
is

allow
ed

and
w

e
keep

the
totalsam

ple
size

to
at

m
ost550.
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P
o

w
er

of
the

C
ui

et
al.

adaptive
test

0
0.2

0.4
0.6

0.8
1

1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

θ/δ*

Power

   F
ixed sam

ple test, n=
100

   A
daptive test

T
he

adaptive
testim

proves
on

the
pow

er
ofthe

fixed
sam

ple
test,

achieving
pow

er
0.85

at���
�ÁÀÀ�
��

(i.e.,�@ �ÁÀ�
� Ä�

).

Ifcontinuing
pastthe

firststage,totalsam
ple

size
ranges

from
100

to
550.
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A
con

ventional
group

sequential
test

S
im

ilar
overallpow

er
can

be
obtained

by
a

non-adaptive
G

S
T

designed
to

attain
pow

er
0.9

w
hen���

�z .
W

e
have

com
pared

a
pow

er
fam

ily,error
spending

testw
ith¡ �

� :
type

Ierror
rate

is� �
� � ��

,

taking
the

firstanalysis
after

68
observations

and
the

second
analysis

after
225

gives
a

testm
eeting

the
requirem

entofpow
er

0.9
at���

�z.
T

his
testdom

inates
the

C
uietal.adaptive

design
w

ith
respectto

both

pow
er

and
A

S
N

.Italso
has

a
m

uch
low

er
m

axim
um

sam
ple

size
—

225

com
pared

to
550.
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C
ui

et
al.

adaptive
test

vs
non-adaptive

G
S

T

0
0.2

0.4
0.6

0.8
1

1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

θ/δ*

Power

   A
daptive test

   2−
group G

S
T

0
0.2

0.4
0.6

0.8
1

1.2
0 50

100

150

200

θ/δ*

ASN

   A
daptive test

   2−
group G

S
T

T
he

advantages
ofthe

conventionalG
S

T
are

clear.
Ithas

higher
pow

er,a

low
er

average
sam

ple
size

function,and
a

m
uch

sm
aller

m
axim

um
sam

ple

size.

W
e

have
found

sim
ilar

inefficiency
in

m
any

m
ore

ofthe
adaptive

designs

proposed
in

the
liter ature.
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C
onditional

po
w

er
and

o
verall

po
w

er

Itm
ightbe

argued
thatonly

conditional
pow

er
is

im
portantonce

a
study

is

under
w

ay
so

overallpow
er

is
irrelevantonce

data
have

been
observed.

H
ow

ever:

O
verallpow

er
integrates

over
conditionalproperties

in
justthe

rightw
ay.

Itis
overallpow

er
thatis

available
atthe

design
stage,w

hen
a

stopping

rule
and

sam
pling

rule
(even

an
adaptive

one)
are

chosen.

A
s

the
exam

ple
show

s,“chasing
conditionalpow

er”
can

be
a

trap
leading

to
very

large
sam

ple
sizes

w
hen

the
estim

ated
effectsize

is
low

—
and,

given
the

variability
ofthis

estim
ate,the

true
effectsize

could
w

ellbe
zero.

To
a

pharm
aceuticalcom

pany
conducting

m
any

trials,long
term

perform
ance

is
determ

ined
by

overallproperties,i.e.,the
pow

er
and

average
sam

ple
size

ofeach
study.
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7.
C

onc
lusions

E
rror

S
pending

tests
using

Inform
ation

M
onitoring

can
adaptto

�

unpredictable
inform

ation
levels,

�

nuisance
param

eters,

�

observed
data,i.e.,efficientstopping

rules.

M
ethods

preserving
conditional

type
Ierror

allow
re-design

in
response

to
externaldevelopm

ents
or

internalevidence
from

secondary
endpoints.

R
ecently

proposed
adaptive

m
ethods

can

facilitate
re-sizing

for
nuisance

param
eters,

supportre-sizing
to

rescue
an

under-pow
ered

study,

allow
an

on-going
approach

to
study

design.

B
ut,they

w
illnotim

prove
on

the
efficiency

of“standard”
G

roup
S

equential

Tests
—

and
the

y
can

be
substantiall

y
inferior.
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