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Plan of talk

1. Interim monitoring of clinical trials

Adapting to observed data

2. Distribution theory, the role of “information”

3. Error-spending tests

Adapting to unpredictable information

Adapting to nuisance parameters

4. Most efficient group sequential tests

Adapting optimally to observed data

5. More recent adaptive proposals
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1. Interim monitoring of clinical trials

It is standard practice to monitor progress of clinical trials

for reasons of ethics, administration (accrual, compliance)

and economics.

Special methods are needed since multiple looks at

accumulating data can lead to over-interpretation of

interim results

Methods developed in manufacturing production were first

transposed to clinical trials in the 1950s.

Traditional sequential methods assumed continuous

monitoring of data, whereas it is only practical to analyse

a clinical trial on a small number of occasions.

The major step forward was the advent of Group

Sequential methods in the 1970s.

3



Pococ k’s repeated significance test (1977)

To test
� �

: � � � against � �� � , where � represents

the treatment difference.

Use standardised test statistics �	� , 
 � �
����������� .

Stop to reject
� �

at analysis 
 if ���	����� � ,
if
� �

has not been rejected by analysis � , stop

and accept
� �

.

Choose � to give overall type I error rate = � .

� �

�� �
! ! ! !

! ! ! !

Reject "$#

Reject " #

Accept "$#
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Types of hypothesis testing problems

Two-sided test:

testing
� �

: � � � against � �� � .

One-sided test:

testing
� �

: � % � against � � � .

Equivalence tests:

one-sided — to show treatment A is as

good as treatment B, within a margin & .
two-sided — to show two treatment

formulations are equal within an

accepted tolerance.
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Types of early stopping

1. Stopping to reject
� �

: No treatment difference

' Allows progress from a positive outcome

' Avoids exposing further patients to the inferior

treatment

' Appropriate if no further checks are needed

on treatment safety or long-term effects.

2. Stopping to accept
� �

: No treatment difference

' Stopping “ for futility” or “abandoning a lost cause”

' Saves time and effort when a study is unlikely to

lead to a positive conclusion.
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One-sided tests

To look for superiority of a new treatment, test� �
: � % � against � � � ,

requiring ( )+*
Reject

� � �,� � �.- � � ,( )+*
Reject

� � �,� � &/- � � 0 1 .

A typical boundary is:

� �

�243
! ! ! ! !!!

!
!

55 6 6 6 7 7 7

88
9 9 9

: : : ; ; ; ; ; ;
Reject " #

Accept " #

< =
Sample size > � 50 to 70% of the fixed sample size

— adapting to data, stopping when a decision is possible.
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2. Joint distrib ution of parameter estimates

Let ?�@� be the estimate of the parameter of interest, �A�
based on data at analysis 
 .

The information for � at analysis 
 is

B � � �
Var

= ?�@�@> � 
 � �C���������D� �

Canonical joint distribution of ?�FEG��������� ?�@H
In very many situations, ?�IEG��������� ?� H are approximately

multivariate normal,

?�J� � K = �A� *LB �J-GM E >N� 
 � �
����������� �
and

Cov
= ?� �PO � ?� �RQ > � Var

= ?� �SQ > � *TB �RQ - M E for 
 E U 
/VC�

8



Canonical joint distrib ution of W -statistics

In a test of
� �

: � � � , the standardised statistic at

analysis 
 is

�	� � ?�@�
Var

= ?� � > � ?�@�@X B �+�

For this,

= �YE/���������S�ZH > is multivariate normal,

�	� � K = �[X B �[�\�F>N� 
 � �C���������L� ,

Cov
= �	� O �S�	� Q > � B � O^] B � Q for 
CE U 
 V .
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Canonical joint distrib ution of score statistics

The score statistics _`� � �	�@X B � , are also multivariate

normal with

_.� � K = � B �[� B �@>N� 
 � �
���������D� �

The score statistics possess the “independent increments”

property,

Cov
= _ � 0 _ � M E �a_ �Sb 0 _ �Sb M E > � � for 
 �� 
+cd�

It can be helpful to know the score statistics behave as

Brownian motion with drift � observed at times
B EG��������� B H .
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Sequential distrib ution theor y

The preceding results for the joint distribution of

?� E ��������� ?�@H can be demonstrated directly for:

� a single normal mean,

� � e.f 0 ehg � the effect size in a comparison of

two normal means.

The results also apply when � is a parameter in:

a general normal linear,

a general model fitted by maximum likelihood

(large sample theory).

So, we have the theory to support general comparisons,

including adjustment for covariates if required.
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Surviv al data

The canonical joint distributions also arise for:

the estimates of a parameter in Cox’s proportional

hazards regression model

a sequence of log-rank statistics (score statistics) for

comparing two survival curves

— and to i -statistics formed from these.

For survival data, observed information is roughly

proportional to the number of failures seen.

Special types of group sequential test are needed to

handle unpredictable and unevenly spaced information

levels.
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3. Error spending tests

Lan & DeMets (Biometrika, 1983) presented two-sided

tests which “spend” type I error probability as a function

of observed information.

Maximum information design:

Error spending function j = B >

� k 3k�l�mdn

�oqp kar
s

t tNu uNvxwNy y
z z|{N} } {

z z y y w v
u u t t

Set the boundary at analysis 
 to give cumulative type I

error probability j = B � > .
Accept

� �
if
B�~ �S�

is reached without rejecting
� �

.
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Implementing error spending tests

Analysis 1:

Observed information
B E .

Reject
� �

if ��� E ��� � E where

( )��S� � * ����E���� ��EJ- � j = B E�>N�
���� �

�� � !

!

Analysis 2:

Cumulative information
B V .

Reject
� �

if ���ZV���� ��V where

( )��S� � * ���YE�� U ��EG����� V ��� � V -
� j = B VF>�0 j = B E >N�

���� �L� �
�� � ! !

! !

etc.

Adapting to unpredictable information
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One-sided error spending tests

For a one-sided test, define j = B > and � = B > to specify

how type I and type II error probabilities are spent as a

function of observed information.

�Gkk l�mdn

���� ���
s

t t u u v wNy y
z z } } z z y y

w v u u t t

�/kk l�mdn

�� � ����

t t u u v wNy y
z z } } z z y y

w v u u t t

At analysis 
 , set boundary values
=�� �q���S�@> so that

( )���� � *
Reject

� �
by analysis 

- � j = B �G>N�

( )���� ��*
Accept

� �
by analysis 
�- � � = B �@>N�

Power family of error spending tests:

j = B > and � = B > � = B ] B�~ �S� >T� .
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Implementing one-sided error spending tests

1. Computation of
=�� � ��� � > does not depend on future

information levels,
B �\� E � B �\� V ������� .

2. A “maximum information design” continues until a

boundary is crossed or an analysis with
B � � B ~ �S�

is reached.

3. The value of
B ~ �S�

is chosen so that boundaries

converge at the final analysis under a typical

sequence of information levels, e.g.,

B � � = 
 ] � > B ~ �S� � 
 � �C����������� �
For type I error rate � and power � 0 1 at � � & ,

B ~ ��� � ¡ = i s ¢ i � > V
& V �

where ¡ is the “inflation factor” for this design.
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Over-running

If one reaches
B H � B ~ �S�

, solving for
� H and � H is

liable to give
� H � �RH .

� �

�2 3 ! ! ! ! !.£¥¤¦.§ ¤!
!

!
!

55 6 6 6 7 7 7

88
9 9 9

: : :
: : : : : :........

Reject "$#

Accept "$#

Keeping � H as calculated guarantees type I error

probability of exactly � .

So, reduce
� H to � H — and gain extra power.

Over-running may also occur if
B H � B ~ ���

but the

information levels deviate from the equally spaced values

(say) used in choosing
B ~ �S�

.
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Under -running

If a final information level
B H U B�~ �S�

is imposed, solving

for
� H and �RH is liable to give

� H U �RH .

� �

�2 3 ! ! ! ! ! £¥¤¦ § ¤!!
!

!

55 6 6 6 7 7 7

88
9 9 9

: : : ; ; ; ¨ ¨ ¨........

Reject " #

Accept "$#

Again, with � H as calculated, the type I error probability

is exactly � .

This time, increase
� H to � H — and attained power will

be a little below � 0 1 .
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Error-spending designs and nuisance parameter s

(1) Surviv al data, log-rank statistics

Information depends on the number of observed failures,

B � © �ª *
Number of failures by analysis 

-[�

With analyses at fixed calendar times, continue until

observed information reaches
B ~ �S�

.

�«kF¬ «kG­ «kG® «kJ¯ «kG° «k+±
kJ²�³d´

Information

If the overall failure rate is low or censoring is high, one

may decide to extend the patient accrual period.

N.B. Changes affecting the sequence
*TB E@� B V �������S- can

be based on observed information levels; they should not

be influenced by the estimated treatment effect.
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Error-spending designs and nuisance parameter s

(2) Normal responses with unkno wn variance

In a two treatment comparison, a fixed sample test with

type I error rate � and power � 0 1 at � � & requires

information

B o � = i s ¢ i � > V
& V �

A group sequential design with inflation factor ¡ needs

maximum information
B ~ �S� � ¡ B o .

The maximum required information is fixed — but the

sample size needed to provide this level of information

depends on the unknown variance µ V .

Adapting to nuisance parameters
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Adjusting sample size as variance is estimated

The information from ¶`f observations on treatment A and

¶·g on treatment B is

B � �¶ f ¢ �¶ g µ V M E �
Initially: Set maximum sample sizes to give informationB�~ �S�

if µ V is equal to an initial estimate, µ V� .

As updated estimates of µ V are obtained: Adjust future

group sizes so the final analysis has

�¶`f ¢ �¶hg ¸µ V M E � B ~ �S� �
NB, state

Bº¹ »�¼
in the protocol, not initial targets for ¶ f

and ¶ g .

At interim analyses, apply the error spending boundary

based on observed (estimated) information.
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4. Optimal group sequential tests

“Optimal” designs may be used directly — or they can

serve as a benchmark for judging efficiency of designs

with other desirable features.

Optimising a group sequential test:

Formulate the testing problem:

fix type I error rate � and power � 0 1 at � � & ,
fix number of analyses, � ,

fix maximum sample size (information), if desired

Find the design which minimises average sample

size (information) at one particular � or averaged

over several � s.
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Deriv ation of optimal group sequential tests

Create a Bayes decision problem with a prior on � ,

sampling costs and costs for a wrong decision. Write

a program to solve this Bayes problem by backwards

induction (dynamic programming).

Search for a set of costs such that the Bayes test has

the desired frequentist properties: type I error rate � and

power � 0 1 at � � & .

This is essentially a Lagrangian method for solving a

constrained optimisation problem — the key is that the

unconstrained Bayes problem can be solved accurately

and quickly.
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Example of proper ties of optimal tests

One-sided tests, � � 1 � �·�½�a¾ , � analyses,B ¹ »�¼ � ¡ B oP¿ ¼ , equal group sizes,

minimising
* < � = B > ¢ < � = B >P- ]�À .

Minimum values of
< � = B > and

< � = B > ,
stated as a percentage of

B oP¿ ¼
¡ Minimum

� 1.01 1.05 1.1 1.2 1.3 over ¡
2 80.9 74.5 72.8 73.2 75.3 72.7 at �C�Á��¾
5 72.2 65.2 62.2 59.8 59.0 58.7 at �C� ª

10 69.1 62.1 59.0 56.3 55.2 54.3 at �C�½Â
20 67.6 60.5 57.4 54.6 53.3 52.0 at �C�½Â

Note:
< = B > Ã as � Ä but with diminishing returns,

< = B > Ã as ¡ Ä up to a point.
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Assessing families of group sequential tests

One-sided tests:

Pampallona & Tsiatis

Parametric family indexed by Å ,

boundaries for _`� involve
B Æ� ,

each Å implies an “inflation factor” ¡ such that

B ¹ »�¼ � ¡ B oP¿ ¼ �
Error spending, Ç -famil y

Error spent is proportional to
B �� ,

Ç determines the inflation factor ¡ .

Error spending, È -famil y (Hwang et al, 1994)

Error spent is proportional to

� 0 É MËÊ
k �DÌ kJÍ §ÏÎ

� 0 É MËÊ �
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Families of tests

Tests with � � ��� , � � �·�½�a¾ , � 0 1 � �·�½Ð .

* < � = B > ¢ < � = B >P- ]JÀ as a percentage of
B oP¿ ¼

1.0 1.1 1.2 1.3 1.4

60
65

70

PSfrag replacements

optimalÑ
familyÒ family

Ó family

12

Ô
Both error spending families are highly efficient but

Pampallona & Tsiatis tests are sub-optimal.

Adapting optimally to observed data
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Squeezing a little extra efficienc y

Schmitz (1993) proposed group sequential tests in which

group sizes are chosen adaptively:

Initially, fix
B E ,

observe _ E � K = � B E � B E > ,
then choose

B V as a function of _ EG� observe _ V where

_ËV 0 _ E � K = � = B V 0 B E >N� = B V 0 B E >Õ> ,
and so forth.

Specify sampling rule and stopping rule to achieve desired

overall type I error rate and power.
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Examples of “Sc hmitz” designs

To test
� �

: � � � versus
� E : � � �

with type I error rate � � �·�Ö� À ¾
and power � 0 1 � �·�½Ð at � � & .

Aim for low values of

< � = K >�j = �q>�×+�A�
where j = �[> is the density of a K = &\�Ø& V ] ª > distribution.

Constraints:

Maximum sample information � �
� À Ù fixed sample

information.

Maximum number of analyses � � .

Again, optimal designs can be found by solving related

Bayes decision problems.
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Examples of “Sc hmitz” designs

Optimal average
< = B > stated as a percentage of the fixed

sample information.

Optimal Optimal Optimal

adaptive non-adaptive, non-adaptive,

� design optimised equal group

(Schmitz) group sizes sizes

2 72.5 73.2 74.8

3 64.8 65.6 66.1

4 61.2 62.4 62.7

6 58.0 59.4 59.8

8 56.6 58.0 58.3

10 55.9 57.2 57.5

Varying group sizes adaptively makes for a complex

procedure and the efficiency gains are slight.

Adapting super-optimally to observed data
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5. Recent adaptive methods

Bauer (1989) and Bauer & Köhne (1994) proposed

mid-course design changes to one or more of

Treatment definition

Choice of primary response variable

Sample size:

— in order to maintain power under an

estimated nuisance parameter

— to change power in response to external

information

— to change power for internal reasons

a) secondary endpoint, e.g., safety

b) primary endpoint, i.e., ?� .
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Bauer & Köhne’ s two-sta ge scheme

Investigators decide at the design stage to split the trial

into two parts. Each part yields a one-sided P-value and

these are combined.

' Run part 1 as planned. This gives

( E � Ú = �·���F> under
� �

.

' Make design changes.

' Run part 2 with these changes, giving

( V � Ú = �·���F> under
� �

,

conditionally on
( E and other part 1 information.

' Combine
( E and

( V by Fisher’s combination test:

0 ÛÝÜËÞ = ( E ( V�> � �À ß Và under
� �

.
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B & K: Major design chang es before par t 2

With major changes, the two parts are rather like separate

studies in a drug development process, such as:

Phase IIb

Compare several doses and select the best.

Use a rapidly available endpoint (e.g., tumour response).

Phase III

Compare selected dose against control.

Use a long-term endpoint (e.g., survival).

Applying Fisher’s combination test for
( E and

( V gives a

meta-analysis of the two stages with a pre-specified rule.

Note: Each stage has its own null hypothesis and the

overall
� �

is the intersection of these.
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B & K: Minor design chang es before par t 2

With only minor changes, the form of responses in part 2

stays close to the original plan.

Bauer & Köhne’s method provides a way to handle this.

Or, an overall score statistic could be used:

Typically, one would derive separate score statistics from

part 1 and part 2 patients, then add these together. For

survival data, this is equivalent to stratification by “part”.

Given score statistics, one can use an error spending test

with a maximum information design.
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B & K: Nuisance parameter s

Example . Normal response with unknown variance, µ V .

Aiming for type I error rate � and power � 0 1 at � � & ,
the necessary sample size depends on µ V .

One can choose the second part’s sample size to meet

this power requirement assuming variance is equal to á V E ,
the estimate from part 1.

Taking
( E and

( V from â -tests, these are independentÚ = �·���F> under
� �

— exactly.

Other methods:

Many “internal pilot” designs are available.

Error spending designs using estimated information

(based on á V ) can be used.

The two-stage design of Stein (1945) attains both

type I error and power precisely!
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B & K: External factor s or internal, secondar y

inf ormation

At an interim stage suppose, for reasons not concerning

the primary endpoint, investigators wish to achieve power

� 0 1 at � � ã& rather than � � & ( ã& U & ).

If this happens after part 1 of a B & K design, the part 2

sample size can be increased, e.g., to give conditional

power � 0 1 at � � ã& .
Unplanned re-design

Recent work shows the same can be done within a fixed

sample or group sequential design by

preserving conditional type I error rate under � � � ,

ensuring conditional power � 0 1 at � � ã&
— see Denne (2001) or Müller & Schäfer (2001).
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B & K: Responding to äå , an estimate of the

primar y endpoint

We have seen this in methods where design changes are

made to attain a certain conditional power.

Elsewhere, motivation may be:

' to rescue an under-powered study,

' a “wait and see” approach to choosing a

study’s power requirement,

' trying to be efficient.

Many methods have been proposed and one can use the

conditional type I error approach for unplanned re-design.

It is good to be able to rescue a poorly designed study.

Group sequential tests base the decision for early

stopping on ?� . Optimal tests do this optimally!
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Re-design based on äå .

Any adaptive scheme has an overall power function and

expected sample size or
< =

Inf > function.
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These combine conditional properties in just the right way.

Before using an adaptive test check that its
< =

Inf >
function is acceptably low for the attained power.

Improving on a fixed sample test is a minimal step.

Compare with well chosen group sequential tests.

The Ç -family of error spending tests provides close to

optimal designs. Why look further?
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Conc lusions

Error Spending tests using Information Monitoring can

adapt to' unpredictable information levels,

' nuisance parameters,

' observed data, i.e., efficient stopping rules.

Methods preserving the conditional type I error rate allow

re-design in response to external developments or internal

evidence from secondary endpoints.

Recently proposed adaptive methods are appropriate

when re-design is on a large scale.

They facilitate re-sizing for nuisance parameters.

They support re-sizing to rescue an under-powered study.

They allow an on-going approach to study design.

They will not improve on the efficiency of “standard” Group

Sequential Tests — and can be substantially inferior.
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