Group Sequential Monitoring of Clinical Trials with Multiple Endpoints

Christopher Jennison,

Dept of Mathematical Sciences,

University of Bath, UK

http://www.bath.ac.uk/~mascj

International Conference on

Statistics in Health Sciences

Nantes, June 2004

Example 1: A diabetes trial

O'Brien (Biometrics, 1984)

The trial was conducted to determine if an experimental therapy resulted in better nerve function, as measured by 34 electromyographic (EMG) variables.

6 subjects randomised to standard therapy,

5 subjects randomised to experimental therapy.

Changes in EMG measurements were recorded after 8 weeks.

Aim: To test

 H_0 : No treatment difference vs

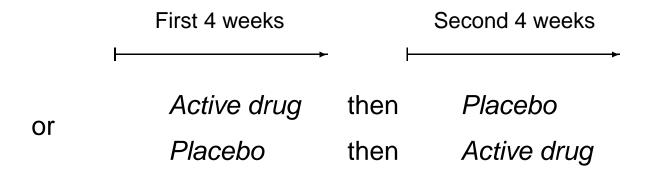
 H_A : Improvements under experimental therapy

in some or all responses.

Example 2: A crossover trial for treatment of chronic respiratory disease

Pocock, Geller & Tsiatis (Biometrics, 1987)

17 patients with asthma or chronic obstructive airways disease were randomised to



Measurements were

- 1. Peak expiratory flow rate
- 2. Forced expiratory volume
- 3. Forced vital capacity

taken at the end of both treatment periods.

Aim: To test

 H_0 : No treatment difference vs

 H_A : Improvements under Active Drug

— for each measure.

Methods of interim monitoring in studies with multiple endpoints

- 1. Bonferroni adjustment
- 2. Group sequential χ^2 tests
- Monitoring a linear combination of response variables
- 4. Marginal criteria, e.g., monitoring efficacy and safety.

Reference: Jennison & Turnbull, *Group Sequential Methods with Applications to Clinical Trials*, Ch. 15.

1. Bonferroni adjustment

Suppose a set of p endpoints has mean vector

 μ_A for treatment A,

 μ_B for treatment B.

In order to test H_0 : $\mu_A = \mu_B$ with type I error rate α :

Create a sequential test with type I error probability $\,\alpha/p\,$ for each component.

Stop and reject H_0 if any test rejects its null hypothesis.

Then,

$$Pr\{ ext{Reject } H_0 \, | \, \mu_A = \mu_B \}$$

$$\leq \sum_{j=1}^p Pr\{ ext{Reject } H_{0j} \, | \, \mu_{A,j} = \mu_{B,j} \}$$

$$= p \times \frac{\alpha}{p} = \alpha.$$

This may not be efficient against important alternatives, especially if endpoints are correlated.

2. Group sequential χ^2 tests

Suppose at analysis k we have summary statistics

$$oldsymbol{Y}_k = \left(egin{array}{c} Y_{1k} \ dots \ Y_{pk} \end{array}
ight)$$

where $E(Y_{jk})$ depends on $\mu_{Aj} - \mu_{Bj}$, j = 1, ..., p.

For known $Var(Y_k)$, form standardised statistics

$$oldsymbol{Z}_k = \left(egin{array}{c} Z_{1k} \ dots \ Z_{pk} \end{array}
ight)$$

where each $Z_{jk} \sim N(0, 1)$ when $\mu_{Aj} = \mu_{Bj}$.

Let $Var(Z_k) = V_k$, then marginally

$$\boldsymbol{Z}_k^T \boldsymbol{V}_k^{-1} \boldsymbol{Z}_k \sim \chi_p^2$$
 under H_0 .

(The analogue when $Var(Y_k)$ is unknown is Hotelling's T-statistic, which has a marginal F-distribution.)

Group sequential χ^2 tests

Jennison & Turnbull (*Biometrika*, 1991) derive the joint distribution of

$$\{ \boldsymbol{Z}_k^T \, \boldsymbol{V}_k^{-1} \, \boldsymbol{Z}_k; \ k = 1, \dots, K \}.$$

Hence, one can calculate group sequential χ^2 tests with specified type I error rates.

 χ^2 tests are of H_0 : $\mu_{Aj} = \mu_{Bj}$ vs the general alternative $\mu_{Aj} \neq \mu_{Bj}$.

They suit, say, a bio-equivalence study with $\,p\,$ response measurements.

They are inappropriate if the goal is to demonstrate that one treatment is superior to another — consider rejecting H_0 with a mixture of positive and negative differences.

3. Tests based on a linear combination of responses

O'Brien (Biometrics, 1984),

Tang, Gnecco & Geller (JASA, 1989)

Suppose responses are

on treatment A:
$$m{X}_{Ai} \sim N_p(m{\mu}_A, \, m{V})$$

on treatment B:
$$m{X}_{Bi} \sim N_p(m{\mu}_B, \, m{V})$$

and suppose high values of each variable are desirable.

Aim: To test

$$H_0$$
: $\mu_A = \mu_B$ vs

 H_A : Treatment A better than Treatment B.

Restrict attention to the case

$$\mu_{Aj} - \mu_{Bj} = \lambda \, \delta_j, \quad j = 1, \dots, p,$$

for specified $\delta_1, \ldots, \delta_p > 0$.

Then test H_0 : $\lambda = 0$ vs H_A : $\lambda > 0$.

Response vectors

$$\boldsymbol{X}_{Ai} \sim N_p(\boldsymbol{\mu}_A, \boldsymbol{V}), \quad \boldsymbol{X}_{Bi} \sim N_p(\boldsymbol{\mu}_B, \boldsymbol{V})$$

and we assume $\mu_A - \mu_B = \lambda \delta$.

With m observations on each treatment,

 $ar{m{X}}_A \sim N_p(m{\mu}_A,\,m^{-1}m{V})$ and

 $\bar{X}_B \sim N_p(\mu_B, m^{-1}V).$

The Generalised Least Squares estimate of λ is

$$\widehat{\lambda} = \frac{\delta^T V^{-1} (\bar{X}_A - \bar{X}_B)}{\delta^T V^{-1} \delta}$$

$$\sim N(\lambda, \frac{2}{m \delta^T V^{-1} \delta}).$$

Let $\hat{\lambda}^{(k)}$ denote the estimate of λ at analysis k.

Then $\{\widehat{\lambda}^{(1)},\ldots,\widehat{\lambda}^{(K)}\}$ has the canonical joint distribution of a sequence of parameter estimates.

The GLS estimate of λ at stage k is

$$\widehat{\lambda}^{(k)} = \frac{\boldsymbol{\delta}^T \boldsymbol{V}^{-1} (\bar{\boldsymbol{X}}_A^{(k)} - \bar{\boldsymbol{X}}_B^{(k)})}{\boldsymbol{\delta}^T \boldsymbol{V}^{-1} \boldsymbol{\delta}}.$$

The sequence $\{\widehat{\lambda}^{(1)}, \dots, \widehat{\lambda}^{(K)}\}$ satisfies

$$(\hat{\lambda}^{(1)}, \dots, \hat{\lambda}^{(K)}) \sim \text{multivariate normal},$$

$$\widehat{\lambda}^{(k)} \sim N(\lambda, 1/\mathcal{I}_k)$$
 for each k ,

$$Cov(\hat{\lambda}^{(k_1)}, \hat{\lambda}^{(k_2)}) = 1/\mathcal{I}_{k_2} \text{ for } k_1 < k_2.$$

Thus, a standard group sequential test for a *univariate* parameter can be employed.

Note from the form of $\hat{\lambda}^{(k)}$ that the data vector for each subject could have been reduced to the scalar quantity $\boldsymbol{\delta}^T \, \boldsymbol{V}^{-1} \, \boldsymbol{X}_i$ at the outset.

In some instances, investigators choose a univariate score for each subject directly.

Example 3:

Women's Health Initiative, Hormone Replacement Trial Freedman et al (*Cont. Clin. Trials*, 1996)

The overall response was defined as a weighted sum:

	Weight
Incidence of coronary heart disease	0.5
Incidence of hip fracture	0.18
Incidence of breast cancer	0.35
Incidence of endometrial cancer	0.15
Death from other causes	0.1

The weights were assigned using data external to the trial.

Example 4: Total parenteral nutrition (TPN) for patients undergoing gastric cancer surgery

Tang, Gnecco & Geller (JASA, 1989)

This study investigated whether peri-operative TPN decreases the rate of complications in nutritionally compromised patients in the week following surgery.

Baseline rates:

25% Major complications,

45% Minor complications

Power 0.8 required to detect a reduction to:

15% Major complications,

30% Minor complications

Treatment was compared to control using a linear combination of major and minor complication rates.

Example 4: Total parenteral nutrition

The authors prove the general result that

"the multivariate test based on all endpoints is more powerful than the similar univariate test based on a single endpoint".

In the TPN study, maximum sample sizes for several designs are:

	Minor	Major	Both
	complications	complications	
	only	only	
1-stage design	324	500	236
3-stage design	336	512	246

The advantage of using both endpoints is clear.

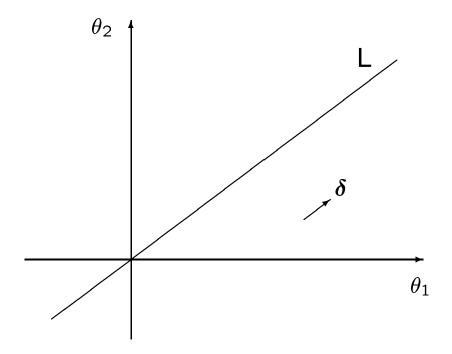
The 3-stage procedure obtains the usual reductions in expected sample sizes for a group sequential test.

When is a linear response combination appropriate?

Let $\theta = \mu_A - \mu_B$, then

 θ_1 = Improvement by Treatment A for response 1,

 θ_2 = Improvement by Treatment A for response 2.



If we assume $\theta = \lambda \delta$ for given δ , we are assuming θ must lie on the line L.

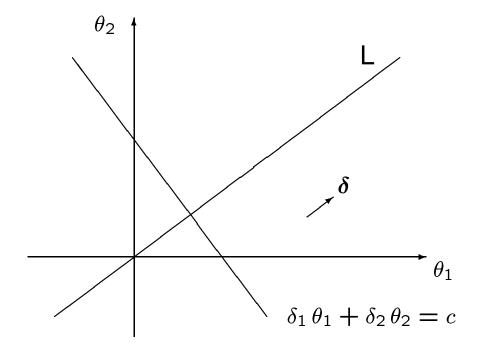
But, we must consider what may happen under other values of θ .

For simplicity, suppose V = I.

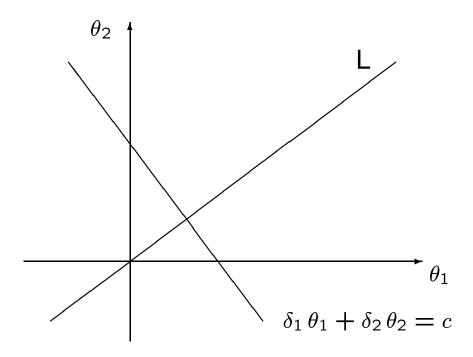
Assuming $\theta = \lambda \delta$, the estimate of λ at stage k is

$$\widehat{\lambda}^{(k)} = \frac{\boldsymbol{\delta}^T (\bar{\boldsymbol{X}}_A^{(k)} - \bar{\boldsymbol{X}}_B^{(k)})}{\boldsymbol{\delta}^T \boldsymbol{\delta}}$$

which has mean $\delta^T \theta / (\delta^T \delta)$.



The same mean, and the same joint distribution of $(\widehat{\lambda}^{(1)},\dots,\widehat{\lambda}^{(K)})$, arises for all values of θ on a line orthogonal to L.



Using a linear combination of responses "trades" between θ_1 and θ_2 .

This *can* be desirable. It may even be reasonable when, say, θ_1 is negative and θ_2 positive.

In other situations, such trading is *not* appropriate — there is not much scope for such trading between *efficacy* and *safety*.

4. Marginal criteria

Studies with efficacy and safety responses:

Cancer chemotherapy trials

Efficacy: Survival time

Safety: Treatment toxicity

Chronic respiratory disease trial (Example 2)

Efficacy: PEFR, FEV₁, FVC

Safety: Lung mucociliary clearance

A new treatment must usually be shown to be both effective and safe.

Reference: Jennison & Turnbull, (Biometrics, 1993)

A testing formulation

Reduce measurements for each patient to a pair of responses

Example: A cross-over trial

 X_1 = Improvement of condition using active treatment

 X_2 = (Severity of side-effects on Placebo) – (Severity of side-effects on Active treatment)

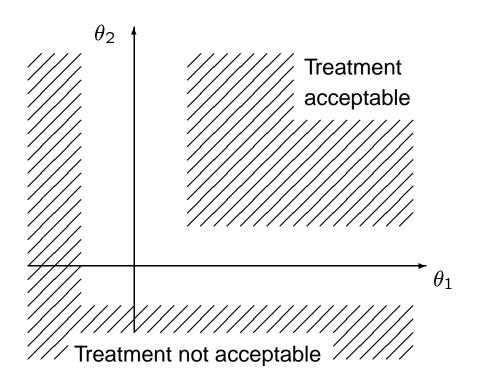
Define responses so a safe and effective treatment yields high values of X_1 and X_2 .

Letting $\theta_1 = E(X_1)$ and $\theta_2 = E(X_2)$,

 $X_1 > 0 \Rightarrow$ Treatment is effective,

 $X_2 > 0 \Rightarrow$ Treatment is safe.

Setting type I and type II error rates



Type I error

We do not wish to recommend the new treatment if

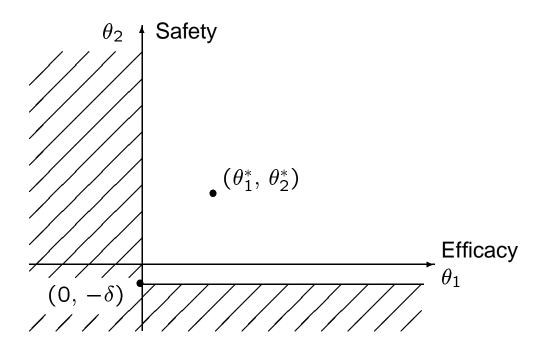
 $\theta_1 < 0$ treatment is not effective or if

 $\theta_2 \leq -\delta$ too many harmful side-effects.

Power

We want to recommend the new treatment if both θ_1 and θ_2 are large.

Type I and type II error rates



Require

 $Pr_{\theta}\{$ Recommend new treatment $\} \leq \alpha$

if
$$\theta_1 \leq 0$$
 or $\theta_2 \leq -\delta$, (1)

 $Pr_{m{ heta}}\{ ext{ Recommend new treatment}\} \geq 1-eta$

if
$$\theta_1 \geq \theta_1^*$$
 and $\theta_2 \geq -\theta_2^*$.

In (1), highest error rates are at $(0, \infty)$ and $(\infty, -\delta)$.

NB The error rate at $(0, -\delta)$ is not the key concern.

A group sequential bivariate test

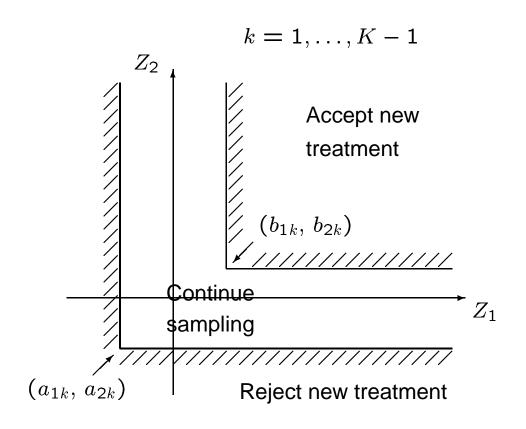
Observations

$$(X_1, X_2) \sim N\left((\theta_1, \theta_2), \sigma^2\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\right)$$

After *n* observations

$$Z_1 = \bar{X}_1 \sqrt{n}/\sigma$$
 $\sim N(0, 1)$ if $\theta_1 = 0$,
$$Z_2 = (\bar{X}_2 + \delta) \sqrt{n}/\sigma \sim N(0, 1)$$
 if $\theta_2 = -\delta$.

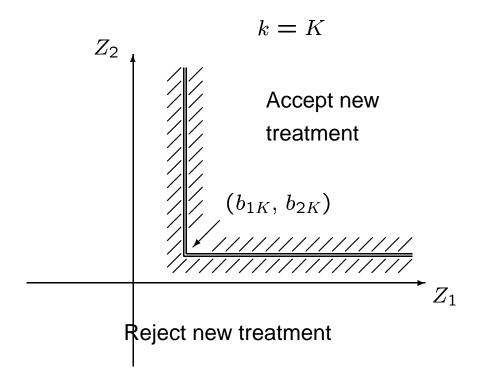
Take K groups of g observations with stopping regions:



A group sequential bivariate test

Up to K groups of g observations, monitored using L-shaped stopping regions.

Final analysis:



The sequence of boundaries must be chosen to give:

Type I error rate α at $\theta = (\infty, -\delta)$ and $\theta = (0, \infty)$,

Power $1 - \beta$ at $\theta = (\theta_1^*, \theta_2^*)$.

Attaining type I error rate α at $\theta = (0, \infty)$

As $\theta_2 \to \infty$, values of Z_{2k} are high. (Extremely safe.)

Thus the test's outcome depends on the direction in which the sequence $\{Z_{11},\ldots,Z_{1K}\}$ leaves the region $\{(a_{11},b_{11}),\ldots,(a_{1K},b_{1K})\}$. (Is the treatment effective?)

Now, $\{Z_{11},\dots,Z_{1K}\}$ has the canonical joint distribution $(Z_{11},\dots,Z_{1K}) \sim \text{multivariate normal},$

$$Z_{1k} \sim N(\theta_1 \sqrt{I_k}, 1)$$
 for each k ,

$$Cov(Z_{1k_1}, Z_{1k_2}) = \sqrt{(I_{k_1}/I_{k_2})}$$
 for $k_1 < k_2$,

where $\mathcal{I}_k = \sqrt{(kg/\sigma^2)}$.

We can choose any *univariate* group sequential boundary $\{(a_{11}, b_{11}), \dots, (a_{1K}, b_{1K})\}$ such that

$$Pr_{\theta_1} = 0$$
 {Exit upper boundary, $Z_{1k} > b_{1k}$ } = α .

Attaining type I error rate α at $\theta = (\infty, -\delta)$

As $\theta_1 \to \infty$, values of Z_{1k} are high. (Very effective.)

Thus the test's outcome depends on the direction in which the sequence $\{Z_{21}, \ldots, Z_{2K}\}$ leaves the region $\{(a_{21}, b_{21}), \ldots, (a_{2K}, b_{2K})\}$. (Is the treatment safe?)

Now, $\{Z_{21}, \ldots, Z_{2K}\}$ has the canonical joint distribution

 $(Z_{21},\ldots,Z_{2K}) \sim \text{multivariate normal},$

$$Z_{2k} \sim N((\theta_2 + \delta)\sqrt{I_k}, 1)$$
 for each k ,

$$Cov(Z_{2k_1}, Z_{2k_2}) = \sqrt{(I_{k_1}/I_{k_2})}$$
 for $k_1 < k_2$,

where $\mathcal{I}_k = \sqrt{(kg/\sigma^2)}$.

We can choose any univariate group sequential boundary $\{(a_{21}, b_{21}), \dots, (a_{2K}, b_{2K})\}$ such that

$$Pr_{\theta_2} = -\delta \{ \text{Exit upper boundary}, \ Z_{2k} > b_{2k} \} = \alpha.$$

Attaining power $1 - \beta$ at $\theta = (\theta_1^*, \theta_2^*)$

The mean of (Z_{1k}, Z_{2k}) is augmented by increasing the group size g. We need the value g for which

$$Pr_{\theta} = \theta^* \{ \text{ Recommend new treatment } \} = 1 - \beta.$$

For general values of θ , acceptance and rejection probabilities depend on the correlation coefficient ρ .

Univariate calculations no longer suffice: group sequential bivariate calculations are required.

Given standardised boundary values $a_{1k}, a_{2k}, b_{1k}, b_{2k},$ k = 1, ..., K, and a value of ρ , we can compute

$$Pr_{\theta = \theta^*} \{ \text{ Recommend new treatment } \} = 1 - \beta.$$

for any group size g and, hence, search for the group size that meets the power condition.

A group sequential bivariate test

Example

Parameter values:

$$\sigma^2 = 1, \ \rho = 0.2,$$
 $-\delta = -0.2, \ (\theta_1^*, \theta_2^*) = (0.2, 0),$
 $\alpha = 0.05, \ 1 - \beta = 0.8,$
 $K = 5$ groups.

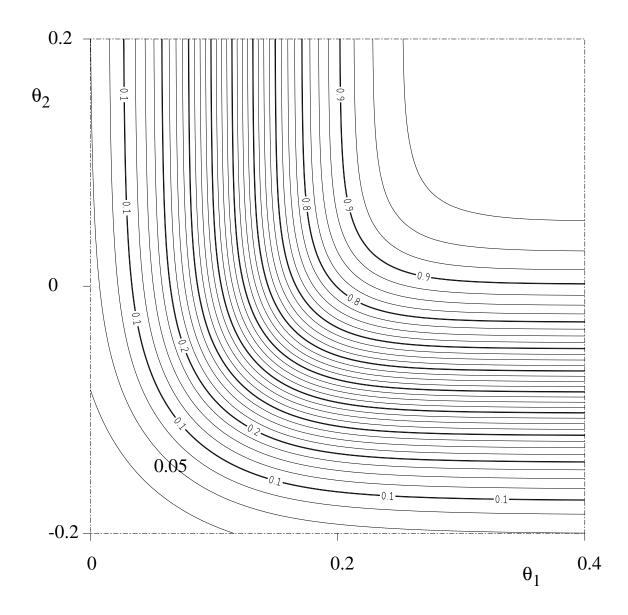
Use univariate boundaries from Emerson & Fleming (*Biometrics*, 1989) with parameter p = 0.5.

A fixed sample test would require a sample size of 206.

Maximum sample size for the group sequential test is 325. (For p=0, maximum sample size would be 225.)

Group sequential bivariate test: Example

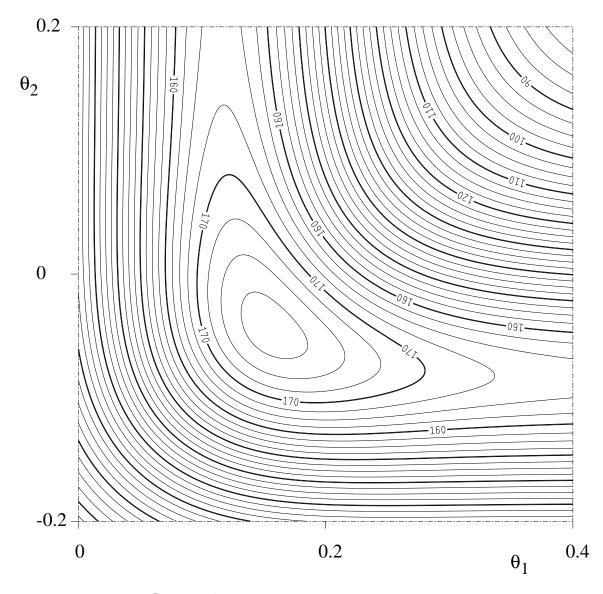
Contour plot of power against θ .



The 0.05 contour has asymptotes at $\theta_1 = 0$, $\theta_2 = -0.2$. This contour passes through (0.06, -0.14); the type I error rate at (0, -0.2) is much lower than 0.05.

Group sequential bivariate test: Example

Contour plot of Average Sample Number (ASN) against θ .



The maximum ASN of just under 180 is well below the fixed sample size of 206.

Conclusions

It is natural to record multiple endpoints

Care must be taken to combine information in an appropriate manner

Once a testing problem is formulated, group sequential designs can be created

Efficiency gains by combining information from several endpoints and by sequential monitoring are available