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Outline of Talk

1. MCMC for estimating
� ������� �
	

when
� � �

2. MCMC diagnostics

3. The PW exact method

4. Using PW — how many chains?

5. Making PW work for general problems
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1. Basics of MCMC Estimation

Problem: To estimate  � � ������� �
	
when

� � �
Method:

Create a Markov chain with transition matrix�
satisfying � � � ���

so the distribution of
� � � �

as � � �
.

The Metropolis-Hastings and Gibbs sampler

do this automatically.

From the sample
� ����� ����� ������� �!�

form

" � #$ % & '
(*) +-, � ����� ( �.�
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Our estimate of  � � � ����� �
	
is

" � #$ % & '
(*) +-, � ����� ( �.�

For
$

large,

" /  �
Moreover

� � " � /  and 0 132 � " � / 4 �� $ % & � 576 �

where 4 � � 0 182:9 ������� �
	
and

6
can be estimated from

� �
,
� �

,
� ��� � � �

.
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2. Checking that MCMC has Worked

Diagnostics can help assess:

Burn in — have we found the main part of
�

?

Convergence — has the chain “forgotten” its
starting point?

Variance of
" — how long to run the chain?

;

<

<

=> ?
Surveys of MCMC diagnostics:

Cowles & Carlin, JASA, 1996,

Brooks & Roberts, Statist. & Comp., 1998.

5



Diagnostics often involve@ multiple chains@ “over-dispersed” starting points@ “coupling” of two or more chains

Even so, you may fail to visit an important part

of the sample space — and not know you have

missed it.

Assessing convergence is a difficult problem with,

as yet, no general solution.
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Judging Convergence

Assess the difference between
�

and the

distribution of
� �

.

Try to ensure this difference is small at the

end of “burn-in”.

Note

1. In calculating

" � #$ % & '
(*) +-, � ����� ( �A�

early errors are down-weighted by later data.

2. Even if
� � � �

exactly, the process must

“forget its history” repeatedly for
" to be

an accurate estimate of  .
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Gelman & Rubin , Statistical Science, 1992

Start a number of chains (e.g., 10) from values

which are “over-dispersed” relative to
�

.

Compare within-chain and between-chain

variation of a scalar quantity of interest.

Stop when small between-chain variation shows

the initial “over-dispersion” has been lost.

Drawbacks

1. Difficulties in finding over-dispersed starts?

2. The approach is univariate.

3. A single long chain would be more efficient.

Geyer, Statist. Sci., 1992:

“Multiple starts are not necessary in practice

and not sufficient for good practice.”
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Valen Johnson , JASA, 1996

Start B chains at values sampled from
� �

, an

over-dispersed distribution relative to
�

.

Couple the chains by using the same uniform

random variables in the Gibbs sampler — this

will promote convergence.

Let

$ � time at which all B chains converge,

# % 2 � � 2 {Draw from
� �

is accepted} using

proposals from
�C�

in rejection sampling of
�

,

D � <�E � � law of
� E (same for all chains).

Then � 2 � $ F ? 	 G � # % 27H � #I J D � < E � % � J �
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Johnson , JASA, 1996 continued

We can bound J D � < E � % � J using

J D � < E � % � J K I � 2 � $ F ? 	 ## % 2 H
and an estimate of

� 2 � $ F ? 	
.

E.g., use multiple runs of coupled chains to find

upper percentiles of the distribution of
$

.

Estimating 2 needs knowledge of
�

— from

long-run samples, believed close to convergence.

Note:

We assume the method is working properly in

implementing the diagnostic procedure — fine,

since a rough estimate of
�

suffices here.

But , don’t expect to be warned if the sampler

has missed a mode completely.
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Johnson , JASA, 1996, ...

In examples, Johnson uses results from multiple

runs of coupled chains to find a value of
$

at

which one can expect all chains to have coupled.

He then recommends use of this
$

in setting the

duration of burn-in for one long production run.

Efficiency is not really discussed.
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3. Propp & Wilson’ s Exact Method

Reference: Propp & Wilson, Random Structures

and Algorithms, 1996.

First, a demonstration:

Professor Dynkin’s card trick.
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Markov Chain Underl ying the Card Tric k

At stage � , let� � � Number of cards to go before you
reach the next card to “land on”.

Initially, � � >
and

� �
is the place of your chosen card in

the top row.

If you choose the 3rd card,� � � L� � �� � �� M �� N �� O �� P �� Q �� R �� S �� ��� �
13



Underl ying Markov Chain
� ���

State space is
� # � I � ����� � #T> 	

.� � , � � � � % # �
for

� � G I
Value of next card, for

� � � #
.

For simplicity, assume an infinite deck of cards.

The transition matrix is
� �UVVVVVVVVVVVVVVVVVVVVW

���M ���M ���M ���M ��:M ��:M ��:M ��:M ��:M ��:M# > > > > > > > > >> # > > > > > > > >> > # > > > > > > >> > > # > > > > > >> > > > # > > > > >> > > > > # > > > >> > > > > > # > > >> > > > > > > # > >> > > > > > > > # >

XZYYYYYYYYYYYYYYYYYYYY[
where� (]\ � � �^� � , � � _ ` � � � a 	� � �^� � , � � _ ` � � � a �b� ��c � � < ��c �d� � ���e	f�
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Why the Card Tric k Works

Let two people, A and B, have Markov chains

�.g �!h � � > � # ��� ��� �ji I 	
and� & � h � � > � # ��� �����ji I 	f�

If these meet at �lk , then
g � � & �

for all � G �lk .
The trick works if chains from all 10 initial states

converge before the cards run out.

Dynkin has shown this happens with probability# % m
, where

m
is very small indeed.

The chains
�7g �n	

and
� & �o	

are coupled as they

use the same random numbers to choose their

transitions.
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An Application

The limiting distribution of the card trick’s

Markov chain is the solution,
�

, to� � � ���
(1)

In fact,
� � �Pp� � # L � #q# �sr��utl�svw�uil�yxC� L � I � # � .

Claim: If we deal 52 cards from an infinite deck,

choose an arbitrary
� �

and follow the
card trick rules, then

� O � � �
.

Proof:

Imagine we had generated our
� �

from
�

.

Then, by (1),� � � � � � ��� ����� � � O � � � � � �z�
Since all

� �
s lead to the same

� O �
, we can

pretend we did generate our
� �

from
�

.

If we can attend to the possibility that chains may
not converge in time, we shall have a method for

exact simulation from the past.
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Propp & Wilson’ s algorithm

Define the usual type of Markov chain with limit

distribution
�

.

Run this chain from a time before
? � >

to

produce an
� � � �

exactly.

Key ingredients

1. Coupling chains in “pre-sampling”

2. The stationarity of
�

with respect to
�

:

if
� c�� � �

and the transition matrix from
% �

to
% � { #

is
�

, then
� c|� , �

has distribution� � � ���
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Coupling at Times
?~} >

��� �
��� � �

� c M
� c M �

� c �
� c � �

� c �
� c � @

� �

Here, � c �
, � c � ,

��� �
, are realisations of � � > � # �

random variables.

Transitions are given by� c|� , � � � ��� c|� � � c|� �
— once the � c�� are specified, � is deterministic.

Chains from different starting points are coupled

since they use the same
� � c|� 	 .

When two chains meet up, they stay together.
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Using the Stationarity of
�

� c���� ��� ��� �b� c � � � �
Run coupled Markov chains, all using the same

random numbers, from time
% � �

to time 0.

Check if chains from all states
� c|���

converge.

(A smart way to check this will be useful !)

Suppose all chains do converge:

We can claim to have taken
� c|� � � �

so,

by stationarity of the Markov chain,� � � �z�
If all chains do not converge, we must find

a way actually to generate
� c|��� � �

.
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The Propp & Wilson Scheme

� ���!� � c��3� � ��� � �b� c|� � c �d� � c|��� � � ��� �b� c ��� � �
Run coupled Markov chains using the same

random numbers from
% � � to 0.

Check if chains from all states
� c|� �

converge.

If so:

take
� �

as a sample from
�

if not:

sample from time
% � � to time

>
, using

previous random numbers from
% � �

to 0.

if still no convergence:

go further back,
��� �

Back to the Future!
20



Formal Justification

Consider chains from time
c '

with ����� � 9 and transitions
according to � .

We couple chains from different values of ����� so that they stay
together once they meet up.

We note transitions in the period
c '

to 0 for incorporation in chains
from earlier starts.

Now suppose��� Chains from all values ���:� converge in
'

steps �� �
as

' � � � (2)

Let � � ���� be the final state of one chain from ����� � 9 .

By (2), ����� ���|� � � ���� exists with probability 1. Call this � � �!�� .

Claim: � � ���� � 9 .

Proof: Given �|� �
, take

'
such that����� � �!�� ) � � ���� ��� � c � � (3)

The chain yielding � � ���� has distribution 9 at time
c '

, and by the

equilibrium property of 9 , we also have � � ���� � 9 .

Thus, by (3),  ���¡� � �!�� ) \ � c 9�¢   )   ���¡� � ���� ) \ � c ����� � ���� ) \ �  �£ � �
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Checking Convergence

We wish to check whether chains from all

initial states converge in the period
% � �

to 0.

PW give a method for problems which have

a partial ordering with two extreme states,

and MC transitions preserve this ordering.

All chains are sandwiched between the two

extremal chains. When these meet, all

chains must have converged.

If the two extremal chains do not converge

in time
% � � to 0, try from time

% � � , etc.

Implementation: Note random number seeds

at times
% � �

,
% � � ,

� ���
. If chains revisit one of

these times reset the seed to its previous value.
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Example: Ising Model on an ¤ � ¤ Lattice

Each element
� � a � _ � of the random variable� � �7� � a � _ � h a¥� # ��� ��� � � � _ � # � � � ��� � 	

takes a value 0 or 1. The sample space is¦ � � > � # 	 � � �
In the 4-neighbour model with parameter §� 2 �7� � < 	 � #¨ ©dª¬«w % § ® (]\s¯±° ²´³¶µ � < � a � _ � ·� < �¹¸n�uº»�
	½¼b�
where ¾¿aÀ_ �n¸Áº¿Â indicates summation over indicesa � _ and

¸n�uº
for which

� � a � _ � and
� �¹¸n�jº»�

are
horizontal or vertical neighbours.

Conditionally, given all
� �¹¸n�jºÃ�

,
�¹¸n�uºÃ� ·� � a � _ � ,

� � a � _ � � ÄÅÇÆ >
with prob. È:É �8Ê 5Ë� È:É �3Ê { È:É � � �#
with prob. È É � � 5Ë� È É � Ê { È É � � �.�

where � � and � � are numbers of neighbours

of
� � a � _ � equal to

>
and

#
, respectively.
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A Coupled Gibbs Sampler for the Ising Model

To update
� � a � _ � :

Draw a � � > � # �
random variate — call this � .

We want
� � a � _ � � >

or
#

with probabilitiesÌ � � È É � Ê 5Ë� È É � Ê { È É � � �.�Ì � � È É � � 5Ë� È É � Ê { È É � � �.�
so, set � � a � _ � � ÄÍÅ Í

Æ >
if � K Ì �Ë�#
if � F Ì � �

Coupling:

� � � I � � � � I
= �> Ì � #

� � � # � � � � L
= �> Ì � #

Partial ordering:

We preserve a partial ordering with extremes>
and

#
, the all-0 and all-1 images.
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Pre-sampling for the Ising Model

Number of image sweeps needed to converge by
time 0, starting at times

% i
,
% #T>

,
% I�>

, etc.

Values are means over 40 replicates.

Lattice sizeÉ � O Î � O O � Î O � � �Ï� Î ���Ï�
0.1 5 5 6
0.2 5 9 10
0.3 10 10 12
0.4 13 19 20
0.5 21 28 36

0.6 38 46 60
0.7 71 96 132
0.8 210 332 592
0.9 1148 6770 —
1.0 — — —

Blanks indicate failure to converge, usually,
in 20480 iterations.
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4. How Should We Appl y PW?

For the same effort, we could have

1 long chain,

several middling chains, or

many short chains

each with pre-sampling according to PW.

With a fixed total number of iterations to divide
between a number of chains:

Efficiency is best with 1 or 2 chains, but

not seriously reduced until pre-sampling

uses a significant fraction of iterations.

Running several PW chains can enhance

confidence in the results — a single chain

from
� � � �

could become stuck in part

of the sample space
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Ising Model, 25 � 25 lattice

With § � > �Ði
, mean pre-sample is

t L sweeps.

Simulations use
$

chains of length Ñ , where$ � �yt L { Ñ � � I�>Ò>q> �
' Ó ÔAÕ�Ö
×yØÙsÚZÛ Ô¥Õ�Ö
×yØÙ�ÜyÛ Ô¥Õ�Ö
×yØÙ�ÝyÛ Ô¥Õ�Ö
×yØÙßÞjÛÎ ��� Þ Î ���7à Î ���¶á Î ���7â
1 1927 2.3 11.7 4.3 2.4
2 927 2.5 12.8 4.4 2.5
3 593 2.6 12.8 4.6 2.7
4 427 2.7 13.2 4.8 2.7
5 327 2.9 14.0 5.1 2.8

10 127 3.7 17.8 6.6 3.6
15 60 5.2 25.1 9.3 5.4
20 27 8.5 40.9 14.2 8.8
25 7 23.0 116.0 30.8 24.1

Efficiency: No serious loss until Ñ approaches
the mean pre-sample length,

t L .

Advantages of several chains:

Confidence in
" — a single chain from

� � � �
may remain stuck in part of the sample space.

Direct estimation of variance of
" (?)
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5. General Use of the PW Algorithm

We need to establish that chains from all states

in
¦

converge from time
% ã

to
>

.

P & W used chains from 2 extremal states to

“sandwich” all other chains.

Some ingenious extensions:

Kendall, Probability Towards 2000, 1998,

Häggström, van Lieshout & Møller, Bernoulli,

to appear,

Murdoch & Green, Scand. J. Statist., 1998.

or visit

http://dimacs.rutgers.edu/ � dbwilson/exact.html/
What if this appr oach fails?

e.g., Potts model ( B -colour Ising model),

most (?) common problems.

28



Plan A

Check convergence of ä test images.

å åå å @
% ã > ?

Pre-sampling:

>% i
åååå

>% #Á>
åååå

>% I�>
åååå
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An Application of Plan A

Example: Ising model, 25 � 25 lattice, § � > �Ði
1. Generate a “test set” of ä random images.

Work back to a
% ã

for which test chains

converge during the period
% ã

to
>

.

2. Check if
ã

is really large enough by running

chains from
>

and
#

over
% ã

to
>

.

Results from 100 replicates

æ
% Success

2 51ç ) � � O 5 77
10 87

2 79ç ) � � Q 5 92
10 99

In alternate test images,� Ö ��� × (è¯é\ Û ) � � ) çëê (è¯s\ ,� Ö ��� × (è¯é\ Û ) � � ) çëê (è¯s\ .
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What Should We Put in a Test Set?

It seems wise to choose

(1) images from each mode of
�

, and

(2) images sampled from
�

.

1) Hope that chains starting within a mode meet

up while waiting for a jump between modes.

2) In justifying the PW method, we argued

“ It is as if we sampled
� c�ì from

�
.

Since
� � � �

, each subsequent
� E � �

.
Hence,

� � � �
.”

So, we need to be confident that values
� c¬ì

sampled under
�

are likely to lead to our
� �

.

We can sample MCs beyond
? � >

to obtain
an approximate sample from

�
.

This gives an iterative method for making a
suitable “initial test set” — and suggests a
diagnostic for later use.
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Plan B
Stage 1 — using random test sets

å åå å @ @ @å åå å @ @ @å åå å @ @ @

% ã > ?
Stage 2 — test sets

� �
approx.

å @@@ @@@ @@@ @
å @@@ @@@ @@@ @

å @@@ @@@ @@@ @

% ã > ?
Has each chain converged to its previous � � ?

If so — move on to the “production run”.

If not — extend pre-sampling before current
c�ì

,
re-generate samples. Iterate over Stage 2.
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@ @
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@ @ @ @
@ @ @ @
@ @ @ @
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Ising model,
I i � I i

lattice , § � > �íi
Results from 50 replicates

DIAGNOSTICS

No. Images When not OK
chains in first All OK ? No. chains Chains �'

test set not conv. a new � �
2 10 47 (44) î 1.0 (1.0) 0 (0)
2 50 49 (48) 1.0 (1.0) 0 (0)

5 10 48 (46) 1.0 (1.25) 0 (0)
5 50 50 (49) – (1.0) 0 (0)

10 10 50 (48) – (1.0) 0 (0)
10 50 49 (46) 1.0 (1.0) 0 (0)ïñðóò

testing convergence from
Ê

and
�

— a definitive test in this example.

Usually 1 iteration of Stage 2, occasionally 2.

2nd test set: 5 samples from each of
'

chains
at intervals of 20 iterations.

Diagnostics: Test set of 5 samples from the'
chains’ production runs at

intervals of 400 iterations.

Response to the final diagnostic:

We could use a longer pre-sampling period
— but results would not change.
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The Final Diagnostic

Looking at one of the
$

chains:

>% ã

Diagnostic

set

@@@@@@@@
Original

test set

ååååå

An error is detected when a new test chain does not meet
up by time 0 with all original test chains.

Ideally, we should resolve this by pre-sampling from an
earlier point — this may well yield the same

� �
.
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A Formal Error Bound

Suppose we have chosen
% ã

and our test chains
lead from their values of

� c�ì
to

� � � < � .

For a proper sample from
�

at time 0, we should
create

� c�ì � �
and follow this chain to time

>
.

Definem � � 2 �7� c�ì � �
does not lead to

� � � < �p	f�
With ô diagnostic runs from

� c�ì � �
, approx,� 2 � All ô diagnostic runs lead to < � but

the one sampling run does not
	

� � # % m �:õ m
K � # % #

ô { # �:õ , � #
ô

} #
ô È �
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An Error Bound
� � �

Allow probability ö that our
� �

is not what we would have
obtained doing things “properly”.

Overall strategy:

1. Choose a value for
% ã

such that we believe
all chains converge between

% ã
and

>
.

Run ô �
diagnostic runs, where#

ô � È � öI �
If all ô �

chains converge, accept their
common < � as a sample from

�
. If not,

� � �
2. Choose an earlier value for

% ã
.

Run ô �
diagnostic runs, where#

ô � È � öx �
etc.
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5-colour Potts model,
I i � I i

, § � > �í÷
Results from 50 replicates

DIAGNOSTICS

No. Images When not OK
chains in first All OK ? No. chains Chains �'

test set not conv. a new � �
2 10 49 (48) î 1.0 (1.0) 0 (0)
2 50 50 (48) – (1.0) 0 (0)

5 10 49 (46) 1.0 (1.0) 0 (0)
5 50 48 (43) 1.0 (1.0) 0.5 (0.14)

10 10 47 (44) 1.0 (1.0) 0 (0)
10 50 47 (41) 1.0 (1.22) 0 (0)ïÏðóò

testing convergence from
5 single-colour images
— not a definitive test.

Usually 1 iteration of Stage 2, occasionally 2 or 3.

2nd test set: 5 samples from each of
'

chains
at intervals of 20 iterations.

Diagnostics: Test set of 5 samples from the'
chains’ production runs at

intervals of 400 iterations.

Response to the final diagnostic:

We could use a longer pre-sampling period
— affecting one chain in one replication.
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10-colour Potts model,
I i � I i

, § � > �Ði
Results from 50 replicates

DIAGNOSTICS

No. Images When not OK
chains in first All OK ? No. chains Chains �'

test set not conv. a new � �
2 10 46 (44) î 1.0 (1.0) 0 (0.17)
2 50 50 (50) – ( – ) 0 (0)

5 10 47 (37) 1.0 (1.0) 0 (0)
5 50 46 (45) 1.0 (1.0) 0 (0)

10 10 47 (34) 1.0 (1.25) 0 (0.06)
10 50 48 (36) 1.0 (1.0) 0 (0)ïÏðóò

testing convergence from
5 single-colour images
— not a definitive test.

Usually 1 or 2 iterations of Stage 2, occasionally 3.

2nd test set: 5 samples from each of
'

chains
at intervals of 20 iterations.

Diagnostics: Test set of 5 samples from the'
chains’ production runs at

intervals of 400 iterations.

Response to the final diagnostic:

We could use a longer pre-sampling period
— affecting one chain in two replications.
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10-colour Potts model,
I i � I i

, § � > �Ði
Results from 50 replicates of the modified method, using

earliest
% ã

for all chains.

DIAGNOSTICS

No. Images When not OK
chains in first All OK ? No. chains Chains �'

test set not conv. a new � �
2 10 49 (49) î 1.0 (2.0) 0 (0)
2 50 50 (50) – ( – ) 0 (0)

5 10 50 (49) – (1.0) 0 (0)
5 50 50 (50) – ( – ) 0 (0)

10 10 50 (50) – ( – ) 0 (0)
10 50 50 (50) – ( – ) 0 (0)ïÏð ò

testing convergence from
5 single-colour images
— not a definitive test.
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Conc lusions and Discussion

Our algorithm is effective in examples:

It provides approximately exact samples

and backs these up with diagnostics.

Computational needs:

Pre-sampling and checking can take roughly

similar effort to “production” samples —

the price of confidence in MCMC results.

When might the algorithm fail?

If one mode is never seen — a pitfall for

all diagnostics.

What do you need to use it?

Usual Markov chains — plus coupling.
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