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Plan of talk

1. Why sequential monitoring?

2. 1929, Dodge & Romig: 2-stage sampling

3. 1940s: methods for manufacturing

4. 1950s and 60s: methods for medical studies

5. 1970s: group sequential tests

6. Types of test, including equivalence, and

types of stopping rule

7. Sequential theory, including survival data

8. A unified approach for group sequential design,

monitoring and analysis

9. Nuisance parameters: updating a design

10. Survival data example

11. Error spending
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1. Motiv ation of interim monitoring

In clinical trials, animal trials and epidemiological studies

there are reasons of

ethics

administration (accrual, compliance, . . . )

economics

to monitor progress and accumulating data.

Subjects should not be exposed to unsafe, ineffective or

inferior treatments. National and international guidelines

call for interim analyses to be performed — and reported.

It is now standard practice for medical studies to have a

Data and Safety Monitoring Board to oversee the study

and consider the option of early termination.

3



The need for special methods

There is a danger that multiple looks at data can lead to

over-interpretation of interim results

Overall Type I error rate applying

repeated significance tests at� � � % to accumulating data

Number of tests Error rate

1 0.05
2 0.08
3 0.11
5 0.14

10 0.19
20 0.25

100 0.37� 1.00

Pocock (1983) Clinical Trials Table 10.1,

Armitage, et al. (1969), Table 2.
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2. Acceptance sampling

Dodge & Romig (1929), Bell Systems Technical Journal.

Components are classified as effective or defective. A

batch is only accepted if the proportion of defectives in

a sample is sufficiently low.

�
Number of
items sampled

��� ���
	 ���


Number
defective

Reject �
Continue�

Accept

Reject�
Accept

5



3. Manufacturing production

Barnard and Wald developed methods for industrial

production and development.

Wald (1947) published his Sequential Probability Ratio

Test (SPRT) for testing between two simple hypotheses.

Stopping boundaries and continuation region

� �


Sample sum���

� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � �������� � � � � � ���
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The SPRT

Ostensibly, the SPRT tests between � � : � � ��� and� � : � � ��� .

� ��� � �� �
�� �

low �� �
high

In reality, it is usually used to choose between two sets of� values.

The SPRT has an “optimality” property if only � � and � �
need be considered.

However, it assumes continuous monitoring of the data

and has no upper bound on the possible sample size.
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4. Sequential monitoring of clinical trials

In the 1950s, Armitage and Bross took sequential testing

from industrial applications to comparative clinical trials.

Their plans were fully sequential but with a bounded

maximum sample size.

The “restricted” test, Armitage (1957),

� �


� �
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! !

" " " " " " " " " " " " " " " " " " " " " " " " " " " " " "

Accept #%$Reject #%$

Reject #%$
testing � & : � � ' against � (� ' , where � is the treatment

difference.
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Armita ge’s repeated significance test

Armitage, McPherson & Rowe (1969) applied a

significance test of � & : � � ' after each new pair of

observations.

Numerical calculations gave the “nominal” significance

level �*) to use in each of + repeated significance tests

for an overall type I error probability � .

� �


� �

, , ��-�. �
��/ /�0 0 0 0�1 1 1 1 1 � � � � � � � !

! ! ! ! ! ! ! ! !

2 2 ��3�4 5 5�6 6�7 7 7 7 � � � � ��8 8 8 8 8 8 8 " " " " " " " " " "

Accept # $
Reject #%$

Reject #%$
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5. Group sequential tests

In practice, one can only analyse a clinical trial on a small

number of occasions.

Shaw (1966): talked of a “block sequential” analysis.

Elfring & Schultz (1973): gave “group sequential” designs

to compare two binary responses.

McPherson (1974): use of repeated significance tests at a

small number of analyses.

Pocock (1977): provided clear guidelines for group

sequential tests with given type I error and power.

O’Brien & Fleming (1979): an alternative to Pocock’s

repeated significance tests.
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Pococ k’s repeated significance test

To test � & : � � ' against � (� ' .

Use standardised test statistics 9;: , < � =?>A@B@C@A>ED .

Stop to reject � & at analysis < ifF 9 : FHG I @
If � & has not been rejected by analysis D , stop and

accept � & .

� J

KML � � � �

� � � �

Reject # $

Reject #%$

Accept # $
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6. Types of hypothesis testing problems

Two-sided test:

testing � & : � � ' against � (� ' .

One-sided test:

testing � & : � N ' against � G ' .

Equivalence tests:

one-sided — to show treatment A is as

good as treatment B, within a margin O .
two-sided — to show two treatment

formulations are equal within an

accepted tolerance.
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A two-sided equiv alence test

Conduct a test of � & : � � ' vs � (� ' with type I error

rate � and power = P Q at � � R O .
Declare equivalence if � & is accepted.

�
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.
.

Z []\
Declare

equivalence ^

Here, Q represents the “consumer’s risk.”

In design and implementation, give priority to attaining

power = P Q at � � R O .
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Types of early stopping

1. Stopping to reject � & : no treatment difference

_ Allows progress from a positive outcome_ Avoids exposing further patients to the inferior

treatment_ Appropriate if no further checks are needed on, say,

treatment safety or long-term effects.

2. Stopping to accept � & : no treatment difference

_ Stopping “ for futility” or “abandoning a lost cause”_ Saves time and effort when a study is unlikely to lead

to a positive conclusion.
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One-sided tests

If we are only interested in showing that a new treatment

is superior to a control, we should test

� & : � N ' against � G ' ,

requiring ` a�b
Reject � & F � � 'dc � � ,` a�b
Reject � & F � � O c � = P Q .

A typical boundary is:

� :

e�f � � � � �����

gg h h h i i i

jj k k k l l l m m m m m m
Reject # $

Accept #%$
E.g., Whitehead (1997), Pampallona & Tsiatis (1994).
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Two-sided tests with early stopping for � &
Early stopping in favour of � & may be included in a

two-sided test to “abandon a lost cause”.

� :


e�f � � � � �
� �

� � � � �
� �

gg n n n o o o p p p
q q q r r r

ss m m m t t t u u u
h h h v v v

ss m m m t t t u u u
h h h v v v

Reject # $

Reject #%$

Accept #%$
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One-sided tests of � & : � � ' vs � G '
Early stopping to

reject � & or

accept � & �xw f

e�f � � � �

� � �
Reject y{z

Accept y z

Early stopping only

to reject � & �xw f

e�f � � � �Reject y z

Accept y z
Abandoning a lost

cause:

Early stopping only

to accept � &
�xw f


e�f
�

� � �Reject y z

Accept y z
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Two-sided tests of � & : � � ' vs � (� '

Early stopping to

reject � & �xw f

e�f � � � �

� � � �
Reject y{z

Reject y z
Accept y z

An inner wedge:

Early stopping to

reject � & or

accept � &
�xw f


e�f � � � ���
� � � ���

Reject y z

Reject y z
Accept y z

Abandoning a lost

cause:

Only an inner wedge

�xw f

e�f

���
���

Reject y z

Reject y z
Accept y z
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7. Joint distrib ution of parameter estimates

Reference: Jennison & Turnbull, Ch. 11

Suppose our main interest is in the parameter � and let|� : be the estimate of � based on data at analysis < .

The information for � at analysis < is} : � b
Var ~ |��:�� c�� � > < � =?>B@A@A@B>�D @

Canonical joint distribution of
|�
� >A@B@C@A> |���

In very many situations,
|�X� >B@A@B@A> |� � are approximately

multivariate normal,|� : � + ~�� > b�} : c�� � � > < � =?>A@B@A@C>ED >
and

Cov ~ |� : V > |� :�� � � Var ~ |� :�� � � b�} :�� c � � for <{� � < � @
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Sequential distribution theory

The preceding results for the joint distribution of|� � >A@A@B@A> |��� can be demonstrated directly for:

� a single normal mean,

� � ��� P �*� > the effect size in a comparison of two

normal means.

The results also apply when � is a parameter in:

a general normal linear,

a general model fitted by maximum likelihood (large

sample theory).

So, we have the theory to support general comparisons,

including adjustment for covariates if required.
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Canonical joint distrib ution of � -statistics

In testing � & : � � ' , the standardised statistic at analysis< is

9 : � |� :
Var ~ |��:�� � |� :�� } : @

For this,

~�9�� >A@B@A@B> 9�� � is multivariate normal,

9 : � + ~�� � } : >�= � > < � ={>A@A@B@A>�D ,

Cov ~�9 : V > 9 : ��� � } : V�� } : � for <{� � < � .
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Canonical joint distrib ution of score statistics

The score statistics � : � 9 :�� } : , are also multivariate

normal with

� : � + ~�� } : > } : � > < � =?>A@B@A@B>�D @
The score statistics possess the “independent increments”

property,

Cov ~��d: P �d: � � > � :�� P � :�� � � � � ' for < (� < )�@
It can be helpful to know the score statistics behave as

Brownian motion with drift � observed at times
} � >A@B@A@B> } � .
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Surviv al data

The canonical joint distributions also arise for

a) the estimates of a parameter in Cox’s proportional

hazards regression model

b) a sequence of log-rank statistics (score statistics)

for comparing two survival curves

— and to � -statistics formed from these.

For survival data, observed information is roughly

proportional to the number of failures seen.

Special types of group sequential test are needed to

handle unpredictable and unevenly spaced information

levels: see error spending tests.
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8. Group sequential design, monitoring and analysis

To have the usual features of a fixed sample study,_ Randomisation, stratification, etc.,_ Adjustment for baseline covariates,_ Appropriate testing formulation,_ Inference on termination,

plus the opportunity for early stopping.

Response distributions:� Normal, unknown variance� Binomial� Cox model or log-rank test for survival data� Normal linear models� Generalized linear models

24



General appr oach

Think through a fixed sample version of the study.

Decide on the type of early stopping, number of analyses,

and choice of stopping boundary: these will imply

increasing the fixed sample size by a certain “inflation

factor”.

In interim monitoring, compute the standardised statistic9;: at each analysis and compare with critical values

(calculated specifically in the case of an error spending

test).

On termination, one can obtain P-values and confidence

intervals possessing the usual frequentist interpretations.
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Example of a two treatment comparison,

normal response , 2-sided test

Cholesterol reduction trial

Treatment A: new, experimental treatment

Treatment B: current treatment

Primary endpoint: reduction in serum cholesterol level

over a four week period

Aim: To test for a treatment difference.

High power should be attained if the mean cholesterol

reduction differs between treatments by 0.4 mmol/l.

DESIGN — MONITORING — ANALYSIS
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DESIGN

How would we design a fix ed-sample stud y?

Denote responses by� �*� ,   � ={>A@B@A@A>�¡ � , on treatment A,� �¢� ,   � =?>A@A@A@B>£¡ � , on treatment B.

Suppose each� �*� � + ~ � � >�¤ � � and
� �¥� � + ~ � � >£¤ � � @

Problem: to test � & : ��� � �*� with

two-sided type I error probability � � '¦@§'¨�
and power 0.9 at

F � � P � � F � O � '¦@ª© .

We suppose ¤ � is known to be 0.5.

(Facey, Controlled Clinical Trials, 1992)
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Fixed sample design

Standardised test statistic

9 � «� � P «� �¤ � � ¡¬� ­ ¤ � � ¡*� @
Under � & , 9 � + ~ '®>�= � so reject � & ifF 9 F¯G ° � � ~ = P � ��± � @
Let � � P � � � � . If ¡ � � ¡ � � ¡ ,

9 � + ~ �± ¤ � � ¡ >�= �
so, to attain desired power at � � O , aim for¡ � b ° � � ~ = P � ��± � ­ ° � � ~ = P Q � c � ± ¤ � � O �� ~ =?@§²´³µ' ­ ={@ ±µ¶´± � � ~ ± · '®@¸� � � '¦@ª© � � ³´�¦@§³¨¹*>
i.e., 66 subjects on each treatment.
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Group sequential design

Specify type of early termination:

stop early to reject � &
Number of analyses:

5 (fewer if we stop early)

Stopping boundary:

O’Brien & Fleming.

Reject � & at analysis < , < � ={>C@A@B@A>�� ,

if
F 9 : FHG I � b � � < c ,

� J

K L � � � � �

� � � � �
where 9 : is the standardised statistic

based on data at analysis < .
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Example: cholesterol reduction trial

O’Brien & Fleming design

From tables (JT, Table 2.3) or computer softwareI � ± @§'º©d' for � � '¦@§'¨�
so reject � & at analysis < ifF 9 : F¯G ± @§'?©�' � � < @
Also, for specified power, inflate the fixed sample size

by a factor (JT, Table 2.4)»½¼ � =?@¸' ± ³
to get the maximum sample size={@§' ± ³ · ³´�¦@§³¨¹ � ³ ¶ @
Divide this into 5 groups of 13 or 14 observations per

treatment.
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Some designs with D analyses

O’Brien & Fleming

Reject � & at analysis < ifF 9 : F�G I D � < @ � J

K L � � � �

� � � �
Pocock

Reject � & at analysis < ifF 9 : F¯G I @ � J

K L � � � �

� � � �
Wang & Tsiatis, shape ¾

Reject � & at analysis < ifF 9 : F�G I ~E< � D �B¿ � �BÀ � @ � J

K L � � � �

� � � �
( ¿ Á & gives O’Brien & Fleming, ¿ Á & ÂÄÃ gives Pocock )
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Example: cholesterol reduction trial

Proper ties of diff erent designs

Sample sizes are per treatment.

Fixed sample size is 66.

D Maximum Expected sample size
sample size � � ' � � '®@ ± � � '¦@ª©

O’Brien & Fleming

2 67 67 65 56
5 68 68 64 50

10 69 68 64 48

Wang & Tsiatis, ¾ � '¦@ ± �
2 68 67 64 52
5 71 70 65 47

10 72 71 64 44

Pocock

2 73 72 67 51
5 80 78 70 45

10 84 82 72 44
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MONITORING

Implementing the OBF test

Divide the total sample size of 68 per treatment into 5

groups of roughly equal size, e.g.,

14 in groups 1 to 3, 13 in groups 4 and 5.

At analysis < , define

«� Å :ÇÆ� � =¡¬È J � È J� Á � � �*� > «� Å :ÇÆ� � =¡�É J � É J� Á � � �¢�
and 9 : � «� Å :ÇÆ� P «� Å :ÇÆ�¤ � ~ = � ¡ È J ­ = � ¡ É J � @
Stop to reject � & ifF 9 : F¯G ± @¸'º©�' � � < > < � =?>B@A@B@A>��¦@
Accept � & if

F 9 Ã F � ± @§'?©�' .
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Implementing the 5-analysis OBF test

The stopping rule gives

type I error rate � � '¦@¸'´�Ê' and

power 0.902 at � � '¦@Ë©
if group sizes are equal to their design values.

Note the minor effects of discrete group sizes.

Perturbations in error rates also arise from small variations

in the actual group sizes.

For major departures from planned group sizes, we should

really follow the “error spending” approach — see later.

34



ANALYSIS

Anal ysis on termination

The sample space consists of all possible pairs ~E< > 9;:��
on termination:

� :1 2 3 4 5


e�f

1

2

3

4

5

T 1T 2T 3T 4T 5
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Analysis on termination

First, order the sample space.

� :1 2 3 4 5


e�f

1

2

3

4

5

T 1T 2T 3T 4T 5






























7 7 7 7 7 7 7ÍÌ

0000000 Î

Ï Ï Ï Ï Ï Ï Ï ÏÄÐ

ÑÑÑÑÑÑÑÑ Ò

� � � � � � �ÔÓ

������� Õ

� � � � � � � �ÔÓ

�������� Õ

We define P-values and confidence intervals with respect

to this ordering.
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The P-value for � & : � � � � � is the probability under � &
of observing such an extreme outcome.

� :1 2 3 4 5


e f

1

2

3

4

5

T 1T 2T 3T 4T 5






























7 7 7 7 7 7 7ÍÌ

0000000 Î

Ï Ï Ï Ï Ï Ï Ï ÏÄÐ

ÑÑÑÑÑÑÑÑ Ò

� � � � � � �ÔÓ

������� Õ

� � � � � � � �ÔÓ

�������� ÕÖ Ö
Ö��

��

�����

����

��

��
E.g., if the test stops at analysis 3 with 9�× � ©Ø@ ± , the

two-sided P-value is` a � Á & b F 9 � F¯Ù ©Ø@¸�µ³ or
F 9 � F¯Ù Ú @ ± Ú or

F 9 × F¯Ù ©Ø@ ± c
� '®@§'µ'Ø= Ú @
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A confidence inter val on termination

Suppose the test terminates at analysis <ÜÛ with 9 :MÝ � 9 Û .
A =H'µ' ~ = P � �MÞ confidence interval for � � �d� P �*� is

the interval ~�� � > � � � where` a � Á � V b An outcome above ~E< Û > 9 Û � c � � ��±
and ` a � Á � � b An outcome below ~E< Û > 9 Û � c � � ��± @
E.g., if the test stops at analysis 3 with 9 × � ©ß@ ± , the 95%

confidence interval for � is

~ '®@ ± ©ß>µ'®@§²¢= � >
using our specified ordering.

Compare: fixed sample CI would be ~ '®@ Ú �¦>µ'®@§²´� � .
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9. Updating a design as a nuisance

parameter is estimated

The case of unkno wn variance

We can design as for the case of known variance but

use an estimate of ¤ � initially.

If in doubt, err towards over-estimating ¤ � in order to

safeguard the desired power.

At analysis < , estimate ¤ � by

à � : � á ~ � �*� P «� Å :ÇÆ� � � ­ á ~ � �¥� P «� Å :ÇÆ� � �¡ � : ­ ¡ � : P ± @
In place of 9 : , define â -statisticsã : � «� Å :ÇÆ� P «� Å :ÇÆ�à � : ~ = � ¡d� : ­ = � ¡*� : � >
then test at the same significance level used for 9 : when¤ � is known.
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Updating the target sample size

Recall, maximum sample size is set to be the fixed sample

size multiplied by the Inflation Factor.

In a 5-group O’Brien & Fleming design for the cholesterol

example this is=?@§' ± ³ · b ° � � ~ = P � ��± � ­ ° � � ~ = P Q � c � ± ¤ � � O �
� = Ú ©Ø@ ¶ · ¤ � @

After choosing the first group sizes using an initial estimate

of ¤ � , at each analysis < � ={> ± >C@A@B@ we can re-estimate

the target for ¡ � Ã and ¡ � Ã as= Ú ©Ø@ ¶ · à � :
and modify future group sizes to achieve this.
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Example: updating the sample size

Initially:

With initial estimate ä¤ � � '®@¸� ,

aim for ¡ � Ã � ¡ � Ã � = Ú ©ß@ ¶ · '®@¸� � ³ ¶ .

Plan 14 observations per treatment group.

Analysis 1:

With ¡ � � � ¡ � � � =�© and à � � � '¦@ ¶ ' ,

aim for ¡d� Ã � ¡*� Ã � = Ú ©ß@ ¶ · '®@ ¶ ' � =å' ¶ .

For now, keep to 14 obs. per treatment group.

Analysis 2:

With ¡ � � � ¡ � � � ±´¶ and à �� � '¦@§³´² ,

aim for ¡d� Ã � ¡*� Ã � = Ú ©ß@ ¶ · '®@§³µ² � ² Ú .

Now increase group size to 22 obs. per treatment.
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Example: updating the sample size

Analysis 3:

With ¡ � × � ¡ � × � �µ' and à �× � '¦@§³¨� ,

aim for ¡d� Ã � ¡*� Ã � = Ú ©ß@ ¶ · '®@§³´� � ¶µ¶ .

Set next group size to 19 obs. per treatment.

Analysis 4:

With ¡d�çæ � ¡*�¥æ � ³´² and à �æ � '¦@è¹ ± ,

aim for ¡ � Ã � ¡ � Ã � = Ú ©ß@ ¶ · '®@è¹ ± � ²¨¹ .

Set final group size to 28 obs. per treatment.

Analysis 5:

With ¡ � Ã � ¡ � Ã � ²é¹ , suppose à �Ã � '¦@è¹é© ,

so the target is ¡ � Ã � ¡ � Ã � = Ú ©ß@ ¶ · '®@è¹¨© � =å'´'
— and the test may be slightly under-powered.
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Remarks on “re-estimating” sample size

The target information for � � �d� P �*� is}Êê ëBì � »�¼ · b ° � � ~ = P � ��± � ­ ° � � ~ = P Q � c � � O �� ={@§' ± ³ · ~ =?@¸²µ³µ' ­ =?@ ±´¶µ± � � � '¦@ª© � � ³¨¹*@ª©Ø@
The relation between information and sample size

} : � í%î =¡ È J ­ =¡ É J®ï ¤ �¨ð � �
involves the unknown ¤ � . Hence, the initial uncertainty

about the necessary sample size.

In effect, we proceed by monitoring observed information:

��w � �w � �w�ñ �w�ò �w½ó
w�ôÜõ�ö
Á ÷ùø Â æ

Information

NB, state
} ê ëBì � ³¨¹*@ª© in the protocol, not ¡ � @A@B@
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Recapitulation

Designing a group sequential test:_ Formulate the testing problem_ Create a fixed sample study design_ Choose number of analyses and boundary shape

parameter_ Set maximum sample size equal to fixed sample size

times the inflation factor

Monitoring:_ Find observed information at each analysis_ Compare � -statistics with critical values

Anal ysis:_ P-value and confidence interval on termination

This method can be applied to many response

distributions and statistical models.
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10. A sur viv al data example

Oropharynx Clinical Trial Data

(Kalbfleisch & Prentice (1980) The Statistical Analysis of

Failure Time Data, Appendix 1, Data Set II)

Patient survival was compared on experimental Treatment

A and standard Treatment B.

Number Number
entered of deaths< Date Trt A Trt B Trt A Trt B

1 12/69 38 45 13 14

2 12/70 56 70 30 28

3 12/71 81 93 44 47

4 12/72 95 100 63 66

5 12/73 95 100 69 73
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Accrual and follo w up in a sur viv al stud y

�
Start of

study
End of
accrual

End of
follow up

Calendar
time

� � ú�� ú ��� ú� ú

Subjects enter the study and are randomised to a

treatment group as they present themselves.

Survival is measured from entry to the study.

Key: _ death time observed,û censored observation.
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Interim analyses

�
Analysis

1
Analysis

2
Analysis

3
Calendar

time

� � ú�� ú ��� ú� ú

At an interim analysis, subjects are censored if they are

still alive at this point.

Information on such patients will continue to accrue at

later analyses.
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The logrank statistic

At stage < , observed number of deaths is ü : .
Elapsed times between study entry and failure areý ��þ : � ý � þ : � @A@B@ � ýAÿ J þ : (assuming no ties).

Definea � � þ : and
a � � þ : Numbers at risk on Treatments

A and B at ýB� þ : Pa � : � a � � þ : ­ a � � þ : Total number at risk at ýB� þ : P
� : Observed number of deaths

on Treatment B at stage <
� : � á ÿ J� Á � a � � þ : � a � : “Expected” number of deaths

on Treatment B at stage < .

� : � á ÿ J� a � � þ : a � � þ : � a �� : “Variance” of
� :

9 : � ~ � : P � : � � � � : Standardised logrank statistic

at stage <
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Propor tional hazards model

Assume hazard rates � � on Treatment A and � � on

Treatment B are related by

� � ~ âE� � � � � ~ â£� @
The log hazard ratio is � � ��� ~ � � .
Then, approximately,

9 : � + ~�� � } : >ß= �
and

Cov ~�9 : V > 9 : �ù� � � ~ } : VA� } : � � > = N <{� N < � N D >
where

} : � � : .
For � 	 = , we have

} : 	 � : 	 ü : � © .
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Design of the Orophar ynx trial

One-sided test of � & : � N ' vs � G ' .

Note � G ' 
 � G =?> i.e., Treatment A is better.

Require:

type I error probability � � '¦@§'¨� ,

power = P Q � '¦@§²¨� at � � '®@§³ , i.e., � � =?@ ¶ .

Information needed for a fixed sample study is

}�� � b ° � � ~ � � ­ ° � � ~�
 � c �'¦@¸³ � � Ú '¦@§'´³¦@
Under the approximation

} 	 ü � © the total number of

failures to be observed is ü � � © }�� � = ± '¦@ ± .
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Design of the Oropharynx trial

For a one-sided test with up to 5 analyses, we could use

a standard design created for equally spaced information

levels.

� w f

e f � � � � �����

gg h h h i i i

jj k k k l l l m m m m m m
Reject # $

Accept # $

However, increments in information between analyses will

be unequal and unpredictable.

This leads to consideration of an “error spending” design.
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11. Error spending tests

Lan & DeMets (Biometrika, 1983) presented two-sided

tests which “spend” type I error as a function of observed

information.

Maximum information design:

Error spending function �ç~ } �

� w fw������


� Å w Æ
�

0 0 / / ��� . . Ñ Ñ��
� � � Ñ Ñ . . �

� / /�0 0

Set the boundary at analysis < to give cumulative Type I

error �ç~ } : � .
Accept � & if

}�� ���
is reached without rejecting � & .
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Error spending tests

Analysis 1:

Observed information
} � .

Reject � & if
F 9 � FHG I � where` a � Á & b F 9 � FHG I � c � �ß~ } ��� @

� "! J

KCL �

�

Analysis 2:

Cumulative information
} � .

Reject � & if
F 9 � FHG I � where` a � Á & b F 9 � F � I � > F 9 � FHG I � c� �ç~ } � � P �ç~ } ��� @

� "!  $# J

K L � �

� �

etc.
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One-sided error spending tests

For a one-sided test, define �ç~ } � and %¬~ } � to specify how

type I and type II error probabilities are spent as a function

of observed information.

� ww �����


&('  *)
�

0 0 / / � � . . Ñ Ñ �
� Ñ Ñ . . � � / /�0 0 � ww �����


+ '  *)
,

0 0 / / � � . . Ñ Ñ �
� Ñ Ñ . . � � / /�0 0

At analysis < , set boundary values ~.- : >0/ : � so that` a � Á & b Reject � & by analysis < c � �ç~ } : � >` a � Á 1
b
Accept � & by analysis < c � %¬~ } : � @

Power family of error spending tests:

�ß~ } � and %¬~ } � 2 ~ } � }�� ��� �43 .
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One-sided error spending tests

1. Values
b - : >5/ : c are easily computed using iterative

formulae of McPherson, Armitage & Rowe (JRSS, A,

1969).

2. Computation of ~.- : >6/ : � does not depend on future

information levels,
} : 	 � > } : 	 � >¦@B@A@ .

3. In a “maximum information design”, the study

continues until the boundary is crossed or an analysis

is reached with
} : Ù }�� ���

.

4. The value of
}�� ���

should be chosen so that

boundaries converge at the final analysis under a

typical sequence of information levels, e.g.,
} : �

~E< � D � } � ��� > < � =?>B@A@B@A>�D @
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Over-running

If one reaches
} � G } � ���

, solving for - � and / � is liable

to give -¯� G / � .

�w �7��� w f


e�f � � � � �98;:ú9< :����

gg h h h i i i

jj k k k l l l l l l l l l........

Reject #%$

Accept #%$
Keeping / � as calculated guarantees type I error

probability of exactly � .

So, reduce - � to / � — and gain extra power.

Over-running may also occur if
} � � }=� �>�

but

information levels deviate from the equally spaced values

(say) used in choosing
} � ���

.
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Under -running

If a final information level
} � � }=� �>�

is imposed, solving

for -¯� and / � is liable to give -¯� � / � .

�w �7�?� w f


e f � � � � � 8 :ú < :����

gg h h h i i i

jj k k k l l l m m m u u u........

Reject #%$

Accept # $

Again, with / � as calculated, the type I error probability is

exactly � .

This time, increase - � to / � — and attained power will

be a little below = P Q .
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A one-sided error spending design for

the Orophar ynx trial

Specification:

one-sided test of � & : � N ' vs � G ' ,

type I error probability � � '¦@§'¨� ,

power = P Q � '¦@§²¨� at � � ��� ~ � � � '®@§³ .

At the design stage, assume D � � equally spaced

information levels.

Use a power-family test with @ � ± , i.e., spending error

2 ~ } � } � �>� � � .

Information of a fixed sample test is inflated by a factorA ~ D >E� > Q > @X� � =?@ =H'¢= (JT, Table 7.6).

So, we require
}=� �>� � =?@ =H'¢= · Ú '¦@¸'µ³ � ÚµÚ @ =å' , which

needs a total of © · Ú´Ú @ =H' � = Ú ± @Ë© deaths.
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Summar y data and critical values for

the Orophar ynx trial

We must construct error spending boundaries for the

information levels actually observed.

This gives boundary values ~.-¨� >0/ �ù� >A@B@A@A> ~.-HÃ >6/ Ãå� for the

standardised statistics 9�� >A@B@A@A> 9�Ã .

Number Number: entered of deaths
w f ë f B f e f

1 83 27 5.43 � 1.60 3.00 � 1.04

2 126 58 12.58 � 0.37 2.49 � 1.00

3 174 91 21.11 0.63 2.13 � 1.21

4 195 129 30.55 1.51 1.81 � 0.73

5 195 142 33.28 1.73 1.73 � 0.87

This stopping rule would have led to termination at the

2nd analysis.
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Covariate adjustment in the Orophar ynx trial

Covariate information was recorded for subjects:

institution, gender, initial condition,

T-staging, N-staging, tumour site.

Proportional hazards regression model

Include treatment effect Q � , coefficients Q � >B@A@B@A> Q ø for

other variables, and strata C � ={>C@A@B@A>�³ for the six

participating institutions.

The hazard rate for patient   is

� �ED ~ âE� � � & D ~ â£� F G , VIH Å Patient   on Tr B Æ 	 JLKMON � ìQP M , M5R @
The goal is then to test � & : Q � � ' against the one-sided

alternative Q � G ' .
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Covariate adjustment in the Oropharynx trial

Standard software for Cox regression will provide the

maximum partial likelihood estimate of the parameter

vector, Q , and its estimated variance.

We are interested in the treatment effect represented by

the first component of Q . At stage < we have

|Q Å :ÇÆ�
S : � TVar ~ |Q Å :ÇÆ� )} : � S � �:
9 : � |Q Å :ÇÆ� � � S : .

Theory: the standardised statistics 9�� >A@A@B@A> 9�Ã have,

approximately, the canonical joint distribution.
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Covariate-adjusted group sequential analysis of

the Orophar ynx trial

Constructing the error spending test gives boundary

values ~.-¨� >0/ �ù� >A@B@A@A> ~.-HÃ >6/ Ãå� for 9 � >A@C@B@A> 9 Ã .

< } : -å: / : |Q Å :ÇÆ� 9;:
1 4.11 P 1.95 3.17 P 0.79 P 1.60

2 10.89 P 0.61 2.59 P 0.14 P 0.45

3 19.23 0.43 2.20 P 0.08 P 0.33

4 28.10 1.28 1.90 0.04 0.20

5 30.96 1.86 1.86 0.01 0.04

Under this model and stopping rule, the study would have

terminated at the 3rd analysis.
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