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/ 0. A Cautionary Tale

Class action lawsuit vs Fred Hutchinson Cancer Center, Seattle.

Protocol 126: Bone marrow transplant for leukemia, 1981-1993

Civil trial: Feb-April 2004.

Plaintiffs: Estates of 5 deceased subjects.

liability, violations of laws governing research and consumer rights.

N

Attorney: Alan Milstein — well-known scourge of clinical trialists including

IRB and DSMB members (successful cases vs U. Penn, U. Oklahoma, ...)

Charges: breach of the right to dignity, fraud, assault and battery, product
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/ Protocol 126 \

Of concern to us: Statements made by plaintiff's expert statistical withess

1. Phase 1: Sample size was 12, but no rationale given in protocol or SAP.
Actual sample size was 22 — no documentation for change, nor any approval
by IRB.

“Unexplained change was substandard, because once you state the
sample size you should abide by it.”

2. Phase 3: No formal plan for interim monitoring or stopping rules in protocol.
Only “vague” statement that study would be stopped if there was
“cumulative evidence of toxicity or lack of efficacy”

3. There was enough statistical evidence at a meeting on Feb 8, 1984 to
warrant stopping the trial, which would have saved the enrollment of 50
additional subjects.

KAf. Relapse-free survival curves to be used to calculate monetary damages. /
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/ Protocol 126 \

Note: In 1983, President of Fred Hutchinson Cancer Center turned down a
request from IRB to establish an independent DSMB on the grounds of

cost and that it would “reveal secrets to competitors”.

Now we have:

e FDA (1998) Guidance for Industry: E9 Statistical Principles for Clinical

Trials

e FDA (2001) Draft Guidance for Clinical Trial Sponsors: On the
Establishment and Operation of Clinical Trial Data Monitoring

Committees.
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Adaptivity

Adaptive choice of test statistic as information on assumptions

emerge; e.g. adaptive scores in a linear rank test, logrank vs Gehan
Adaptive allocation to achieve balance within strata

Adaptive allocation to assign fewer patients to inferior treatment arm
Adaptivity to accruing information on nuisance parameters

Adaptivity to accruing information on safety/secondary endpoints

Adaptivity to adjust power based on accruing information on primary
endpoints
Adaptivity to to drop arms in multi-arm study based on accruing

information on primary endpoints

Others ....
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/ 1. Interim monitoring of clinical trials \

It is standard practice to monitor progress of clinical trials for reasons of

ethics, administration (accrual, compliance) and economics.

Special methods are needed since multiple looks at accumulating data can

lead to over-interpretation of interim results

Methods developed in manufacturing production were first transposed to

clinical trials in the 1950s.

Traditional sequential methods assumed continuous monitoring of data,
whereas it is only practical to analyse a clinical trial on a small number of

occasions.

The major step forward was the advent of Group Sequential methods in

<he 1970s. /




/

Pocock’s repeated significance test (1977)

~

Totest Hy: 8 = 0 vs 6 == 0, where 6 represents the treatment difference.

Use standardised test statistics 2, k = 1,..., K.

Stop to reject Hy at analysis k if |Z| > c,

if Hy has not been rejected by analysis /', stop and accept H.

Choose c to give overall type | error rate = .

Z i Reject Hq
° ° ° °
Accept H
> k
° ° ° °
Reject H




/ Types of hypothesis testing problems

Two-sided test:

testing Hy: 6 = 0 against 6 # 0.
One-sided test:

testing Hp: 6 < 0 against 6 > 0.
Equivalence tests:

one-sided — to show treatment A is as good

as treatment B, within a margin 0 (non-inferiority).

two-sided — to show two treatment formulations

are equal within an accepted tolerance.




/ Types of early stopping

1. Stopping to reject Hy: No treatment difference

e Allows progress from a positive outcome
e Avoids exposing further patients to the inferior treatment

e Appropriate if no further checks are needed on

treatment safety or long-term effects.

2. Stopping to accept H: No treatment difference

e Stopping “ for futility” or “abandoning a lost cause”

e Saves time and effort when a study is unlikely to

lead to a positive conclusion.

N
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/ One-sided tests \

To look for superiority of a new treatment, test

Hy: 0 <0 against 6 > 0.

If the new treatment if not effective, it is not appropriate to keep sampling

to find out whether § = 0 or 6 < 0.

Specify type | error rate and power
Pr{Reject Hy |0 = 0} = «,
Pr{Reject Hy |0 =46} =1 — 3.

and at effect sizes in between.

N

A sequential test can reduce expected sample size under 8 = 0, 0 = 9,

/
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/

A typical boundary one-sided testing boundary:

One-sided tests

A
A Reject H
\ o
[ / .
[ ] /
1 1 1 1 >-k
yd Accept H

FE(Sample size) can be around 50 to 70% of the fixed sample size

— adapting to data, stopping when a decision is possible.

N
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/ 2. Joint distribution of parameter estimates \

Let 0. be the estimate of the parameter of interest, 6, based on data at

analysis k.

The information for @ at analysis k is
1

I, = Var(@k) , k=1,... K.
Canonical joint distribution of 51, e ,éK
In very many situations, 51, Ceey @K are approximately multivariate
normal,
0 ~ N(O,{Z:}™ Y, k=1,...,K,
and

K Cov(@kl, 51@) — Var(ng) = (T}, )1 forky < ko /
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/ Canonical joint distribution of z-statistics

In a test of Hy: @ = 0, the standardised statistic at analysis k is

AN

6 ~
7, = = 0, T.

Var(6),)

For this,

(Z1,...,ZK) is multivariate normal,

Tk ~ NOVTi, 1), k=1,....K,

COV(Z]ﬂ, ZkQ) = \/Ikl/zkg for k1 < kao.

N
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/ Canonical joint distribution of score statistics

The score statistics S, = Z+/Z, are also multivariate normal with
S~ N(OTy, Ir), k=1,... K.
The score statistics possess the “independent increments” property,
Cov(Sg — Sk_1, S — Spr—1) =0 fork # k'

It can be helpful to know the score statistics behave as Brownian motion

with drift & observed at times 71, ..., k.

N
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/ Sequential distribution theory \

The preceding results for the joint distribution of 51, Ceey §K can be

demonstrated directly for:

0 a single normal mean,

0 = ua — pp, the effect size in a comparison of two normal means.

The results also apply when 6 is a parameter in:

a general normal linear,

a general model fitted by maximum likelihood (large sample theory).

So, we have the theory to support general comparisons, including

adjustment for covariates if required.

- /
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/ Survival data \

The canonical joint distributions also arise for:

parameter estimates in Cox’s proportional hazards regression model

a sequence of log-rank statistics (score statistics) for comparing two

survival curves

— and to z-statistics formed from these.

For survival data, observed information is roughly proportional to the

number of failures seen.

Special types of group sequential test are needed to handle unpredictable

and unevenly spaced information levels.

- /
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/

3. Error spending tests

~

Lan & DeMets (Biometrika, 1983) presented two-sided tests which “spend”

type | error probability as a function of observed information.

The error spending function, f(Z), gives the type | error probability to be

spent up to the current analysis

f(1)

8




/ Maximum information design \

e Specify the error spending function f(Z)

e Foreach £k =1, 2, ..., set the boundary at analysis k to give

cumulative type | error probability f(Z).

e Accept Hy if Z.x is reached without rejecting H.

Precise rules are available to protect the type | error rate if the information
sequence over-runs the target Z,,.x, or if the study ends without reaching

reaching this target. See slides 23 and 24 or Chapter 7 of Jennison &

Turnbull (2000).

- /
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/

Analysis 1:

etc.

N

Implementing error spending tests

Zy,
) .
Observed information Z; .
Reject Hy if | Z1| > ¢1 where I >
Pro—o{|Z1] > a1} = f(Th). .
Analysis 2:
Zy,
Cumulative information Z». b .
Reject Hy if | Za| > co where ——
1 o
Pro—oi|Z1|<c1,|Z2| > ca} = f(Z2)—f(Th). ’

Adapting to unpredictable information

20




/ One-sided error spending tests \

Define f(Z) and g(Z) for spending type | and type Il error probabilities.

F@), o(1),

QA 0 -

> —>

Imax 1 Imax 1
At analysis k, set boundary values (ax, b ) so that
Prg—o {Reject Hg by analysis k} = f(Zy),

Prg—s {Accept Hy by analysis k} = g(Z).

KPower family of error spending tests: f(Z) and g(Z) (I/Imax)p./
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/ Implementing one-sided error spending tests \

1. Computation of (ag, bi) does not depend on future information

levels, Zx41,Zk+2, - ..

2. A "maximum information design” continues until a boundary is crossed

or an analysis with Z;, > Z,,.x is reached.

3. The value of Z,,5x is chosen so that boundaries converge at the final

analysis under a typical sequence of information levels, e.g.,
T = (k/K) Imax, k=1,..., K.

For type | error rate v and power 1 — G at 6 = 9,

(2a + 26)2
)2 ’

K where R is the “inflation factor” for this design. /

Zmax = R

22



/ Over-running

If Zre > Lax , SOlVing for ax and by is liable to give ax > by .

Zi &
Reject Hy
¢ ~— o o OK
* . 74 ® bk
-
1 1 1 1 1 >-k
yd Accept H

So, reduce ax to bxg — and gain extra power.

Over-running may also occur if Zx = Z,,ax but the information levels

Kdeviate from the equally spaced values (say) used in choosing Zax.

Keeping bx as calculated guarantees type | error probability of exactly o.

~

/
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/

If a final information level L < Zyax IS imposed, solving for ax and

Under-running

br is liable to give ax < by

Again, with bg as calculated, the type | error probability is exactly c.

This time, increase ayx to bx — attained power will be just below 1 — 3

Reject H
~—
* — b
® [ T Y K
. o o0 az
/
; -
1 1 1 1 k
e Accept Hy

~

'/
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/ Error-spending designs and nuisance parameters \

(1) Survival data, log-rank statistics

Information depends on the number of observed failures,

1 _ .
I, = 1 {Number of failures by analysis k}

With fixed dates for analyses, continue until information reaches Zy,x.

Imaa:
71 I Is 1, Iy T Information

If the overall failure rate is low or censoring is high, one may decide to

extend the patient accrual period.

Changes affecting {Z1,Z5, ...} can be based on observed information;
wey should not be influenced by the estimated treatment effect. /
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/ Error-spending designs and nuisance parameters \

(2) Normal responses with unknown variance

In a two treatment comparison, a fixed sample test with type | error rate «

and power 1 — (3 at 6 = 0 requires information

(2a + 26)2
52 '

A group sequential design with inflation factor K needs maximum

Iy =

information Zy.x = RZy.

The maximum required information is fixed — but the sample size needed

to provide this level of information depends on the unknown variance a2

Adapting to nuisance parameters

- /
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/ Adjusting sample size as variance is estimated

The information from 1 4 observations on treatment Aand ng on B is

1 1 -1
()
naA  Np
Initially: Set maximum sample sizes to give information Z,,,x if o? is

equal to an initial estimate, 08.

As updated estimates of o’ are obtained: Adjust future group sizes so

the final analysis has

1 1 -1
nA np

NB, state 7,4 in the protocol, not initial targets for n 4 and np.

At interim analyses, apply the error spending boundary based on observed

xestimated) information. /
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/ 4. Optimal group sequential tests \

“Optimal” designs may be used directly — or they can serve as a

benchmark for judging efficiency of designs with other desirable features.

Optimising a group seqguential test:
Formulate the testing problem:
fix type | error rate v and power 1 — G at 6 = 9,
fix number of analyses, K,

fix maximum sample size (information), if desired

Find the design which minimises average sample size (information) at

one particular @ or averaged over several 0 s.

- /
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/

N

Derivation of optimal group sequential tests

Create a Bayes decision problem with a prior on €, sampling costs and
costs for a wrong decision. Write a program to solve this Bayes problem by

backwards induction (dynamic programming).

Search for a set of costs such that the Bayes test has the desired

frequentist properties: type | error rate v and power 1 — G at 8 = 0.

This is essentially a Lagrangian method for solving a constrained
optimisation problem — the key is that the unconstrained Bayes problem

can be solved accurately and quickly.

~

/
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/

N

10
20

Example of properties of optimal tests

One-sided tests, o = 8 = 0.05, K analyses, Lo = R 14,
equal group sizes, minimising { Fo(Z) + Es(Z)} /2.

Minimum values of { Eo(Z) + E5(Z)}/2, as a percentage of T ¢;,

R Minimum
1.01 1.05 1.1 1.2 1.3 over R
809 745 728 73.2 753 72.7 at R=1.15
722 652 622 598 59.0 58.7 at R=1.4
69.1 621 590 56.3 552 54.3 at R=1.6
67.6 605 574 546 53.3 52.0 at R=1.6

Note: E/(Z) \, as K ' butwith diminishing returns,
E(Z)\, as R~ uptoapoint.
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/

One-sided tests:

Assessing families of group sequential tests

Pampallona & Tsiatis

Parametric family indexed by A\, boundaries for S, involve IA,

each A implies an “inflation factor” 12 such that Z,,q = R 714y

Error spending, p-family

Error spent is proportional to Z,f, p determines the inflation factor R.

Error spending, ~y-family (Hwang et al, 1994)

Error spent is proportional to

1 _ 6_7 Ik/Imaa:

K 1 —e™

31



/ Families of tests \

Tests with K = 10, « = 0.05,1 — 3 = 0.9.

{Eo(Z)+ Es(Z)}/2 asapercentage of Z ¢,

70

65

60

110 1:1 1:2 1:3 1:4 R
Both error spending families are highly efficient but Pampallona & Tsiatis

tests are sub-optimal.

K Adapting optimally to observed data /
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/ Squeezing a little extra efficiency

~

Schmitz (1993) proposed group sequential tests in which group sizes are

chosen adaptively:
Initially, fix Z1,
observe S1 ~ N(0Z1,17),

then choose Z9 as a function of S, observe So where
So— 81 ~ N(0(Zs —14), (Zo — 17) ),

and so forth.

Specify sampling rule and stopping rule to achieve desired overall type |

error rate and power.

N

/
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To test Hy: 60 = 0 versus Hy: 6 > 0 with type | error rate o« = 0.025
andpower 1 — 5 =0.9 at 6 = 0.

Aim for low values of

| Es()£(6) d.
where f(0) is the density of a IV (8, 62 /4) distribution.

Constraints:

Maximum sample information = 1.2 X fixed sample information.

Maximum number of analyses = K.

Again, optimal designs can be found by solving related Bayes decision

@oblems.

/ Examples of “Schmitz” designs \

/
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/ Examples of “Schmitz” designs

Optimal

adaptive

K design
(Schmitz)

72.5
64.8
61.2
58.0
56.6
10 55.9

o o B~ WODN

efficiency gains are slight.

Optimal
non-adaptive,
optimised
group sizes

73.2
65.6
62.4
59.4
58.0
57.2

Optimal average E(I) as a percentage of the fixed sample information.

Optimal
non-adaptive,
equal group
sizes

74.8
66.1
62.7
59.8
58.3
57.5

Varying group sizes adaptively makes for a complex procedure and the

K Adapting super-optimally to observed data

/
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Examples of “Schmitz” designs

Tests of Hpy: @ = 0 versus Hy: 0 > 0 with type | error rate o« = 0.025,

power 1 — 3 =0.8 at § = 9, and K = 2 analyses.

Designs minimise average ASN { Ey—o(Z) 4+ Ey—s5(Z) + Ey—o5(Z)} /3.

751
0r
Z
N
<
) 65
(@]
s
[}
>
< 6o} . A farm .
A: p—family test, equal group sizes
—— B: p—family test, optimal 1st group
or C: Optimal non-adaptive test
- - - - D: Optimal adaptive test
507 1 1 1 1 1 1
1 1.05 1.1 1.15 1.2 1.25 1.3

_ R

~
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Tests of Hy: 60 = 0 versus H7: 6 > 0 with type | error rate o« = 0.025,
power 1 — 3 =0.8 at § = 9,and K = 5 analyses.

Examples of “Schmitz” designs \

Designs minimise average ASN { Ey—o(Z) 4+ Ey—s5(Z) + Ey—o5(Z)} /3.

K=5

65

D
o
T

[¢)]
al

al
o
T

Average ASN

IN
o
T

—— A: p—family test, equal group sizes

—— B: p—family test, optimal 1st group

w
[&)]

C: Optimal non—adaptive test

w
o
T

- - - D: Optimal adaptive test

| | | | |
1.2 1.4 1.6 1.8 2
K R /
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/

N

e Pre-planned extensions. The way the design changes in response to

5. Recent adaptive methods \

“Adaptivity” = “Flexibility”

interim data is pre-determined: Proschan and Hunsberger (1995), Li et
al. (2002), Hartung and Knapp (2003) — very much like “Schmitz”

designs.

Partially pre-planned. The time of the first interim analysis is
pre-specified, as is the method for combining results from different
stages: Bauer (1989), Bauer & Kohne (1994).

Re-design may be unplanned. The method of combining results from
different stages is implicit in the original design and carried over into
any re-design: Fisher (1998), Cui et al. (1999), Denne (2001) or Muller

& Schafer (2001). /
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Bauer (1989) and Bauer & Kohne (1994) ...

... proposed mid-course design changes to one or more of

Treatment definition
Choice of primary response variable
Sample size:

— in order to maintain power under an

estimated nuisance parameter

— to change power in response to external
information
— to change power for internal reasons
a) secondary endpoint, e.g., safety

A

b) primary endpoint, i.e., 6.

39




/ Bauer & Kohne’s two-stage scheme

Each part yields a one-sided P-value and these are combined.

® Run part 1 as planned. This gives
Py ~ U(0,1) under Hy.
e Make design changes.
e Run part 2 with these changes, giving
Py, ~ U(0,1) under Hy,
conditionally on PP; and other part 1 information.
e Combine P} and FP» by Fisher’'s combination test:

1
K —log(P) Py) ~ 5)& under Hy.

Investigators decide at the design stage to split the trial into two parts.

~

40



/ B & K: Major design changes before part 2 \

With major changes, the two parts are rather like separate studies in a
drug development process, such as:

Phase IIb

Compare several doses and select the best.

Use a rapidly available endpoint (e.g., tumour response).

Phase Il

Compare selected dose against control.

Use a long-term endpoint (e.g., survival).

Applying Fisher's combination test for 7; and P> gives a meta-analysis of

the two stages with a pre-specified rule.

Note: Each stage has its own null hypothesis and the overall Hy is the

Q\tersection of these. /
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/ B & K: Minor design changes before stage 2 \

With only minor changes, the form of responses in stage 2 stays close to

the original plan.

Bauer & Kohne’s method provides a way to handle this.

Or, an error spending test could be used:

Slight departures from the original design will perturb the observed

information levels, which can be handled in an error spending design.

After a change of treatment definition, one can stratify with respect to
patients admitted before and after the change. As long as the overall score
statistic can be embedded in a Brownian motion, one can use an error

spending test with a maximum information design.

- /
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/ B & K: Nuisance parameters \

Example. Normal response with unknown variance, a2

Aiming for type | error rate «« and power 1 — 3 at 8 = 0, the necessary

sample size depends on o’

One can choose the second stage’s sample size to meet this power

requirement assuming variance is equal to s%, the estimate from stage 1.
Py and P, from t-tests are independent U (0, 1) under Hy — exactly.

Other methods:

(a) Many “internal pilot” designs are available.
(b) Error spending designs can use estimated information (from 52).

(c) The two-stage design of Stein (1945) attains both type I error and

K power precisely! /
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At an interim stage suppose, for reasons not concerning the primary

External factors or internal, secondary information

endpoint, investigators wish to achieve power 1 — 3 at 6 = O rather

than 0 = 0 (5 < 0).

be increased, e.g., to give conditional power 1 — (3 at 6 = 5.

Unplanned re-design

sequential design by

preserving conditional type | error rate under 6§ = 0,

ensuring conditional power 1 — (3 at 6 = 0

K_ see Denne (2001) or Muller & Schafer (2001).

If this happens after part 1 of a B & K design, the part 2 sample size can

Recent work shows the same can be done within a fixed sample or group

~

/
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4 :

Responding to @, an estimate of the primary endpoint

Motivation may be:

® to rescue an under-powered study,

~

e a “wait and see” approach to choosing a study’s power requirement,

e trying to be efficient.

Many methods have been proposed to do this.

If re-design is unplanned, the conditional type | error rate approach is

available.

It is good to be able to rescue a poorly designed study.

But, group sequential tests already base the decision for early

K stopping on 6@ — and optimal GSTs do this optimally!

/
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4 N

The variance spending method

L. Fisher (1998), Cui et al. (1999), Denne (2001), ...

As before, consider study with two parts.

B & K used R.A. Fisher’s inverse X2 method to combine P, Ps.

Instead we use the weighted inverse normal method (Mosteller and Bush
1954).

Define Z1 = & 1(1 - P) Zy =3 1 - P)

Note Zo ~ N (0, 1) under H( conditionally on P;, Z1 and other part 1

information.

Suppose wi, wsy are fixed weights with w% + w% = 1.
Then Z = w1 Z1 + waZy ~ N(0, 1) and test that rejects Hy when
Z > z(«) has level a.

- /
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/

Suppose we observe X1, Xo, ... iid. N(0,0?) in two consecutive

Variance spending method — normal observations

stages:

Stage 1: X1{,...X,,
Stage 2: Xy 41,-..Xn, N =m1+m2

1

If Hy : 0 = 0, we have
Xl—l—...—|-Xm1 Xm1_|_1,—|—...—|—Xn
0\/m1 U\/m2

Choose weights w1 = /m1/n, wg = y/ma/n

If no redesign

A

nooX.
= w1l +woly = =17
O/ T

Qote: Usual efficient test statistic (unlike B&K).

a7



/ Extending the study — downweighting \

Suppose instead we decide to change my to yms at interim look.
This decision can be based on Stage 1 data —i.e. v = v(Z1)

Now Z- statistic (w121 + waZ9) becomes

7 mi Z?lllX ' ZTlnﬁJﬁQ X
og\/mMq n
1 mi ) mi-+7ymsa
= ZXZ + ’}/_5 Z Xz'
ovn \ i i=my+1

The test Z > z(«) retains type 1 error .

Qut note that second stage observations are down-weighted (if v > 1). /
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/ 6. Example of inefficiency in an adaptive design \

Example. A Cui, Hung & Wang (1999) style example.
Scenario.
We wish to design a test with type | error probability v = 0.025.

Investigators are optimistic the effect, 8, could be as high as 0* = 20.
However, effect sizes as low as about 8 > 0** = 15 are clinically relevant

and worth detecting (cf the example cited by Cui et al).

First, consider a fixed sample study attaining power 0.9 at 8 = 0* = 20.

We suppose this requires a sample size 1y = 100.

An adaptive design starts out as a fixed sample test with .y = 100

observations, but the data are examined after the first 50 responses to see

chere IS a need to “adapt”. /
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/

Denote the estimated effect based on the first 50 observations by 0.

If 51 < 0.2 0™ = 4, stop the trial for futility, accepting Hy.

Cui et al. adaptive design

~

Otherwise, re-design the remainder of the trial, preserving the conditional

type | error rate given 61 — thereby maintaining overall type | error rate

Q.

Choose the remaining sample size to give conditional power 0.9 if in fact

0=0,.

Then, truncate this additional sample size to the interval (50, 500), so no

decrease in sample size is allowed and we keep the total sample size to at

@ost 550.

/
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/ Power of the Cui et al. adaptive test \

© Adaptive test

* Fixed sample test, n=100

I I I I ]
0 0.2 0.4 0.8 1 1.2

0.6
6/0*

The adaptive test improves on the power of the fixed sample test,
achieving power 0.85 at 6 = 0** = 15 (i.e., 0/0* = 0.75).

If continuing past the first stage, total sample size ranges from 100 to 550.

- /
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/ A conventional group sequential test \

Similar overall power can be obtained by a non-adaptive GST designed to

attain power 0.9 when 6 = 14.

We have compared a power family, error spending test with p = 1:

type | error rate is o« = 0.025,

taking the first analysis after 68 observations and the second analysis

after 225 gives a test meeting the requirement of power 0.9 at 0 = 14.

This test dominates the Cui et al. adaptive design with respect to both
power and ASN. It also has a much lower maximum sample size — 225

compared to 550.

- /
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/ Cui et al. adaptive test vs non-adaptive GST \

Power

s o o o
2 & § 1%
ASN

2

+ 2-group GST + 2—-group GST

o )
© Adaptive test Adaptive test

o.‘e 08 1 12 o 02 0.4 0‘6
6/o* 0/5*

The advantages of the conventional GST are clear. It has higher power, a
lower average sample size function, and a much smaller maximum sample

size.

We have found similar inefficiency in many more of the adaptive designs

Qoposed in the literature. /
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/ Conditional power and overall power \

It might be argued that only conditional power is important once a study is

underway so overall power is irrelevant once data have been observed.
However:
Overall power integrates over conditional properties in just the right way.

It is overall power that is available at the design stage, when a stopping

rule and sampling rule (even an adaptive one) are chosen.

As the example shows, “chasing conditional power” can be a trap leading
to very large sample sizes when the estimated effect size is low — and,

given the variability of this estimate, the true effect size could well be zero.

To a pharmaceutical company conducting many trials, long term

performance is determined by overall properties, i.e., the power and

Q/erage sample size of each study. /
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/ 7. Conclusions \

Error Spending tests using Information Monitoring can adapt to

e unpredictable information levels,
® nuisance parameters,

e observed data, i.e., efficient stopping rules.

Methods preserving conditional type | error allow re-design in response

to external developments or internal evidence from secondary endpoints.

Recently proposed adaptive methods can
facilitate re-sizing for nuisance parameters,
support re-sizing to rescue an under-powered study,
allow an on-going approach to study design.

But, they will not improve on the efficiency of “standard” Group Sequential

@sts — and they can be substantially inferior. /
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