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A variety of adaptive and flexible procedures

� Adaptive randomisation rules designed to allocate fewer subjects to

the inferior treatment.

� Adapting the sample size to estimates of nuisance parameters.

� Re-assessing the power requirement in response to interim data or

external information.

� Flexibility to change treatment, outcome or response during a study.
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Plan of talk

1. Motivation for adaptive sample size designs.

2. Methods for adaptive re-design.

3. Examples: Group sequential tests adapting to

(1) internal information,

(2) external factors.

Overall efficiency of these procedures.

4. Pre-designed group sequential tests with adaptive group sizes.
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x1 Motivation: Prototype example

Balanced parallel design
XAi � N(�A; �
2); XBi � N(�B; �
2)

Yi = XAi �XBi � N(�; 2�2)

� = �A � �B

The MLE of � is b� = XA �XB .

Without loss of generality, suppose 2�2 = 1.

Aim: to Test H0: � = 0 versus H1: � > 0

with type I error rate �, e.g. � = 0:025.
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Fixed sample design

Initially aim for power 1� � at target effect size � = Æ.

Hence set sample size

n = (z� + z�)
2 2�2

Æ2

=

�
z� + z�

Æ

�2

per treatment arm, where z� = ��1(1� �), etc.

(Recall 2�2 = 1.)
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Data at an intermediate stage

After a fraction r of the sample size (information) is collected,

b�1 � N(�; 1
rn
);

S1 � N(�rn; rn):

Intermediate results may be examined, even though a formal interim

analysis was not planned.
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Disappointing results

� Suppose b�1 is positive but smaller than the hoped for effect size Æ.

� It is unlikely that H0 will be rejected (low conditional power).

� However, the magnitude of b�1 is clinically meaningful.

� It appears the original target effect size Æ was over-optimistic.

Can this trial be “rescued” ?
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External changes

� Suppose external information about a competing treatment or changes

in the manufacturer’s circumstances imply it would be worthwhile to

find a smaller treatment effect than Æ.

� Alternately, the same change in objective may be motivated by, say,

safety information internal to the current study.

� Interim data have been seen, so the investigators do know the current

estimate b�1.

Can the trial be enlarged without loss of credibility?
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Revising the sample size

� At an interim stage, we wish we had designed the test with power

1� � at � = Æ=� (� > 1) rather than at � = Æ.

E.g., Æ=� = b�1 where this is > 0 and < Æ.

� This would have required the larger sample size �2n instead of n.

� One might collect extra observations in the remainder of the study to

make a total sample size of �2n.
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Naive test leads to inflated type I error

Suppose we behave as if the sample size �2n was pre-planned and

compute

Z =
�

XA �XB
�p

�2n:

If � is a function of the first stage data, Z is not N(0; 1).

The test that rejects when Z > z� does not have type I error �.

Type I error rate is inflated

� typically by 30% to 40% (Cui, Hung & Wang, Biometrics, 1999)

� can more than double (Proschan, Follmann & Waclawiw, Bmcs, 1992).
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x2 Methods for adaptive re-design

1. Bauer & K öhne (Biometrics, 1994)

Design the study in two stages.

Calculate two separate P-values for H0 from the two stages, p1 and p2.

Use R. A. Fisher’s test based on

� ln(p1p2) � 0:5�24:

Note the second stage can be re-designed in light of first stage results as

long as, conditionally, p2 � U(0; 1) under H0.

But: this way of combining the two stages has to be pre-specified.
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Adaptive re-design

2. L. Fisher: Variance spending (Stats in Medicine, 1998)

A fixed sample of n observations can be divided into

stage 1: S1 =

Prn
i=1(XAi �XBi)

� N(rn�; rn);

stage 2: S2 =

Pn
i=rn+1(XAi �XBi)

� N(f1� rgn�; f1� rgn):

Under H0: � = 0,

Z =

S1 + S2p
n

=
�

S1p
n

�
+
�

S2p
n

�
� N(0; 1):
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Variance spending — continued

At stage 1, we observe S1=
p

n from its N(rn�; rn) distribution.

If we then modify the stage 2 sample size to (1� r)n; conditionally
S0
2 � N(f1� rgn�; f1� rgn):

Under H0: � = 0,

�1=2 S0
2=
p

n � N(0; f1� rg);

just like the originally planned S2=
p

n: Hence,

Z =

S1 + �1=2 S0
2p

n

� N(0; 1):
Note this method can be used for unplanned adaptation.
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Adaptive re-design

3. Cui, Hung & Wang, Biometrics , 1999

Consider a group sequential design planned for the sequence of

information levels fI1; : : : ; IKg.

Score statistic increments are independent with

S1 � N( �I1; I1);

Sk � Sk�1 � N( �(Ik � Ik�1); Ik � Ik�1):

Suppose re-design takes place at analysis j and future increments in

information are increased by a factor .

Denote new score statistics by S0
j+1; S
0

j+2; : : : ; S
0

K :
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Cui et al. — continued

Then
S0
k � S0
k�1 � N( �  (Ik � Ik�1);  (Ik � Ik�1))

independently of other increments (taking S0
j = Sj ).

Defining

Sk = Sj +

kX
i=j+1

�1=2(S0
i � S0
i�1); k = j + 1; : : : ;K;

recovers the original joint distribution, under H0, of S1; : : : ; SK .

Applying the original boundary to these statistics maintains the type I error

probability.
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Adaptive re-design

4. Conditional type I error probability

In our 2-stage example, conditional type I error probability after stage 1 is
P�=0fS1 + S2 > z�
p

n j S1 = s1g: (1)

If stage 2 sample size is modified and a test defined that preserves the

conditional error probability (1), overall type I error rate � is maintained.

� The methods of L. Fisher and Cui et al. do this.

� Jennison & Turnbull (2003, SiM) show that any unplanned design

modification must have this property.

� Müller & Schäfer (2001, Bmcs) and Denne (2001, SiM) use this

construction in adaptive group sequential designs.
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Variance spending — notes

� If on re-design future sample sizes are multiplied by  > 1, later

observations are down-weighted. The final statistic Z is not sufficient

for � — so the efficiency of this approach is suspect.

� The distribution of Z under � 6= 0 is not simple. The inter-relation of

stages 1 and 2 needs to be properly treated in calculating overall

properties of adaptive procedures.

We shall report results on power and average sample size for examples

with specific rules for sample size adaptation.
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x3 Example 1: A Cui, Hung & Wang (1999) design

Original group sequential design:

To test H0: � = 0 with type I error rate 0:025 and power 0:9 at � = Æ.

Observations taken in 5 groups; early stopping allowed to reject H0.

-

6

�hh
� � � �

Reject H0

Accept H0

nmax

�Sk

n

nmax = 10:8=Æ2, cf fixed sample size, nf = 10:5=Æ2.
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Design modification

Cui et al. suggest adjusting the design at just one interim analysis.

Changing design at stage 3:

Group 4

Original plan: S4 = sum of nmax=5 terms (XAi �XBi)

Revised plan: S0
4 = sum of  (nmax=5) terms (XAi �XBi)

Use �1=2 S0
4 in place of S4, preserving the null distribution.

Group 5 — similarly.
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Re-design in response to b�3 (internal information)

Aim for the sample size needed in the original test to attain power 0:9 at

� = b�3 with a minimum value of � = Æ=2.

So, set �(b�3) = min (Æ=b�3; 2) .

To achieve total sample size �(b�3)2nmax; with a correction for weighting

by �1=2; take

(b�3) =

f�(b�3)� 0:6g2

(1� 0:6)2

:
Hence  2 (0; 12:25) and total sample size 2 (0:6nf ; 5:6nf ).
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Figure 1. Power functions of original group sequential test and Cui et al.

adaptive test.
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Figure 2. Power functions of Cui et al. adaptive test and a non-adaptive

5 group test with power 0:9 at � = 0:54 Æ.
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   Cui et al. adaptive test

   ρ−family, 5 group test

The non-adaptive test is a �-family error spending test with � = 0:75 and

interim analyses at 0.1, 0.2, 0.45 and 0.7 of the maximum sample size.
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Figure 3. Average Sample Number (ASN) curves of Cui et al. adaptive

test and matched non-adaptive test.
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   Cui et al. adaptive test

   ρ=0.75, 5 group test

ASN scale is in multiples of the original fixed sample size, nf .
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Setting power: a strange philosophy

Shen and Fisher (1999, Biometrics) refer to setting power 1� � at effect

size Æ where Æ is an estimate of �. In Example 1 we tried to attain power

1� � at � = b�3.

This suggests we are aiming for a power function of the following form (!)
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A preferable formulation

Test H0: � = 0 with:

type I error rate �,

power 1� � at � = Æ,

low ASN at � = Æ� � Æ.

-

�0 Æ Æ�

No treatment
effect

Minimum effect
of interest

“Anticipated”
effect

It should not be necessary to see b� = Æ before realising a treatment

effect of this size is (just) worth pursuing.
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Example 2: M üller-Sch äfer adaptation to external information

Original error spending design:

To test H0: � = 0 with type I error rate 0:025 and power 0:9 at � = Æ.

5 group error spending test, � = 3, early stopping to accept or reject H0.

-

6

�PP
�hh
�hh
� �((

�((
���

�

��
�

Reject H0

Accept H0

nmax

�Sk

n

nmax = 11:0=Æ2, cf fixed sample size, nf = 10:5=Æ2.

26



'
&

$
%

Design modification (external information)

At analysis 2, suppose external factors prompt interest in lower � values

and we now aim for power 0:9 at Æ=2 rather than Æ.

On observing S2 = s2 in the continuation region:

Calculate conditional type I error rate

~�(s2) = P�=0 fReject H0 jS2 = s2g:

Set up a new design based on future observations with

3 further analyses, type I error ~�(s2), power 0:9 at Æ=2.
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Design modification

New design, conditional on S2 = s2 :

Use an error spending test with � = 3.

Required future group sizes depend on s2 through ~�(s2).

For values of s2 in the continuation region, the total sample size

(including groups 1 and 2) varies up to a maximum of 7:5nf .
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Figure 4. Power functions of original � = 3 error spending test and

Müller-Schäfer adaptive test.
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   Muller−Schafer adaptive test

   Original 5 group, ρ=3 test
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Figure 5. Power functions of Müller-Schäfer adaptive test and a

non-adaptive 5 group test with power 0:9 at � = 0:54 Æ.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ/δ

P
ow

er

   Muller−Schafer adaptive test

   ρ=0.75, 5 group test

The non-adaptive test is a �-family error spending test with � = 0:75 and

interim analyses at 0.1, 0.2, 0.45 and 0.7 of the maximum sample size.
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Figure 6. Average Sample Number (ASN) curves of Müller-Schäfer

adaptive test and matched non-adaptive test.
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   Muller−Schafer adaptive test

   ρ=0.75, 5 group test

ASN scale is in multiples of the original fixed sample size, nf .
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x4 Planned adaptive tests

Use of adaptive methods is not confined to “rescuing” studies.

Adaptive designs can be considered in their own right.

In Optimal Sequentially Planned Decision Procedures (Springer-Verlag,

1993), Schmitz proposes tests where the size of group k is allowed to

depend on data seen at analysis k � 1.

But what are the advantages over standard group sequential tests

where group sizes are pre-specified (or vary in a way that does not

depend on b�) ?
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Adaptive designs, Schmitz (1993)

Sequentially planned sequential tests

Initially, fix I1,

observe S1 � N(�I1; I1 ),

choose I2 as a function of S1; observe S2 where

S2 � S1 � N( �(I2 � I1); (I2 � I1) ),

and so forth.

Specify sampling rule and stopping rule to achieve desired overall type I

error and power.
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Theoretical considerations

If a study has many, frequent analyses there is very little to be gained

from adaptive sampling.

With a fixed, small number of analyses, adaptive choice of group size

does extend the range of possible designs — offering potential gains

in efficiency.

In any pre-specified design, it is efficient to define sampling and stopping

rules in terms of the sufficient statistic for �.
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Computing optimal adaptive and non-adaptive designs

Eales & Jennison (Biometrika, 1992) and Barber & Jennison, (Biometrika,

2002) derive optimal, non-adaptive group sequential tests.

They use Dynamic Programming to solve Bayes sequential decision

problems, the solutions of which are optimal frequentist tests.

This approach extends, with rather more computation, to yield optimal

adaptive group sequential tests.
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Example

To test H0: � = 0 versus H1: � > 0

with type I error rate � = 0:025

and power 1� � = 0:8 at � = Æ.

Aim for low values of:

1
3
fE�=0(N) +E�=Æ(N) +E�=2Æ(N)g:

Constraints:

Maximum sample size = 1:2 � fixed sample size.

Maximum number of analyses = K .
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Optimal average E(N)

Results are stated as a percentage of the fixed sample size.

Number of Non-adaptive,

analyses, equally spaced

K analyses

2 70.7

3 59.8

4 55.8

6 52.6

8 51.1

10 50.3
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Optimal average E(N)

Results are stated as a percentage of the fixed sample size.

Number of Non-adaptive, Optimal adaptive

analyses, equally spaced group sequential

K analyses design

2 70.7 66.1

3 59.8 57.8

4 55.8 54.0

6 52.6 50.8

8 51.1 49.4

10 50.3 48.6
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Optimal average E(N)

Results are stated as a percentage of the fixed sample size.

Number of Non-adaptive, Non-adaptive, Optimal adaptive

analyses, equally spaced optimised group sequential

K analyses group sizes design

2 70.7 66.4 66.1

3 59.8 58.5 57.8

4 55.8 55.1 54.0

6 52.6 52.1 50.8

8 51.1 50.7 49.4

10 50.3 49.8 48.6
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Conclusions

� One can rescue a study found to lack power at an interim stage.

But, this has a price and investigators really should consider power

requirements properly before a study gets under way.

� Adaptive methods can help when objectives change in response to

external factors. The resulting designs lose some efficiency — but

this is inevitable when circumstances change without warning.

� Pre-planned adaptive designs have some benefits, but perhaps not

enough to compensate for their complexity.
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