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Plan of talk

1. Internal pilots in fixed sample studies

2. Group sequential tests

3. Example: 5-group test, normal response

4. Estimating σ2 during a group sequential test

5. Example: survival data

6. Error spending tests

7. Changing the power requirement in mid-study
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1. Internal pilots in fixed sample studies

The sample size needed to satisfy a power requirement

often depends on an unknown nuisance parameter.

Examples are:

Variance, σ2, of a normal response.

Binomial response: since variance depends on p,

the sample size needed to detect a difference in

probabilities p1 − p2 = δ depends on (p1 + p2)/2.

Survival data: information is governed by the number

of observed deaths, and this depends on the overall

failure rate and the degree of censoring.

“Over-interpretation of results from a small pilot study,

positive or negative, may undermine support for the major

investigation” (W. G. Cochran).
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Internal pilots

Wittes & Brittain (1990, Statistics in Medicine) suggest an

“internal” pilot.

Let φ denote a nuisance parameter and suppose

the sample size required under a given value of this

parameter is n(φ).

From a pre-study estimate, φ̂0, calculate an initial

planned sample size of n(φ̂0).

At an interim stage, find a new estimate φ̂1 from the

data obtained so far. Aim for the new target sample

size of n(φ̂1).

Variations on this are possible, e.g., only allow an increase

over the original target sample size.
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Features of Internal Pilot designs

Using Wittes and Brittain’s approach, the type I error rate

is only slightly perturbed.

Results for normal data as σ2 is estimated (Jennison &

Turnbull, 2000, Ch. 14):

s21 on 18 degrees of freedom: 0.05 → 0.050 – 0.057

s21 on 38 degrees of freedom: 0.05 → 0.052 – 0.053

But, calculating s2 may reveal the effect estimate, θ̂:

this is undesirable as it breaks the blinding,

adjusting the sample size in the knowledge of θ̂ can

seriously inflate type I error rates — possibly to more

than double its intended value.
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Estimating σ2 from pooled data

Note that with n observations per treatment

Total sum of squares = (n − 2)s2 +
n

2
θ̂
2
.

Thus, knowledge of s2 and a list of responses without

treatment codes is enough to work out the value of |θ̂|.

Gould & Shih (1998, Statistics in Medicine) propose use

of the EM algorithm to fit two normal distributions to the

pooled data. They claim the error in σ̂2 is small but error

in |θ̂| is high — so, effectively, results remain blinded.

Friede & Kieser (2002, Statistics in Medicine) criticise

Gould and Shih’s method because of:

deficiencies in the EM algorithm,

failure to allow for special randomisation procedures.
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An alternative pooled data estimate of σ2

Friede & Kieser suggest the alternative estimator

σ̂2 =
Total sum of squares

n − 1

as they find this has better properties than the Gould and

Shih estimator.

Other options . . .

An independent party could calculate s2 and reveal this

(and only this) to the study’s sponsors and the DSMB.

Combine the sample size exercise with an interim analysis

of treatment effect — so θ̂ (or at least |θ̂|) will be made

known anyway. It could also help to have a pre-set

“sample size” rule ready to apply.
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2. Group sequential tests

In clinical trials, animal trials and epidemiological studies

there are reasons of

ethics

administration (accrual, compliance, . . . )

economics

to monitor progress and accumulating data.

Subjects should not be exposed to unsafe, ineffective or

inferior treatments. National and international guidelines

call for interim analyses to be performed — and reported.

It is now standard practice for medical studies to have a

Data and Safety Monitoring Board to oversee the study

and consider the option of early termination.
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The need for special methods

There is a danger that multiple looks at data can lead to

over-interpretation of interim results

Overall Type I error rate applying

repeated significance tests at

α = 5% to accumulating data

Number of tests Error rate

1 0.05
2 0.08
3 0.11
5 0.14

10 0.19
20 0.25

100 0.37
∞ 1.00

Pocock (1983) Clinical Trials Table 10.1,

Armitage, et al. (1969), Table 2.
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Pocock’s repeated significance test

(1977, Biometrika)

To test H0: θ = 0 against θ 6= 0.

Fix a total number of analyses K. Use standardised test

statistics Zk, k = 1, . . . , K.

Stop to reject H0 at analysis k if

|Zk| > c.

If H0 has not been rejected by analysis K, stop and

accept H0.

-

k

6
Zk

• • • •

• • • •

Reject H0

Reject H0

Accept H0
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Joint distribution of parameter estimates

Reference: Jennison & Turnbull (2000), Ch. 11

Suppose our main interest is in the parameter θ and let

θ̂k denote the estimate of θ based on data available at

analysis k.

The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . , K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, θ̂1, . . . , θ̂K are approximately

multivariate normal,

θ̂k ∼ N(θ, {Ik}−1), k = 1, . . . , K,

and

Cov(θ̂k1
, θ̂k2

) = Var(θ̂k2
) = {Ik2

}−1 for k1 < k2.
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Sequential distribution theory

The preceding results for the joint distribution of

θ̂1, . . . , θ̂K can be demonstrated directly for:

θ a single normal mean,

θ = µA − µB, the effect size in a comparison of two

normal means.

The results also apply when θ is a parameter in:

a general normal linear,

a general model fitted by maximum likelihood (large

sample theory).

There are related canonical distributions for z-statistics

and score statistics.

12



Survival data

The canonical joint distributions also arise for

a) the estimates of a parameter in Cox’s proportional

hazards regression model

b) a sequence of log-rank statistics (score statistics)

for comparing two survival curves

— and to z-statistics formed from these.

For survival data, observed information is roughly

proportional to the number of failures seen.

Special types of group sequential test are needed to

handle unpredictable and unevenly spaced information

levels: see error spending tests.
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Implementing a group sequential test

Think through a fixed sample version of the study.

Decide on the type of early stopping, number of analyses,

and choice of stopping boundary: these will imply

increasing the fixed sample size by a certain “inflation

factor”.

In interim monitoring, compute the standardised statistic

Zk at each analysis and compare with critical values

(calculated specifically for the observed information levels

in the case of an error spending test).

On termination, one can obtain p-values and confidence

intervals possessing the usual frequentist interpretations.
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3. Example of a two treatment comparison, normal

response, 2-sided test

Cholesterol reduction trial

Treatment A: new, experimental treatment

Treatment B: current treatment

Primary endpoint: reduction in serum cholesterol level

over a four week period

Aim: To test for a treatment difference.

High power should be attained if the mean cholesterol

reduction differs between treatments by 0.4 mmol/l.
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How would we design a fixed-sample study?

Denote responses by

XAi, i = 1, . . . , nA, on treatment A,

XBi, i = 1, . . . , nB, on treatment B.

Suppose each

XAi ∼ N(µA, σ2) and XBi ∼ N(µB, σ2).

Problem: to test H0: µA = µB with

two-sided type I error probability α = 0.05

and power 0.9 at |µA − µB| = δ = 0.4.

We suppose σ2 is known to be 0.5.

(Facey, 1992, Controlled Clinical Trials)
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Fixed sample design

Standardised test statistic

Z =
X̄A − X̄B√

σ2/nA + σ2/nB

.

Under H0, Z ∼ N(0,1) so reject H0 if

|Z| > Φ−1(1 − α/2).

Let µA − µB = θ. If nA = nB = n,

Z ∼ N(
θ

√
2σ2/n

,1)

so, to attain desired power at θ = δ, aim for

n = {Φ−1(1 − α/2) + Φ−1(1 − β)}2 2σ2/δ2

= (1.960 + 1.282)2(2 × 0.5)/0.42 = 65.67,

i.e., 66 subjects on each treatment.
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Group sequential design

Specify type of early termination:

stop early to reject H0

Number of analyses:

5 (fewer if we stop early)

Stopping boundary:

O’Brien & Fleming (1979, Biometrics).

Reject H0 at analysis k, k = 1, . . . ,5,

if |Zk| > c
√{5/k},

-

k

6
Zk •

• • • •

•
• • • •

where Zk is the standardised statistic

based on data at analysis k.
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Example: cholesterol reduction trial

O’Brien & Fleming design

From tables (JT, Table 2.3) or computer software

c = 2.040 for α = 0.05

so reject H0 at analysis k if

|Zk| > 2.040
√

5/k.

Also, for specified power, inflate the fixed sample size by

a factor (JT, Table 2.4)

IF = 1.026

to get the maximum sample size

1.026 × 65.67 = 68.

Divide this into 5 groups of 13 or 14 observations per

treatment.
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Some designs with K analyses

O’Brien & Fleming

Reject H0 at analysis k if

|Zk| > c
√

K/k.
-

k

6
Zk •

• • •

•
• • •

Pocock

Reject H0 at analysis k if

|Zk| > c.
-

k

6
Zk

• • • •

• • • •

Wang & Tsiatis, shape ∆

Reject H0 at analysis k if

|Zk| > c (k/K)∆−1/2.
-

k

6
Zk

• • • •

• • • •

(∆ = 0 gives O’Brien & Fleming, ∆ = 0.5 gives Pocock)
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Example: cholesterol reduction trial

Properties of different designs

Sample sizes are per treatment.

Fixed sample size is 66.

K Maximum Expected sample size
sample size θ = 0 θ = 0.2 θ = 0.4

O’Brien & Fleming

2 67 67 65 56
5 68 68 64 50

10 69 68 64 48

Wang & Tsiatis, ∆ = 0.25

2 68 67 64 52
5 71 70 65 47

10 72 71 64 44

Pocock

2 73 72 67 51
5 80 78 70 45

10 84 82 72 44
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Implementing the OBF test

Divide the total sample size of 68 per treatment into 5

groups of roughly equal size, e.g.,

14 in groups 1 to 3, 13 in groups 4 and 5.

At analysis k, define

X̄
(k)
A =

1

nAk

nAk∑

i=1

XAi, X̄
(k)
B =

1

nBk

nBk∑

i=1

XBi

and

Zk =
X̄

(k)
A − X̄

(k)
B√

σ2(1/nAk + 1/nBk)
.

Stop to reject H0 if

|Zk| > 2.040
√

5/k, k = 1, . . . ,5.

Accept H0 if |Z5| < 2.040.

If nAk and nBk differ from their planned values — still use

the above rule.
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4. Updating a design as the nuisance

parameter σ2 is estimated

We can design as for the case of known variance but use

an estimate of σ2 initially.

If in doubt, err towards over-estimating σ2 in order to

safeguard the desired power.

At analysis k, estimate σ2 by

s2k =

∑
(XAi − X̄

(k)
A )2 +

∑
(XBi − X̄

(k)
B )2

nAk + nBk − 2
.

In place of Zk, define t-statistics

Tk =
X̄

(k)
A − X̄

(k)
B√

s2k(1/nAk + 1/nBk)
,

then test at the same significance level used for Zk when

σ2 is known.
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Updating the target sample size

Recall, maximum sample size is set to be the fixed sample

size multiplied by the Inflation Factor.

In a 5-group O’Brien & Fleming design for the cholesterol

example this is

1.026 × {Φ−1(1 − α/2) + Φ−1(1 − β)}2 2σ2/δ2

= 134.8 × σ2.

After choosing the first group sizes using an initial estimate

of σ2, at each analysis k = 1,2, . . . we can re-estimate

the target for nA5 and nB5 as

134.8 × s2k

and modify future group sizes to achieve this.
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Example: updating the sample size

Initially:

With initial estimate σ̂2 = 0.5,

aim for nA5 = nB5 = 134.8 × 0.5 = 68.

Plan 14 observations per treatment group.

Analysis 1:

With nA1 = nB1 = 14 and s21 = 0.80,

aim for nA5 = nB5 = 134.8 × 0.80 = 108.

For now, keep to 14 obs. per treatment group.

Analysis 2:

With nA2 = nB2 = 28 and s22 = 0.69,

aim for nA5 = nB5 = 134.8 × 0.69 = 93.

Now increase group size to 22 obs. per treatment.
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Example: updating the sample size

Analysis 3:

With nA3 = nB3 = 50 and s23 = 0.65,

aim for nA5 = nB5 = 134.8 × 0.65 = 88.

Set next group size to 19 obs. per treatment.

Analysis 4:

With nA4 = nB4 = 69 and s24 = 0.72,

aim for nA5 = nB5 = 134.8 × 0.72 = 97.

Set final group size to 28 obs. per treatment.

Analysis 5:

With nA5 = nB5 = 97, suppose s25 = 0.74,

so the target is nA5 = nB5 = 134.8 × 0.74 = 100

— and the test may be slightly under-powered.
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Remark on “re-estimating” sample size

The target information for θ = µA − µB is

Imax = IF × {Φ−1(1 − α/2) + Φ−1(1 − β)}2 /δ2

= 1.026 × (1.960 + 1.282)2/0.42 = 67.4.

The relation between information and sample size

Ik =

{(
1

nAk

+
1

nBk

)
σ2

}−1

involves the unknown σ2. Hence, the initial uncertainty

about the necessary sample size.

In effect, we proceed by monitoring observed information:

-×
I1

×
I2

×
I3

×
I4

×
I5

Imax

= 67.4

Information

NB, state Imax = 67.4 in the protocol, not n = . . .
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5. A survival data example

Oropharynx Clinical Trial Data

(Kalbfleisch & Prentice (1980) Appendix 1, Data Set II)

Patient survival was compared on experimental Treatment

A and standard Treatment B.

Number Number
entered of deaths

k Date Trt A Trt B Trt A Trt B

1 12/69 38 45 13 14

2 12/70 56 70 30 28

3 12/71 81 93 44 47

4 12/72 95 100 63 66

5 12/73 95 100 69 73
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The logrank statistic

At stage k, observed number of deaths is dk. Elapsed

times between study entry and failure are τ1,k < τ2,k <

. . . < τdk,k (assuming no ties).

Define

riA,k and riB,k numbers at risk on Treatments

A and B at τi,k−
rik = riA,k + riB,k total number at risk at τi,k−
Ok observed number of deaths on

Treatment B at stage k

Ek =
∑dk

i=1
riB,k

rik
“expected” number of deaths

on Treatment B at stage k.

Vk =
∑dk

i=1
riA,kriB,k

r2
ik

“variance” of Ok

The standardised logrank statistic at stage k is

Zk =
Ok − Ek√

Vk
.
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Proportional hazards model

Assume hazard rates hA on Treatment A and hB on

Treatment B are related by

hB(t) = λ hA(t).

The log hazard ratio is θ = ln(λ).

Then, approximately,

Zk ∼ N(θ
√Ik, 1)

and

Cov(Zk1
, Zk2

) =
√

(Ik1
/Ik2

), 1 ≤ k1 ≤ k2 ≤ K,

where Ik = Vk.

For λ ≈ 1, we have Ik ≈ Vk ≈ dk/4.
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Design of the Oropharynx trial

One-sided test of H0: θ ≤ 0 vs θ > 0. Under the

alternative λ > 1, i.e., Treatment A is better.

Require:

type I error probability α = 0.05,

power 1 − β = 0.95 at θ = 0.6, i.e., λ = 1.8.

Information needed for a fixed sample study is

If =
{Φ−1(α) + Φ−1(β)}2

0.62
= 30.06

Under the approximation I ≈ d/4 the total number of

failures to be observed is df = 4 If = 120.2.
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Design of the Oropharynx trial

For a one-sided test with up to 5 analyses, we could use

a standard design created for equally spaced information

levels.

-

Ik

6
Zk

•
•

• • •
•

•

•

•

HH

PPP
``̀

��

�
��

"
""

!!!

!!!

Reject H0

Accept H0

However, increments in information between analyses will

be unequal and unpredictable.

This leads to consideration of an “error spending” design.
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6. Error spending tests

Lan & DeMets (1983, Biometrika) presented two-sided

tests which “spend” type I error as a function of observed

information.

Maximum information design:

Error spending function f(I)

-

IkImax

6
f(I)

α

��!!�"��
��

#
��

#
��

��
"�!!��

Set the boundary at analysis k to give cumulative Type I

error f(Ik).

Accept H0 if Imax is reached without rejecting H0.
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Error spending tests

Analysis 1:

Observed information I1.

Reject H0 if |Z1| > c1 where

Prθ=0{|Z1| > c1} = f(I1).

-

I1
k

6
Zk

•

•

Analysis 2:

Cumulative information I2.

Reject H0 if |Z2| > c2 where

Prθ=0{|Z1| < c1, |Z2| > c2}

= f(I2) − f(I1).

-

I1 I2
k

6
Zk

•
•

•
•

etc.
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One-sided error spending tests

For a one-sided test, define f(I) and g(I) to specify how

type I and type II error probabilities are spent as a function

of observed information.

-

IImax

6
f(I)

α

��!!�"��
��

��
��

��
"�!!��

-

IImax

6
g(I)

β

��!!�"��
��

��
��

��
"�!!��

At analysis k, set boundary values (ak, bk) so that

Prθ=0 {Reject H0 by analysis k} = f(Ik),

Prθ=δ {Accept H0 by analysis k} = g(Ik).

Power family of error spending tests:

f(I) and g(I) ∝ (I/Imax)ρ.
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One-sided error spending tests

1. Values {ak, bk} are easily computed using iterative

formulae of McPherson, Armitage & Rowe (1969,

JRSS, A).

2. Computation of (ak, bk) does not depend on future

information levels, Ik+1, Ik+2, . . . .

3. In a “maximum information design”, the study

continues until the boundary is crossed or an analysis

is reached with Ik ≥ Imax.

4. Special treatment of “over-running” or “under-running”

protects the type I error rate.

5. The value of Imax should be chosen so that

boundaries converge at the final analysis under a

typical sequence of information levels, e.g., Ik =

(k/K) Imax, k = 1, . . . , K.
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A one-sided error spending design for

the Oropharynx trial

Specification:

one-sided test of H0: θ ≤ 0 vs θ > 0,

type I error probability α = 0.05,

power 1 − β = 0.95 at θ = ln(λ) = 0.6.

At the design stage, assume K = 5 equally spaced

information levels.

Use a power-family test with ρ = 2, i.e., spending error

∝ (I/Imax)2.

Information of a fixed sample test is inflated by a factor

R(K, α, β, ρ) = 1.101 (JT, Table 7.6).

So, we require Imax = 1.101 × 30.06 = 33.10, which

needs a total of 4 × 33.10 = 132.4 deaths.
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Data and boundaries for the Oropharynx trial

We construct error spending boundaries for the

information levels actually observed.

This gives boundary values (a1, b1), . . . , (a5, b5) for the

standardised statistics Z1, . . . , Z5.

Number Number

k entered of deaths Ik ak bk Zk

1 83 27 5.43 −1.60 3.00 −1.04

2 126 58 12.58 −0.37 2.49 −1.00

3 174 91 21.11 0.63 2.13 −1.21

4 195 129 30.55 1.51 1.81 −0.73

5 195 142 33.28 1.73 1.73 −0.87

This rule would have led to termination at the 2nd analysis.

NB: A maximum information design is implicitly adaptive.

More subjects must be recruited or existing subjects

followed up further until the target Imax is reached.
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7. Changing the power requirement in mid-study

Suppose a study is designed to attain power 1 − β at

effect size θ = δ.

At an intermediate stage, results show:

θ̂1 is positive but smaller than the hoped for effect δ,

H0 is unlikely to be rejected (low conditional power),

however, the magnitude of θ̂1 is clinically meaningful.

It appears that the original target effect size δ was over-

optimistic — a larger sample size would have been better.

Can this trial be “rescued” ?

39



External changes

Suppose external information (e.g., concerning a

competing treatment or changes in the manufacturer’s

circumstances) imply it is now worthwhile to find a

smaller treatment effect than δ.

Alternately, the same change in objective may be

motivated by, say, safety information internal to the

current study.

Interim data have been seen, so the investigators do

know the current estimate θ̂1.

Can the trial be enlarged without loss

of credibility?
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Methods for unplanned re-design

Bauer & Köhne (1994, Biometrics) provide a framework —

but you must state at the outset that you are following this

non-standard approach.

L. Fisher (1998, Statistics in Medicine) proposes the

method of “variance spending” which can be introduced

without prior planning.

Cui, Hung & Wang, (1999, Biometrics) present a method

for re-specifying group sizes — and maximum sample size

— in a group sequential design.

Müller & Schäfer (2001, Biometrics) give a general

methodology based on preserving the conditional type I

error probability. This has the flexibility to be used in error

spending designs

41



Example: Müller-Schäfer adaptation to

external information

Original error spending design:

To test H0: θ = 0 with type I error rate 0.025 and power

0.9 at θ = δ.

5 group error spending test, ρ-family with ρ = 3, early

stopping to accept or reject H0.

-

6

• PPPP • hhhh • hhhh • •
((((•((((•

����
•

�
�

��

•

Reject H0

Accept H0

nmax

ΣSk

n

nmax = 11.0/δ2, cf fixed sample size, nf = 10.5/δ2.
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Design modification in response to

external information

At analysis 2, suppose external factors prompt interest in

lower θ values and we now aim for power 0.9 at δ/2

rather than δ.

On observing S2 = s2 in the continuation region:

Calculate conditional type I error rate

α̃(s2) = Pθ=0 {Reject H0 |S2 = s2}.

Set up a new design (ρ-family, ρ = 3) based on future

observations with 3 further analyses and

type I error α̃(s2), power 0.9 at δ/2.

The future group sizes depend on s2 through α̃(s2).
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Figure 1. Power functions of original error spending test

and Müller-Schäfer adaptive test.
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Figure 2. Power functions of Müller-Schäfer adaptive

test and a non-adaptive 5 group test with power 0.9 at

θ = 0.54 δ.
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The non-adaptive test is a ρ-family error spending test with

ρ = 0.75 and interim analyses at 0.1, 0.2, 0.45 and 0.7 of

the maximum sample size.
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Figure 3. Average Sample Number (ASN) curves of

Müller-Schäfer adaptive test and matched non-adaptive

test.
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ASN scale is in multiples of the original fixed sample size, nf .

Note: not designing for the final objective from the

outset incurs a penalty of a larger sample size.
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Conclusion

Good sample size re-estimation methods are available to

deal with nuisance parameters.

Care must be taken to avoid revealing the estimated effect

size when it is meant to remain blinded. Considering

sample size issues at interim analyses of a group

sequential test can (at least partly) alleviate this problem.

Methods are available to modify sample size to meet a

new power criterion mid-way through a study. However,

these come at a price. Where possible, it is much better

to identify the correct objective at the design stage.
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