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Plan of talk

1. Motivation for adaptive sample size designs.

2. “Variance spending” and related methods.

3. Example 1: A hypothesis test with a single, final analysis.

4. Formulating the real testing problem.

5. A catalogue of group sequential tests.

6. Example 2: A group sequential test with adaptive re-design.
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A variety of adaptive and flexible procedures

� Adapting the sample size to estimates of nuisance parameters.

� Adaptive randomisation rules designed to allocate fewer subjects to

the inferior treatment.

� Flexibility to change treatment, outcome or response during a study.

� Re-assessing the power requirement in response to interim data.
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x1 Motivation: Prototype example

Balanced parallel design
XAi � N(�A; �
2); XBi � N(�B; �
2)

Yi = XAi �XBi � N(�; 2�2)

� = �A � �B

The MLE of � is b� = XA �XB .

Without loss of generality, suppose 2�2 = 1.

Aim: to Test H0 : � = 0 versus H1 : � > 0

with Type I error rate �, e.g. � = 0:025.
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Fixed sample design

Initially aim for power 1� � at target effect size � = Æ.

Hence set sample size

n = (z� + z�)
2 2�2

Æ2

=

�
z� + z�

Æ

�2

per treatment arm, where z� = ��1(1� �), etc.

(Recall 2�2 = 1.)
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MLE, Z and score statistics

For this test:

b� = XA �XB = Y � N(�; n�1)

Z = b�pn � N(�
p

n; 1)

S = b�n =

P
Yi � N(�n; n)

Working with information rather than sample size, we can generalise to

� other designs (e.g. crossover, general linear model)

� other endpoints (e.g. binary data, survival data).
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Data at an intermediate stage

After a fraction r of the sample size (information) is collected,

b�1 � N(�; 1
rn
);

S1 � N(�rn; rn):

Intermediate results may be examined, even though a formal interim

analysis was not planned.
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Disappointing results

� Suppose b�1 is positive but smaller than the hoped for effect size Æ.

� It is unlikely that H0 will be rejected (low conditional power).

� However, the magnitude of b�1 is clinically meaningful.

� It appears the original target effect size Æ was over-optimistic.

Can this trial be “rescued” ?
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Revising the sample size

� Let � = Æ=b�1 and suppose � > 1.

� With hindsight, we wish we had designed the test with power 1� �

at � = Æ=� rather than at � = Æ.

� This would have required the larger sample size �2n instead of n.

� One might collect extra observations in the remainder of the study to

make a total sample size of �2n.
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Naive test leads to inflated Type I error

Suppose we behave as if the sample size �2n was pre-planned and

compute

Z =
�

XA �XB

�p
�2n:

Since � is a function of the first stage data, Z is not N(0; 1).

The test that rejects when Z > z� does not have Type I error �.

Type I error rate is inflated

� typically by 30% to 40% (Cui, Hung & Wang, Bmcs, 1999)

� can more than double (Proschan, Follmann & Waclawiw, Bmcs, 1992).
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Should we worry about inflation of Type I error?

Pocock:

“Control of Type I error is a vital aid to prevent a flood of false

positives into the medical literature.”
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Why not just start over?

Perhaps we should just throw away the data and start again with a new,

larger trial.

This is inefficient and wasteful of data.

This procedure would also inflate the Type I error rate. If repeated, it leads

to a Type I error rate of almost one! (“sampling to a foregone conclusion”,

Cornfield, JASA, 1966.)
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“Flexible/adaptive” procedures

Bauer and Köhne (1994). Biometrics.

Proschan and Hunsberger (1995). Biometrics.

Wassmer (1998). Biometrics.

Lehmacher and Wassmer (1999). Biometrics.

Fisher, Lloyd (1998). Self-designing clinical trials. Statist. in Med.

Cui, Hung and Wang (1999). Biometrics.

Chi and Liu (1999). J. Biopharm. Statist.

Müller and Schäfer (2001). Biometrics.

Denne (2001). Statist. in Med.

Jennison and Turnbull (2002). Submitted.
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x2 Variance spending

A fixed sample of n observations can be divided into

stage 1: S1 =
P
rn

i=1
(XAi �XBi);

stage 2: S2 =
P
n

i=rn+1
(XAi �XBi):

Then

S1 � N(rn�; rn);

S2 � N(f1� rgn�; f1� rgn);

S1 + S2 � N(n�; n)

and

Z =
S1 + S2p

n

� N(0; 1) under H0: � = 0.
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Variance spending — continued

If the stage 2 sample size is modified to 
(1� r)n after seeing S1,

S1 � N(rn�; rn)

and, conditionally on S1,

S0
2 � N(
f1� rgn�; 
f1� rgn):

Under H0: � = 0,


�1=2 S0
2 � N(0; f1� rgn)

unconditionally. Hence

Z =

S1 + 
�1=2 S0
2p

n

� N(0; 1) under H0:
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Lloyd Fisher, Statistics in Medicine , 1998

Fisher explains “variance spending” as the construction of a Z statistic

from components with pre-specified variances.

Under H0,

W1 =

S1p
n
� N(0; r);

W2 =

S0
2p


n
� N(0; 1� r)

and

Z = W1 +W2 � N(0; 1):
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Cui, Hung & Wang, Biometrics , 1999

Cui et al consider the joint distribution of weighted sample sums.

They show that, under H0,

(S1; S1 + 
�1=2 S0
2)

has the same joint distribution as the original

(S1; S1 + S2):
This result generalises to a group sequential setting with K analyses and

one or more re-design points.
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Conditional Type I error probability

In the original test, the conditional Type I error probability after stage 1 is

P�=0fS1 + S2 > z�
p

n j S1 = s1g: (1)

If stage 2 sample size is modified and a rule defined that preserves the

conditional error probability (1), overall Type I error rate � is maintained.

� The methods of Fisher and Cui et al do this.

� Jennison & Turnbull (2002) show that any unplanned design

modification must have this property.

� Müller & Schäfer (2001) and Denne (2001) use this construction in

adaptive group sequential designs.

17



'
&

$
%

Variance spending — notes

� For 
 > 1, second stage observations are down-weighted. The final

statistic Z is not sufficient for � — so the efficiency of this approach is

suspect.

� The distribution of Z under � 6= 0 is not simple. The inter-relation of

stages 1 and 2 needs to be properly treated in power calculations.

We shall assess power and average sample size of this method in an

example with a specific rule for the stage 2 sample size.
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x3 Example 1

Original fixed sample design:

To test H0: � = 0 with Type I error rate � and power 1� � at � = Æ.

The study needs n = (z� + z�)
2=Æ2 observations.

After stage 1:

From rn observations, we find b�1 = Æ=� and decide to aim for power

1� � at � = Æ=�.

We modify the second stage sample to 
(1� r)n and follow the

variance spending approach, creating

Z = (S1 + 
�1=2 S0
2)=
p

n:
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Choice of 


Treating 
 as fixed (!) we obtain

E(Z) = fr +p
(1� r)gpn �:

A test designed for power 1� � at Æ=� has sample size �2n and

statistic

Z 0 � N(�
p

n �; 1):

Equating E(Z) and E(Z 0) gives

� = r +
p


(1� r) or 
 =
�

� � r

1� r
�2

(2)

to determine our modified sample size.
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Sample size rule, with truncation

Aim for power 1� � at � = Æ=~� where
~� = ~�(b�1) =

8>>><
>>>:

4 for b�1 � Æ=4;

Æ=b�1 Æ=4 < b�1 < 2Æ;

0:5 b�1 � 2Æ:

(3)

Note that reduction in sample size is possible for high values of b�1.

If the interim look is at the halfway point, i.e., r = 0:5, the second stage

inflation factor, from (2), is


(b�1) = 4f~�(b�1)� 0:5g2 2 (0; 49):
21
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Properties of the test

Power

P�fReject H0g = P�fZ > z�g =
Z

P�fZ > z�jb�1gf�(b�1) db�1

where f�(b�1) is the N(�; 1=(rn)) density of b�1 and

Z = fS1 + 
(b�1)�1=2 S0
2g=
p

n:

Average Sample Number

ASN(�) = rn+ (1� r)n
Z


(b�1)f�(b�1) db�1:
22
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Example

Initial test:

Type I error rate: � = 0:025.

Power: 1� � = 0:9 at � = Æ.

Planned sample size: n = 10:5=Æ2 per treatment arm.

Modification:

Intermediate look after n=2 observations per treatment arm.

Inflation factor 
(b�1) = 4f~�(b�1)� 0:5g2 2 (0; 49).

Total sample size is in the range (0:5n; 25n).

Also, stop for “futility” at stage 1 and accept H0 if b�1=Æ < �0:173,

in which case conditional power under � = Æ=4 is less than 0:8.
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Figure 1. Power functions of Variance Spending test and Fixed Sample

test with power 0:9 at � = Æ.
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Figure 2. Power functions of Variance Spending test and Fixed Sample

test with power 0:9 at � = 0:6 Æ.
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Figure 3. ASN curves of Variance Spending test and Fixed Sample test

with power 0:9 at � = 0:6 Æ.
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ASN scale is in multiples of the original fixed sample size, n.
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Inefficiency: Use of a non-sufficient statistic

Total sample size is N = rn+ 
(1� r)n.

Ignoring randomness in 
, the final statistic has distribution

fS1 + 
�1=2 S0
2g=
p

n � N([r + 
1=2f1� rg]pn�; 1)

so the effective sample size is Neff = (r + 
1=2f1� rg)2n.

For r = 1=2, the “inefficiency” N=Neff is:


 0 0:5 1 2 4 10 49 1

Inefficiency 2 1:03 1 1:03 1:11 1:27 1:56 2
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Inefficiency: Variable sample size, based on noisy b�1

For � = 0:5Æ

0 δ 0.25n 16n

p=0.0003

p=0.22

0.25n 16n

p=0.0003

p=0.22

0.25n 16n

p=0.0003

p=0.22

0.25n 16n

p=0.0003

p=0.22

0.25n 16n

p=0.0003

p=0.22

b�1 Neff

E(Neff )

= 6:17n

A fixed sample test with 6:17n observations would have power 0:98.

The variance spending design gives power 0:85 at � = 0:5Æ.
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x4 Formulating the testing problem

Test H0: � = 0 with:

Type I error rate �,

power 1� � at � = Æ,

low ASN at � = Æ� � Æ.

-

�0 Æ Æ�

No treatment
effect

Minimum effect
of interest

“Anticipated”
effect

It should not be necessary to see b�1 = Æ before realising a treatment

effect of this size is (just) worth pursuing.
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Group sequential setting

Analyse data after n1; n2; : : : ; nK observations, with early stopping to

reject H0: � = 0 or to accept H0.

Standard group sequential test:

Fix targets for n1; : : : ; nK — maybe not equally spaced.

Sequentially planned sequential test:

Allow nk to depend on data at analysis k � 1 (Schmitz,

Springer-Verlag, 1993) — as in adaptive tests.

Efficient tests

Optimal tests or families of efficient tests can be found within

these frameworks (Barber & Jennison, Bmka, 2002).
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x5 Group sequential tests

One-sided error spending tests: Functions f(n) and g(n) specify Type I

and Type II error to spend when n observations have been observed.

-

6
����
�
��
��

f(n)
�

nnmax

-

6
����
�
��
��

g(n)
�

nnmax

At analysis k with cumulative sample size nk; set boundaries so that

P�=0fReject H0 by analysis kg = f(nk);

P�=ÆfAccept H0 by analysis kg = g(nk):
31
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Power family of error spending tests

Take

f(n) =
8<

: �
�

n

nmax
�
�

n < nmax

� n � nmax

g(n) =
8<

: �
�

n

nmax
��

n < nmax

� n � nmax

Choose nmax so that boundaries meet up at n = nmax for, say,

K equally sized groups.

Setting � = 1 gives a boundary similar to a Pocock test,

� = 3 approximates an O’Brien & Fleming test.
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Attaining low ASN under high values of �

Values � = 1 or � = 0:75 spend error at a high rate early on.

Also, a few very early analyses are desirable.

1. Small groups / large groups

M groups of a observations, followed by K�M groups of size b.

-

a a b b b

n0 nmax

2. Geometric pattern

nk = 
K�k nmax (
 < 1)

-
n0 nmax
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Figure 4. Five group, one-sided error spending test with � = 1. Type I error rate

is 0:025 and power 0:9 is attained at � = 0:33 Æ.
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Figure 5. Power functions of Variance Spending test and 5 Group test with

power 0:9 at � = 0:33 Æ.
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Figure 6. ASN curves of Variance Spending test and 2, 5 and 10 Group

tests with power 0:9 at � = 0:33 Æ.

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

θ/δ

A
S

N
   Variance spending test

   2 group test

   5 group test

   10 group test

ASN scale is in multiples of the original fixed sample size, n.
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x6 Example 2: A Cui, Hung & Wang (1999) design

Original group sequential design:

To test H0: � = 0 with Type I error rate 0:025 and power 0:9 at � = Æ.

Observations taken in 5 groups; early stopping allowed to reject H0.

-

6

�hh
� � � �

Reject H0

Accept H0

nmax

�Sk

n

nmax = 10:8=Æ2, cf fixed sample size, n = 10:5=Æ2.
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Design modification

Cui et al suggest adjusting the design at just one interim analysis.

Changing design at stage 3:

Group 4

Original plan: S4 = sum of n=5 terms (XAi �XBi)

Revised plan: S0
4 = sum of 
 n=5 terms (XAi �XBi)

Use 
�1=2 S0
4 in place of S4, preserving the null distribution.

Group 5 — similarly.
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Example

As in Example 1, aim for the effective sample size needed in the original

test to attain power 0:9 at � = b�1.

At the 3rd analysis of 5, fraction of the total sample size is r = 0:6.

Set ~� = Æ=b�1 truncated to the range (0:6; 3).

Then


(b�1) =

f~�(b�1)� 0:6g2

(1� 0:6)2

:
Hence 
 2 (0; 36) and total sample size 2 (0:6n; 15n).
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Figure 7. Power functions of Cui et al 5 Group Adaptive test and Fixed

Sample test with power 0:9 at � = Æ.
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Figure 8. Power functions of Cui et al 5 Group Adaptive test and

Non-Adaptive 5 Group test with power 0:9 at � = 0:38 Æ.
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The non-adaptive test is a �-family error spending test with � = 0:75.
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Figure 9. ASN curves of Cui et al 5 Group Adaptive test and

Non-Adaptive 5 and 10 Group tests with power 0:9 at � = 0:38 Æ.

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

θ/δ

A
S

N

   Cui et al 5 group test

   Non−adaptive 5 group test

   Non−adaptive 10 group test

ASN scale is in multiples of the original fixed sample size, n.
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Example 3: Shen & Fisher ( Biometrics, 1999) designs

Testing H0: � = 0 with Type I error rate �.

Initially calculate the total sample size N1 giving power 1� � at � = Æ.

Collect observations in blocks of pre-specified size,

e.g., B1 = N1=2, B2 = B3 = : : : = N1=6.

Data in block j provide Zj � N(0; 1) under H0.

Allocate block j a weight wj ; dependent on data in blocks 1; : : : ; j � 1.

When

P
m

1

w2
j

= 1; the sum

P
m

1

wjZj � N(0; 1) under H0,

so reject H0 if

P
m

1

wjZj � z�:
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Shen & Fisher designs

Weights and Stopping Rule

Before sampling block j, compute target additional sample size Nj

if Bj � Nj ; make this the last block, setting

w2
j = 1�

j�1X
i=1
w2
i ;

otherwise, set (say)

w2
j =

Bj

Nj

 
1�

j�1X
i=1
w2
i

!
:
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Shen & Fisher designs

Stopping to accept H0
Stop for “futility” after block j if b�j is low.

Version (1): compare b�j with Æ.

Version (2): compare b�j with ~Æ (~Æ < Æ).
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Figure 10. Power functions of Shen & Fisher Adaptive test (1) and Fixed

Sample test with power 0:9 at � = Æ.
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Figure 11. Power functions of Shen & Fisher Adaptive test (1) and

Non-Adaptive 5 Group test with power 0:9 at � = 0:84 Æ.
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The non-adaptive test is a �-family error spending test with � = 1.
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Figure 12. ASN curves of Shen & Fisher Adaptive test (1) and

Non-Adaptive 5 and 10 Group tests with power 0:9 at � = 0:84 Æ.
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ASN scale is in multiples of the original fixed sample size, n.
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Figure 13. Power functions of Shen & Fisher Adaptive test (2) and Fixed

Sample test with power 0:9 at � = Æ.
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Figure 14. Power functions of Shen & Fisher Adaptive test (2) and

Non-Adaptive 10 Group test with power 0:9 at � = 0:34 Æ.
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The non-adaptive test is a �-family error spending test with � = 0:75.
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Figure 15. ASN curves of Shen & Fisher Adaptive test (2) and

Non-Adaptive 10 Group test with power 0:9 at � = 0:34 Æ.
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ASN scale is in multiples of the original fixed sample size, n.
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Setting power: Philosophy?

Shen and Fisher (1999) refer to setting power 1� � at effect size Æ

where Æ is an estimate of �.

This implies a target power function of the following form (!)
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Conclusions

� It is possible to rescue a study found, at an interim stage, to be lacking

in power — but the flexibility to do this has a price.

� Better practice is to

think through power requirements fully

specify � values at which low sample size is most important

before embarking on a study.

� Standard types of non-adaptive group sequential tests meet these

needs effectively and provide easily interpretable results.

� A little planning can save a lot in sample size and credibility!
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