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The Selection Problem

For each “population” or “treatment” i = 1; : : : ; k,

Xi1; Xi2; : : : � N(�i; �
2); i.i.d.

Aim: To select the population i with the largest mean �i.

Method to include:

� Group sequential comparisons

– early elimination of weak treatments.

� Response-dependent treatment allocation

– fewer observations on inferior treatments,

– lower total sample size.
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Earlier work

Paulson (Ann. Math. Statist., 1964)

Elimination procedures based on continuous sequential comparisons

of 2 populations at a time.

Robbins and Siegmund (JASA, 1974)

Adaptive sampling for a 2 population comparison with continuous

monitoring.

Jennison, Johnstone and Turnbull (Purdue Symposium, 1982)

Combining the above.

Update: To take advantage of group sequential tests, error spending,

modern computation.
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Paulson’s procedure

Compare all pairs Treatment i vs Treatment j.

n

S
n
 = Σ

l=1
n  (X

il
−X

jl
 )

Eliminate Population  j

Eliminate Population  i

If �i = �j � Æ, then PrfPop. i eliminates Pop. jg = �=(k � 1).
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Paulson’s procedure: Probability of Correct Selection

Indifference Zone formulation

-

�

������

-�

Æ

Suppose �i � �k � Æ for i = 1; : : : ; k � 1.

Then

PrfPop. k is eliminated at some stageg

�
P
k�1

i=1

PrfPop. i eliminates Pop. k at some stageg

� (k � 1) �
k�1

= �:
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Paulson’s procedure: Group Sequential monitoring

Compare treatments at regular interim analyses.

n

S
n
 = Σ

l=1
n  (X

il
−X

jl
 )

Eliminate Population  j

Eliminate Population  i

Choose a group sequential boundary with error rate �=(k � 1) at

�i � �j = �Æ and good early stopping under likely (�
1

; : : : ; �k).
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Adaptive Sampling in Paulson’s procedure

Motivation

Observations on the leading population are used in k � 1 comparisons.

Allocating more observations to the leader can

� Reduce total sample size

� Reduce observations on inferior treatments

– ethical for medical studies

– we learn more about better treatments.

Need:

Theory to support adaptive sampling in each pair-wise comparison.
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Adaptive Sampling in a Group Sequential Test

Jennison and Turnbull (Sequential Analysis, 2001)

For a 2-treatment comparison with
X
1i � N(�
1

; �2) i = 1; 2; : : : ;

X
2i � N(�
2

; �2) i = 1; 2; : : : :

At analysis m out of M , with n
1m observations on population 1 and

n
2m on population 2,

b�
1

(m)�b�
2

(m) = �X
1

(m)� �X
2

(m) � N(�
1

��
2

; �2( 1

n1m

+ 1

n2m

))

� N(�
1

� �
2

; I�1(m)); say.
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Adaptive Sampling continued

The score statistic

S(m) = I(m)(b�
1

(m)� b�
2

(m)) � N((�
1

� �
2

) I(m); I(m)):

Without adaptive sampling, fS(1); S(2); : : : g is distributed as a

Brownian motion with drift �
1

� �
2

observed at I(1); I(2); : : : .

This remains true if group sizes n
1m � n
1;m�1 and n
2m � n
2;m�1

depend on b�
1

(m� 1)� b�
2

(m� 1) — but sampling cannot depend

more generally on (b�
1

(m� 1); b�
2

(m� 1)).

Theory generalises to normal linear models containing �
1

and �
2

.

This extends Robbins and Siegmund (1974) to the group sequential case.
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Adaptive Sampling: Problem 1

Problem 1

With k � 3, interesting sampling rules do not satisfy

“m th group sizes for populations 1 and 2 depend

only on b�
1

(m� 1)� b�
2

(m� 1)”.

Solution

� Fix sampling ratios at the start of each group,

� estimate �i � �j within each group of data,

� combine estimates with weights / variance�1.

This equates to fitting a linear model with additive “stage” effects

— recommended in medical studies to avoid bias from time trends.
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Adaptive Sampling: Problem 1

JT (2001) assess performance of 2-treatment tests:

With stage effects in the model, one cannot compensate later on for

sub-optimal sampling ratios in early stages. Savings in Inferior Treatment

Numbers are reduced by about a half.

� Fitting stage effects to avoid bias from a time trend is reasonable.

� If modelling such a trend is not really necessary, data are being used

inefficiently

– ethically dubious for medical studies

– at best pragmatic in other applications.
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Adaptive Sampling: Problem 2

Problem 2

Information levels for comparing populations i and j

Iij(1); Iij(2); Iij(3); : : : ;

depend on the sampling rule, which involves Sij(1); Sij(2); : : : .

Standard group sequential designs, including error spending tests, do not

allow such a dependence.

Solution A

Reported studies of such “data-dependent analysis times” show only minor

effects on error probabilities — trust these studies and ignore the problem!
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Adaptive Sampling: Problem 2

Solution B

Recent designs which “adapt” to observed data offer a precise solution:

Denne (Statistics in Medicine, 2001),

Müller and Schäfer (Biometrics, 2001).

Procedure

� Set up an error spending test for anticipated fI
1

; I
2

; : : : g

� Recursively for m = 1; 2; : : : ,

– At analysis m, compute conditional error probabilities given S(m)

– Run stages m+ 1 to M as an error spending test with this

conditional error.
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A sampling rule (JJT, 1982)

In comparing N � 1 populations with a control, the most efficient

allocation is

p
N � 1 observations on the control to

1 observation on each other population.

Adaptive rule:

At stage m, with Nm non-eliminated populations, sample

p
Nm � 1 observations on the leading population to

1 observation on each other population.
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An updated procedure

Eliminate populations using Paulson’s pair-wise comparisons.

Run these comparisons as error spending group sequential tests.

a) Base tests on overall population means (cf JJT, 1982)

Sample in stage m to achieve ratios

p
Nm : 1 : : : : : 1

of total observations on the Nm surviving populations.

b) Combine stage-wise estimates of each �i � �j

Sample in ratios

p
Nm : 1 : : : : : 1 within stage m.

Problem 1 is dealt with properly in (b); Problem 2 is ignored (Solution A!)
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Modern applications: Medical

Aim: Combine phase II and phase III clinical trials by running a single

study to select a treatment (e.g., dose level) and compare this treatment

with a control.

References:

Thall, Simon and Ellenberg (Bmka, 1988)

Schaid, Wieand and Therneau (Bmka, 1990)

Proschan, Follmann and Geller (Statist. in Med., 1994)

Stallard and Todd (Univ. Reading Technical Report, 1999)

The need to compare with a control treatment changes the problem.

Sequential elimination offers scope for improvement on proposed designs

— but there are computational complications.
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Modern applications: Computer learning

Aim: To select and rank algorithms for their performance on randomly

chosen problems.

Experimentation is on a computer, hence any well-defined procedure is

easily implemented.

In selecting the best s out of k competitors, k can be large, e.g.,

10,000. Clearly, sequential methods are desirable — or, with parallel

processing, group sequential methods.

Computer scientists are discovering the selection and ranking literature!
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Beyond the indifference zone
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What if there is a �i within Æ of the highest �j?

It should be OK to select a population within Æ of the best. But can a

non-optimal population eliminate the best, then be eliminated itself?

Kao and Lai (Comm. Statist. Th. Meth., 1980) provide a solution, raising

the boundary for any pair-wise elimination before the final decision.

This method works for Paulson’s procedure with adaptive sampling and

can be extended to choosing the best s populations out of k.
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Conclusions

� Solutions found in 1982 are still very appropriate.

� Applications for selection procedures are appearing in important

research areas.

� Interesting challenges remain.
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