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Abstract

Confirmatory clinical trials comparing the efficacy of a new treatment
with an active control typically aim at demonstrating either superiority
or non-inferiority. In the latter case, the objective is to show that the
experimental treatment is not worse than the active control by more
than a pre-specified non-inferiority margin. We consider two classes of
group sequential designs that combine the superiority and non-inferiority
objectives: non-adaptive designs with fixed group sizes and adaptive
designs where future group sizes may be based on the observed treatment
effect. For both classes, we derive group sequential designs meeting error
probability constraints which have the lowest possible expected sample
size averaged over a set of values of the treatment effect. These optimised
designs provide an efficient means of reducing expected sample size under
a range of treatment effects, even when the separate objectives of proving
superiority and non-inferiority would require quite different fixed sample
sizes. We also present error spending versions of group sequential designs
which are easily implementable and can handle unpredictable group sizes
or information levels. We find the adaptive choice of group sizes to yield
some modest efficiency gains; alternatively, expected sample size may
be reduced by adding another interim analysis to a non-adaptive group
sequential design.

key words: adaptive re-design; clinical trial; decision theory; group sequential
test; non-inferiority; superiority
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1 Introduction

The primary objective in many clinical trials is to demonstrate superiority of
the experimental treatment. With an active control treatment, it may also be
of interest to show the experimental treatment is not worse than the control
by more than a pre-specified margin. Proving “non-inferiority” is particularly
appropriate if the new treatment is safer than the control.

Let θ denote the treatment difference between the new treatment and control,
with positive values of θ indicating superiority of the new treatment. Superiority
can be established by rejecting the null hypothesis HS,0: θ ≤ 0 in favour of the
alternative θ > 0. Suppose it is agreed that the new treatment may be regarded
as non-inferior if θ > −δN , where δN is a positive quantity referred to as the
non-inferiority margin. We shall conclude the new treatment is non-inferior if
the null hypothesis HN,0: θ ≤ −δN is rejected in favour of θ > −δN .

Morikawa and Yoshida [1] note that tests for superiority and non-inferiority
involve nested hypotheses and, hence, overall type I error probability will be
controlled if both tests are conducted simultaneously without any adjustment for
multiplicity. The same is true if the two hypotheses are tested group sequentially
in a closed testing procedure [2]. However, the sample sizes required for tests
of superiority and non-inferiority may be quite different. Suppose the test for
non-inferiority is to have type I error probability α at θ = −δN and power 1−β
at θ = 0, while the test for superiority has type I error probability α at θ = 0
and power 1 − β at θ = δS . The value of δN is typically set as a fraction of
the estimated treatment difference in an earlier comparison of the active control
treatment and placebo, and is liable to be quite small. The value of δS may be
chosen to reflect expectations of a substantial treatment effect and when this is
significantly larger than δN the sample size needed for the test of non-inferiority
will be considerably higher than that required to test for superiority.

The need for different sample sizes to test the two hypotheses has led to quite
complex proposals for group sequential designs testing both superiority and non-
inferiority. Wang et al. [2] describe an adaptive group sequential procedure in
which sample size is initially set for a test of superiority but, if interest shifts to
showing non-inferiority, group sizes are increased. When this data-dependent
change occurs, the type I error rate is preserved by down-weighting later groups
of observations in the manner of Cui et al. [3].

In the two-stage procedures of Shih et al. [4] and Koyama et al. [5], first stage
data are used to decide whether to continue and, if so, to select superiority or
non-inferiority as the primary objective. The second stage sample size is chosen
to give power for the chosen objective: Shih et al. [4] set sample size as a function
of first stage data to achieve a given conditional power, while Koyama et al. [5]
use a sample size function attaining a specified unconditional power.

Lai et al. [6] describe non-adaptive group sequential designs with fixed group
sizes and three possible decisions on termination: superiority, non-inferiority
(but not superiority) and inferiority. Reaching the third decision, inferiority,
is sometimes referred to as stopping for futility since there is little prospect of
reaching either positive decision. When δS is greater than δN , the study can
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terminate at an early stage with a decision of superiority or inferiority then,
later on, the options switch to non-inferiority and inferiority.

We shall present general classes of group sequential procedures which build
on existing proposals. We first discuss designs with fixed group sizes, extending
the options considered by Lai et al. [6] by allowing a choice of all three terminal
decisions at each analysis. In our formulation of the testing problem in Section 2,
values for δS and δN are stipulated along with a type I and type II error
probability for each hypothesis test. For a given sequence of group sizes, we
derive designs with the lowest possible expected sample sizes averaged over a
range of values of the treatment effect, θ, while meeting the error probability
constraints. Although group sizes are fixed, these procedures still exhibit a form
of adaptation: when δS is significantly greater than δN , the upper continuation
region for testing between superiority and non-inferiority comes to an end first,
while the lower region continues to allow differentiation between non-inferiority
and inferiority.

In Section 3 we generalise these designs to let group sizes depend on
previously observed data. The resulting class includes the adaptive group
sequential designs of Wang et al. [2] and the adaptive two-stage procedures
of Shih et al. [4] and Koyama et al. [5]. In the two-decision problem of a one-
sided test for superiority, Jennison and Turnbull [7] found adaptive choice of
group sizes provided only a slight efficiency gain over non-adaptive designs. In
our three-decision problem, when different fixed sample sizes are appropriate
to the two separate hypothesis tests, it seems plausible there could be more
substantial gains from using interim data both to choose the null hypothesis
on which to focus and to adjust sample size accordingly. We assess previously
proposed designs and new, optimised two-stage procedures to investigate the
reduction in expected sample size that can be achieved by such adaptation.
Our conclusion from the examples we have studied is that little is gained by
choosing the second group size based on the observed treatment effect.

2 Optimal non-adaptive designs

2.1 Framework

Suppose observations XAj and XBj , j = 1, 2, . . . , on treatments A and B
respectively are independent and normally distributed with XAj ∼ N(μA, σ2)
and XBj ∼ N(μB , σ2). We assume for now that σ2 is known but we shall
explain in Section 2.5 how unknown variance can be handled. The parameter
of interest is the treatment effect θ = μA − μB. We wish to test simultaneously
HN,0: θ ≤ −δN against θ > −δN and HS,0: θ ≤ 0 against θ > 0, where the
non-inferiority margin δN is established prior to the start of the trial.

Gould [8] and Koyama et al. [5] recognise this is a three-decision problem
with outcomes: superiority, non-inferiority (only) and inferiority. Error rate
requirements, including power for the two hypothesis tests at θ = 0 and θ = δS ,
can be expressed through a pair of power curves. The curves displayed in
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Figure 1: Power curves for “non-inferiority or superiority” and superiority

Figure 1 show the probabilities of concluding “Non-inferiority or Superiority”
or “Superiority” as functions of θ. Formally, we specify type I and type II error
rates αN and βN for testing HN,0 and error rates αS and βS for testing HS,0

as:

Pθ=−δN (Declare “Non-inferiority” or “Superiority”) = αN , (1)
Pθ=0(Declare “Superiority”) = αS , (2)
Pθ=0(Conclude “Inferiority”) = βN , (3)

Pθ=δS (Conclude “Inferiority” or “Non-inferiority”) = βS . (4)

In Appendix I we prove these conditions imply control of type I error for HN,0

and HS,0 over all values θ ≤ −δN and θ ≤ 0, respectively, and of type II error
over θ ≥ 0 and θ ≥ δS . This result holds for all non-adaptive designs satisfying
certain minimal criteria, and it also applies to the adaptive designs we shall
introduce in Section 3.

For many designs, fixing two points on the power curve results in the whole
curve being indistinguishable from that of a fixed sample test. Hence, we do
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not consider power under other parameter values when comparing designs. The
exceptions are some adaptive designs for which power approaches unity rather
slowly: see, for example, the power curves in Figure 11.

If the tests of the two null hypotheses were carried out in separate fixed
sample trials, the number of observations per treatment required would be

nNf = 2{Φ−1(1 − αN ) + Φ−1(1 − βN )}2σ2/δ2
N

for testing HN,0 and

nSf = 2{Φ−1(1 − αS) + Φ−1(1 − βS)}2σ2/δ2
S

for testing HS,0, where Φ is the cumulative distribution function of a standard
normal variate.

We shall consider group sequential procedures with a maximum of K
analyses, denoting the cumulative sample size per treatment at analysis k by
nk and the maximum sample size per treatment by nmax = nK . Let Zk be
the standardised test statistic for testing θ = 0 at analysis k. Allowing early
stopping for all possible decisions at each analysis leads to a rule at analysis k
of the form:

if Zk ≤ ak, stop and conclude inferiority,

if ak < Zk < bk, continue sampling,

if bk ≤ Zk ≤ ck, stop and declare non-inferiority,

if ck < Zk < dk, continue sampling,

if Zk ≥ dk, stop and declare superiority.

Here, ak ≤ bk ≤ ck ≤ dk and termination by analysis K is ensured by setting
aK = bK and cK = dK . When nSf < nNf , we may have ck = dk in later
stages so the upper continuation region is not present. In such cases, we denote
the first value of k at which ck = dk by KS and the planned group size at this
analysis by nmax,S. Although the lower boundary ak, is present throughout,
it can be helpful to think of the design as focusing on the test for superiority
up to analysis KS and concentrating on the choice between non-inferiority and
inferiority thereafter. In order to meet the error probability constraints, it will
be necessary for nK = nmax to be greater than nNf and nKS = nmax,S to be
greater than nSf . We shall refer to the ratios

rS = nmax,S/nSf and rN = nmax/nNf

as “inflation factors” and use these to indicate how much the maximum sample
size, for the first phase or the whole design, has been increased beyond the
minimum requirement.

5



nSf nNf

−3

−2

−1

0

1

2

3

4

Superior

Non−inferior

Inferior

Z

n

Figure 2: Stopping boundaries for inferiority, non-inferiority and superiority

A typical rule is illustrated in Figure 2. In this example, bk = ck for k = 1
and 2 so early stopping for non-inferiority is not possible at the first two analyses
and the two sections of continuation region merge into one. Since ck = dk for
k = 4 to 8, there is no upper continuation region at these analyses. However,
we still allow the possibility to stop with a conclusion of superiority if the last
group of observations results in a sufficiently high value of Z5, Z6, Z7 or Z8. The
boundaries in Figure 2 are those of an optimal design which we shall describe
in Section 2.2. They are broadly similar to the two-sided tests with an inner
wedge described by Jennison and Turnbull [9, Chapter 6], however, they lack
the symmetry of those designs around θ = 0 and the roles of two of the error
probabilities, αN and βN , are reversed.

The boundary points a1, b1, c1, d1, . . . , aK , bK , cK , dK must be chosen to
satisfy the error constraints (1) to (4). A fixed sample size trial can only meet
all four constraints simultaneously if nNf = nSf . In contrast, the additional
degrees of freedom of a group sequential design allow suitable boundaries to
be found as long as nmax ≥ max(nNf , nSf ). Moreover, we can exploit the
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remaining degrees of freedom to find a trial design with low expected sample
size under specified values of θ. We have developed methods to find group
sequential designs that minimise criteria of the form

∑m
i=1 wiEθi(N), where N

denotes the sample size per treatment on termination. We have studied designs
for a variety of optimality criteria, but in this paper we shall focus on

F ∗ = {E−δN (N) + E−δN /2(N) + E0(N) + EδS/2(N) + EδS (N)}/5 (5)

which combines performance across the range of effect sizes of interest. We shall
illustrate these procedures with an example for particular design parameters in
Section 2.3 and make an efficiency comparison with the design of Lai et al. [6]
in Section 2.4.

2.2 Derivation of Optimal Designs

Our methods enable us to find an optimal design with a specified number of
analyses K and cumulative sample sizes n1, . . . , nK . Comparing these optimal
designs for different sequences n1, . . . , nK can inform the choice of suitable group
sizes. Increasing K will decrease expected sample size but at the cost of more
interim analyses, so comparing optimal designs for different values of K helps
assess their costs and benefits.

Our derivation of optimal designs extends the methods of Eales and
Jennison [10], Eales and Jennison [11], and Barber and Jennison [12] to the
asymmetric three-decision problem. Given K and n1, . . . , nK , we seek the
stopping boundary minimising

∑m
i=1 wiEθi(N) subject to error probability

requirements (1) to (4). We follow a Lagrangian approach and introduce the
unconstrained problem of minimising

m∑
i=1

wiEθi(N) + λ1 P1 + λ2 P2 + λ3 P3 + λ4 P4, (6)

where λ1 to λ4 are positive and P1 to P4 denote the left hand sides of equations
(1) to (4). The design minimising (6) must have the minimum value of∑m

i=1 wiEθi(N) among all designs with the same P1 to P4. Hence, choosing
Lagrange multipliers λ1 to λ4 so that the solution has P1 = αN , P2 = αS ,
P3 = βN and P4 = βS solves the original constrained problem.

For given λ1 to λ4, the method of dynamic programming can be used to
minimise (6) quickly and accurately. This minimisation problem also has an
interpretation as a Bayes sequential decision problem with a certain combination
of prior on θ, costs for incorrect decisions, and sampling costs under the θis
appearing in

∑m
i=1 wiEθi(N). This Bayesian interpretation provides insight into

the dynamic programming solution where it is seen that decisions at each stage
are based on expected future costs under the current posterior distribution for θ.
Further details of the derivation of optimal designs are provided in Appendix II.
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2.3 Numerical example

Suppose a non-inferiority margin of δN = 0.1 has been established, power for
the test of superiority is set at δS = 0.2, and error probabilities are αN = 0.025,
αS = 0.025, βN = 0.1, and βS = 0.1. If the response variance is σ2 = 0.5, the
fixed sample size per treatment for the test of superiority alone is nSf = 263,
while the test for non-inferiority needs nNf = 1051.

We first consider a design with K = 8 analyses. The maximum sample
size, nmax, must be at least a little greater than the larger of nSf and nNf , so
we choose nmax = 1.2 nNf = 1261. We set n4 = nmax,S = 1.2 nSf = 316
so a conclusion about the superiority objective can be reached in the first
four analyses, leaving analyses 5 to 8 to concentrate on testing between non-
inferiority and inferiority. Taking equal group sizes either side of analysis 4, we
have nk = (k/4)n4 for k = 1, . . . , 3, and nk = n4 + ((k − 4)/4)(nmax − n4) for
k = 5, . . . , 8.

Optimising the design for F ∗ yields the boundary values a1, b1, c1, d1, . . . , a8,
b8, c8, d8 shown earlier in Figure 2. The absence of an inner wedge at the first
two analyses indicates it is not possible to stop early for non-inferiority in this
optimal design. The form of the upper part of the stopping boundary at later
analyses merits some comment. Since optimisation has produced ck = dk for
k = 4 to 8, there is no upper continuation region after analysis 4; this is in
line with our intent to deal with the issue of superiority by this analysis. The
presence of values for d5 to d8 shows it is still possible to decide in favour of
superiority at a later analysis if the last group of observations produces a large
increase in the Z-statistic and the study ends with Zk > dk. In fact, such a
sequence of Zks is unlikely under any value of θ and the dramatic change in
observed treatment effect in the final group needed to achieve this might well
raise questions about heterogeneity of the treatment effect over time. Let KS

denote the index of the first analysis at which ck = dk in an optimal design.
We have found that setting ck = dk = ∞ for k > KS, so only the test between
non-inferiority and inferiority is pursued at analyses k = KS + 1, . . . , K, has
a negligible impact on error probabilities and, hence, on efficiency. One may,
therefore, choose to remove the option of a decision in favour of superiority
after the analysis at which values of ck and dk first converge. This will be the
case in our definition of error spending designs in Section 2.5. However, unless
otherwise stated we shall retain the option of stopping for superiority, and finite
values for the dk, in the optimal designs we report.

The optimal design’s expected sample size is shown as a function of θ by the
solid line in Figure 3. The two horizontal lines at nNf and nSf aid comparison
with the sample sizes of the individual, fixed sample tests for non-inferiority
and superiority. The sequential design is clearly effective in reducing expected
sample size below nNf . Since the fixed sample size, nSf , in the individual test
for superiority is insufficient to provide the desired power for the test of non-
inferiority, it is to be expected that the sequential design has expected sample
size greater than nSf at low values of θ. However, at high values of θ, where
the main task is to distinguish between superiority and non-inferiority, Eθ(N)
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Figure 3: Expected sample size functions for optimal designs with 4 and 8
analyses

does fall below nSf . Additional curves in Figure 3 show the expected sample
size function for two more optimal designs, one with K = 4 analyses and one
with K = 8 analyses. For both these designs, KS = 2, n2 = 1.1 nSf = 289,
and the remaining K − 2 analyses are equally spaced up to nK = 1261. With a
total of 8 analyses, reducing KS from 4 to 2 reduces F ∗ by about 1%. However,
the design with KS = 4 performs better for large values of θ. The efficiency
gained by increasing the total number of analyses from 4 to 8 is close to 10%,
a larger improvement than is typically seen in one-sided group-sequential tests
of θ ≤ 0 against θ > 0. This can be attributed to the fact that some analyses
are well placed for one testing objective but poorly placed for the other, so the
“effective” number of analyses for testing each individual hypothesis is less than
K. We conclude that when the ratio nNf/nSf is as high as 4, designs with
only a small number of groups may not achieve the full benefits of sequential
monitoring.
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Figure 4: Critical values for a Lai et al. 5-group design and an optimal 5-group
design

2.4 Comparison with the method of Lai et al.

Lai et al. [6] propose a group sequential procedure with K analyses that switches
objective at a certain analysis. For nNf > nSf , the procedure allows early
stopping for superiority at analyses 1, . . . , KS and for non-inferiority at analyses
KS, . . . , K; the test can stop for the negative decision of inferiority at any
point. The authors present their method in terms of generalized likelihood
ratio statistics but we shall define critical values on the Z scale. Figure 4
displays a 5-group Lai et al. procedure with KS = 3. Note that decisions of
non-inferiority (solid line) and superiority (dashed line) are both possible at
analysis 3. The authors define a parameter ε governing the amount of early
stopping and recommend using ε = 1/3. The outer boundaries have constant
critical values on the Z scale so, in our notation, d1 = . . . = dKS−1 = d̃ and a1 =
. . . = aK−1 = ã. For the non-inferiority boundary, bk = b̃− δN

√{nk/(2 σ2)} for
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k = KS , . . . , K − 1. The values of ã, aK , b̃, d̃ and dKS are chosen so that: the
probability under θ = 0 of stopping to declare superiority by analysis KS − 1 is
ε αS and by analysis KS is αS ; the probability under θ = −δN of stopping to
declare non-inferiority or superiority by analysis K − 1 is ε αN and by analysis
K is αN ; the probability under θ = 0 of stopping to conclude inferiority by
analysis K − 1 is ε βN .

This construction does not produce specific type II error probabilities,
instead these are determined by nK , nKS and ε. There is a demarcation at
analysis KS , with stopping for superiority only possible at analyses 1 to KS ,
and stopping for non-inferiority only at analyses KS to K. The framework
of Section 2 imposes no such constraints and we allow an inner wedge for
non-inferiority before KS and a continuing superiority/non-inferiority boundary
thereafter.

We have applied the method of Lai et al. to the numerical example of
Section 2.3 in which δN = 0.1, δS = 0.2, σ2 = 0.5 and αN = αS = 0.025.
We set K = 5, KS = 3 and ε = 1/3, with nmax,S = 263 and nmax = 1051, the
values that would give 90% power if the two testing objectives were addressed
in fixed sample trials. This implies n1 = 88, n2 = 175, n3 = nmax,S = 263,
n4 = 657, and n5 = nmax = 1051. It is the resulting boundaries that are shown
in the upper panel of Figure 4. This design has type II error probabilities
βN = 0.125 and βS = 0.11. Using these numbers to define fixed sample sizes
nSf and nNf , we find the inflation factors for the Lai et al. design are rS = 1.035
and rN = 1.086.

We compared the Lai et al. design with a 5-group sequential design with
the same group sizes and attained error probabilities, optimised for F ∗. This
optimised design with KS = 3, rS = 1.035 and rN = 1.086 is depicted in
the lower panel of Figure 4 and its expected sample size function is shown in
Figure 5: the value of F ∗ is about 4% lower than that of the Lai et al. design.
However, the inflation factor rS = 1.035 is rather low and there is no obvious
need to restrict nmax,S, given that higher sample sizes are allowed if the study
continues to later analyses. Keeping KS = 3 and increasing rS from 1.035 to
1.2 while maintaining the same overall maximum sample size gives cumulative
group sizes n1 = 102, n2 = 204, n3 = 306, n4 = 678, and nmax = 1051.
The boundary optimising F ∗ for these group sizes has an inner wedge at the
second interim analysis. It is evident from Figure 5 that this increase in rS

reduces the expected sample size function a little. In the example of Section
2.3, we found some advantage in scheduling fewer analyses for the superiority
objective, leaving more to test between non-inferiority and inferiority. Here,
we have considered KS = 2 and rS = 1.2, so n1 = 153, n2 = 306, n3 = 554,
n4 = 803 and n5 = 1051. The lowest curve in Figure 5 is for the test minimising
F ∗ with these group sizes and we see this design has the smallest expected
sample size at all but the highest effect sizes.

Overall, we recognise that Lai et al’s proposal gives designs with quite
good efficiency, but our wider class allows a design to be tailored to particular
objectives and the “inner wedge”, not considered by Lai et al, can be
instrumental in reducing expected sample size.
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2.5 Error spending designs

To be of real practical value, a group sequential method should be able to deal
with variation in group sizes about their planned values. Error spending designs
offer this flexibility and, we shall show, can do so with high efficiency in terms
of expected sample size. In introducing these designs we broaden consideration
to general response distributions, still with the parameter θ representing the
treatment effect under investigation. Jennison and Turnbull [13] show that for
normal linear models, and asymptotically for general parametric models, the
sequence of estimates θ̂1, . . . , θ̂K based on accumulating data at K analyses is
multivariate normal with

θ̂k ∼ N(θ, I−1
k ), k = 1, . . . , K,

and
Cov(θ̂k1 , θ̂k2) = Var(θ̂k2) = I−1

k2
for k1 < k2,
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where Ik represents the Fisher information for θ at analysis k.
In error spending designs, the cumulative type I and type II error

probabilities are specified as functions of the observed information at each
analysis; boundaries for standardised statistics Zk = θ̂k

√Ik are found that
satisfy these conditions using the distribution theory stated above. This
approach relaxes the requirement of achieving pre-planned information levels at
each analysis implicit in the tests of Section 2. Lan and DeMets [14] introduced
error spending to handle unpredictable group sizes in two-sided tests of a null
hypothesis. We now extend this approach to our three-decision problem with
its four type I and type II error probabilities.

The information levels required by individual tests of superiority and non-
inferiority are

ISf = {Φ−1(1 − αS) + Φ−1(1 − βS)}2/δ2
S

and
INf = {Φ−1(1 − αN ) + Φ−1(1 − βN )}2/δ2

N .

Multiplying these by inflation factors rS and rN gives target information levels
for an error spending design. Assuming INf > ISf , the overall maximum
information level which an error spending design may require is Imax = rN INf .
We also specify a target information level by which testing for superiority should
terminate, Imax,S = rS ISf .

Type I and II error probabilities αS and βS for the test of superiority
are spent according to functions fS(I) and gS(I) as I increases from zero to
Imax,S. Similarly, spending of error probabilities αN and βN for the test of non-
inferiority follows functions fN(I) and gN (I) as I increases from zero to Imax.
At the design stage, we make a working assumption that a specific sequence
of information levels will be observed and specify a combination of fS , gS , fN ,
gN , Imax,S and Imax for which boundaries converge to spend all four error
probabilities exactly by the end of the study. We plan for K interim analyses
at information levels

Ik = k Imax,S/KS for k = 1, . . . , KS (7)

and

Ik = Imax,S +(k−KS)(Imax−Imax,S)/(K−KS) for k = KS + 1, . . . , K. (8)

In practice, the test will adapt to observed information levels, maintaining type
I error probabilities precisely but with small perturbations to the type II error
rates.

Our choice of error spending functions is motivated by the cumulative error
rates seen in optimal designs. Since these designs do not allow very early
decisions of non-inferiority, we also delay spending αN and βS until information
reaches a minimum threshold γ Imax,S , where 0 ≤ γ ≤ 1. This is a sensible
feature since, with only a small amount of data, one cannot be confident that θ
is both above −δN and below δS . We propose a family of designs with spending
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functions indexed by the parameter ρ > 0, similar in form to those for the two-
decision problem used by Jennison and Turnbull [15]. The four error spending
functions are:

fN(I) =

⎧⎪⎨
⎪⎩

0 if I < γ Imax,S

αN (I/Imax)ρ if γ Imax,S ≤ I < Imax

αN if I ≥ Imax

fS(I) =

{
αS (I/Imax,S)ρ if I < Imax,S

αS if I ≥ Imax,S

gN(I) =

{
βN (I/Imax)ρ if I < Imax

βN if I ≥ Imax

gS(I) =

⎧⎪⎨
⎪⎩

0 if I < γ Imax,S

βS (I/Imax,S)ρ if γ Imax,S ≤ I < Imax,S

βS if I ≥ Imax,S.

where γ > 0. Figure 6 shows these functions for the case ρ = 1 and γ = 0.5.
When ISf < INf , Brannath et al. [16] comment on the desirability of spending
the type I error probability αS for the superiority objective more rapidly than
that for the test of non-inferiority, αN . This feature is built into our definitions of
spending functions but there would be no difficulty in taking such considerations
further and varying the values of ρ in the four spending functions.

Application of this error spending design with an observed sequence of
information levels, I1, I2, . . . , follows the general framework described by
Jennison and Turnbull [9, Chapter 7] for other types of error spending test.
At the first few analyses with Ik < γ Imax,S only the outer boundary values dk

and ak are required. These are calculated to satisfy

Pθ=0(Declare “Superiority” by analysis k) = fS(Ik) (9)

and
Pθ=0(Declare “Inferiority” by analysis k) = gN(Ik). (10)

We do allow stopping to declare superiority when fN(Ik) = 0, even though this
represents a type I error for the test of non-inferiority under θ = −δN . Similarly,
we permit a decision of inferiority when gS(Ik) = 0, even though this is a type
II error for the test of superiority under θ = δS . The probabilities of these
outcomes are computed so they can be accounted for at later analyses when
fN(Ik) and gS(Ik) become positive.

For γ Imax,S ≤ Ik ≤ Imax,S , we compute dk and ak to satisfy (9) and (10)
and perform a two-dimensional search to find values bk and ck satisfying

Pθ=−δN (Declare “Non-inferiority” or “Superiority” by analysis k) = fN (Ik)
(11)
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Figure 6: Error spending functions with ρ = 1 and γ = 0.5

and

Pθ=δS (Declare “Inferiority” or “Non-inferiority” by analysis k) = gS(Ik).
(12)

Further details of how bk and ck can be found are given in Appendix III.
At the first analysis K̃S where IK̃S

≥ Imax,S we calculate dK̃S
so that

Pθ=0(Declare “Superiority” by analysis K̃S) = αS

and set cK̃S
= dK̃S

. We find aK̃S
and bK̃S

satisfying (10) and (11) with k = K̃S

and Ik = IK̃S
. At subsequent analyses with Ik < Imax we set ck = dk = ∞

and calculate ak and bk to satisfy (10) and (11). Finally, at the first analysis K̃
with IK̃ ≥ Imax we find bK̃ satisfying

Pθ=−δN (Declare “Non-inferiority” or “Superiority” by analysis K̃) = αN

and set aK̃ = bK̃ .
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By construction, this error spending procedure attains the type I error
probabilities αN and αS exactly. The type II error probabilities may differ
slightly from βN and βS but they will be close to these targets if the observed
information levels are similar to the sequence defined by (7) and (8) which was
assumed for planning purposes.

Suppose αS , αN , βN and βS are specified, so ISf and INf are fixed multiples
of δ−2

S and δ−2
N , respectively. For given δN/δS, ρ, γ, KS and K, and assuming

analyses are scheduled according to (7) and (8), a two-dimensional search can
be conducted to find the inflation factors rS and rN which give power 1−βN at
θ = 0 and 1 − βS at θ = δS . Within the ρ family, increasing ρ reduces the rate
at which error is spent, leading to smaller inflation factors. Thus, for given αS ,
αN , βN , βS , γ, KS , K and δN/δS < 1, say, there is a one-to-one correspondence
between ρ and rN . While inflation factors do increase gradually with K, broadly
speaking, setting ρ = 3 gives an inflation factor around rN = 1.05 and wide outer
boundaries similar to an O’Brien and Fleming [17] test, whereas ρ = 1 yields
an inflation factor around 1.2 or 1.25 and narrower boundaries, as in a Pocock
[18] test

Comparing the ρ family error spending tests with designs optimised for F ∗,
we have found the ρ family tests to be highly efficient and achieve values of F ∗

within a few percent of the minimum possible for a given inflation factor rN .
We conclude that error spending designs in the ρ family are both efficient and
sufficiently flexible to handle unpredictable group sizes or information levels.
These findings are in keeping with those of Barber and Jennison [12] for one-
sided error spending tests with similar spending functions.

As an illustration of the preceding remarks, Figure 7 shows the expected
sample size function for the design with αN = αS = 0.025, βN = βS = 0.1,
δN = 0.1, δS = 0.2, ρ = 1, γ = 0.5, KS = 3 and K = 6, as well as that for
the optimal design minimising F ∗ for the same problem and group sizes. It is
evident that the error spending design is highly efficient across the range of θ
values and, overall, it achieves a value of F ∗ within 2% of the optimum.

If we consider the same example but vary ρ from 0.5 to 3, we obtain designs
with inflation factors rN ranging from around 1.5 to 1.05. Figure 8 shows values
of F ∗ for these error spending designs plotted against the inflation factor rN for
each design. The slightly lower curve gives the value of F ∗ achieved by optimal
designs for this criterion with the same group sizes, which is around 2 to 4 per
cent smaller than that of the error spending design. The levelling off of F ∗ as ρ
decreases and rN increases indicates there is no advantage in taking rN greater
than around 1.2, which is attained by ρ of about 0.8.

We recommend 0.5 as a simple default value for γ. In a detailed assessment
of a particular case one can go further and compare values of γ with respect to
expected sample size functions under different sequences of information levels,
paying particular attention to the effect of I1.

Another advantage of error spending tests is that they support use of the
method of information monitoring, as proposed by Mehta and Tsiatis [19]. This
approach can be used to manage a trial when the sample size needed for specific
power depends on nuisance parameters which are only estimated once the trial
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Figure 7: E(N)/nNf for a 6-group error spending design with ρ=1 and γ =
0.5 and for the optimal 6-group design with analyses performed at the same
information levels

is under way. One example of such a parameter is the variance of a normal
response: thus, error spending and information monitoring provide a way to
deal with unknown variance in the normal response problem introduced in
Section 2.1.

3 Optimal adaptive designs

3.1 Framework

The need for different sample sizes to test superiority and non-inferiority
has prompted proposals for designs in which future group sizes are based on
previously observed data. Such procedures are examples of adaptive group
sequential designs, as proposed for one-sided tests by Schmitz [20]. These
methods extend those of Section 2 by allowing each new group size to depend
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Figure 8: F ∗/nNf for ρ family error spending designs with ρ in the range 0.5 to
3 and for optimal designs minimising F ∗ with the same sequences of information
levels

on previous data. Since this wider class includes non-adaptive group sequential
designs as special cases, optimising over it yields a lower value of an objective
function, such as F ∗, than that of the best non-adaptive design. We shall now
explore the benefits of adaptation in reducing expected sample size in the three-
decision problem and consider whether they justify the extra complexity of this
approach. The definition of adaptive group sequential designs applies for general
K but we shall focus on K = 2 for computational simplicity.

In the three-decision problem, adaptive designs may terminate at each
analysis with a decision of inferiority, non-inferiority or superiority. However,
if sampling continues at analysis k, the next group size is allowed to depend
on Zk. We seek the sequential decision rule that minimises F ∗ subject to
the error constraints (1) to (4). The optimal K-group adaptive design can be
derived by the Lagrangian approach used in Section 2 for the non-adaptive case.
The unconstrained problem is a Bayes decision problem, solvable by dynamic
programming.
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In solving the unconstrained problem for the case K = 2, suppose the first
analyses takes place after n1 observations. We approximate the continuous range
of values for n2 by giving M possible cumulative group sizes, n2,1, . . . , n2,M ,
for the final analysis. We find the optimal critical values b2,1, . . . , b2,M and
d2,1, . . . , d2,M to decide between inferiority, non-inferiority and superiority
in each case. The task at the first analysis is to determine which of the
following actions is optimal: stop for inferiority, stop for non-inferiority, stop
for superiority, or continue to the final analysis with cumulative group size n2,m

for a value of m ∈ {1, . . . , M}. This gives the optimal design for a given value
of n1 and a further search over n1 gives the two-stage adaptive design with the
overall minimum of F ∗.

In numerical calculations we have used M = 100 and n2,1, . . . , n2,M equally
spaced between n1 and an upper limit R nNf where R > 1. We performed
sensitivity analyses to check there is no significant change to the design if M or
R is increased. For most examples we have found that when using R = 1.35, the
optimal choice of n2 is lower than R nNf for all values of Z1. We give further
details of implementing the dynamic programming algorithm in Appendix II.

3.2 Efficiency gains through adaptation

We illustrate with an example the possible efficiency gains from adaptation in
two-stage designs. The results in Table 1 are for non-adaptive and adaptive two-
stage designs which minimise F ∗ subject to error probabilities αN = αS = 0.025
and βN = βS = 0.1 for values of δSf/δNf = (nNf/nSf)1/2 ranging from 1 to

√
3.

In the adaptive design the initial group size, n1, is chosen optimally and the
second group size, n2−n1, is selected to be optimal for the observed Z1. For the
non-adaptive designs, n1 and n2 are fixed at optimal values for the objective
function F ∗. The maximum value of n2 in the adaptive designs ranges from
1.20 nNf to 1.26 nNf in the six cases of Table 1 whereas, in the non-adaptive
designs, n2 takes lower values between 1.12 nNf and 1.17 nNf . In fact, for the
case nNf/nSf = 3, values of n1 greater than nSf help to minimise F ∗ in both the
non-adaptive and adaptive designs, but lead to power for the test of superiority
greater than the stipulated 1 − βS = 0.9. Reformulating this requirement as
an inequality that power should be at least 0.9, leads to the designs reported
here which have both higher power for the test of superiority (around 0.93) and
lower F ∗.

The results in Table 1 show only minor benefits from adaptation. These
benefits are greatest for intermediate values of the ratio nNf/nSf and in these
cases there are areas of the adaptive design’s continuation region at the first
analysis where each of the three final decisions is plausible. This leads to
substantial variation of the optimal values for n2 with Z1, as displayed in
Figure 9 for the case nNf/nSf = 1.5. In view of the variation in the optimal n2,
it is not surprising that the best non-adaptive design, with only a single value of
n2, is less efficient. On the other hand, Figure 9 suggests it might be sufficient
to choose between just two sample sizes, nN,2 and nS,2 say, in the lower and
upper continuation regions, either side of the “inner wedge”. We refer to such
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nNf/nSf = 1.0 1.25 1.5 1.75 2.0 3.0

Optimal non-adaptive designs 81.8 75.3 71.7 69.1 67.0 64.6

Optimal adaptive designs 81.7 74.3 70.1 67.7 66.1 64.2

Table 1: Values of 100 F ∗/nNf for optimal two-stage designs with error
probabilities at most αN = αS = 0.025 and βN = βS = 0.1 for selected values
of nNf/nSf = (δS/δN )2.

a procedure as a restricted adaptive design.
We computed a two-stage restricted design minimising F ∗ for the case

nNf/nSf = 1.5, with n1 set at the value chosen for the unrestricted adaptive
design. The dashed lines in Figure 9 show the continuation intervals, which differ
slightly from the unrestricted design, and values of nN,2 and nS,2. In Figure 10,
the expected sample size function for the restricted adaptive design lies very
close to that of the optimal unrestricted adaptive design, demonstrating that
the key improvement in the adaptive design comes from choosing a sample size
appropriate to the most relevant decision choice, superiority vs non-inferiority
or non-inferiority vs inferiority, and not from any further fine-tuning. Values of
100F ∗/nNf are 71.7 for the two-group non-adaptive test, 70.4 for the restricted
adaptive test, and 70.1 for the two-group adaptive test.

Figure 10 also shows the expected sample size function for the optimal
non-adaptive three-group design with nNf/nSf = 1.5 and cumulative sample
sizes equal to the values of n1, nS,2 and nN,2 in the restricted adaptive design.
Since the third analysis is only used to distinguish between inferiority and non-
inferiority, this is an example from our class of non-adaptive designs with K = 3
and KS = 2 (and c3 = d3 = ∞). This three-group non-adaptive design has
lower expected sample size than the optimal adaptive two-stage design across
the range of θ values and it is significantly more efficient at low values of θ; its
value of 100F ∗/nNf is 66.8, compared to 70.1 for the optimal adaptive two-stage
design. Our conclusions here concur with those of Jennison and Turnbull [7]
about the two-decision problem: while adaptivity can lead to a small increase
in efficiency, similar or larger improvements can be achieved with one additional
interim analyses in a non-adaptive group sequential design. In view of the minor
benefits accruing from adaptive choice of group size in the case K = 2, we have
not carried out computation of optimal adaptive designs for higher values of K.

3.3 Competing adaptive methods

The sample size function for the optimal adaptive design in Figure 9 is
qualitatively different from that arising from a conditional power rule, where
sample size rises as Z1 decreases, at least within each continuation interval.
While optimal adaptive designs offer modest gains over their non-adaptive
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Figure 9: Final sample size, n2, as a function of Z1 for the optimal adaptive
design for nNf/nSf = 1.5 (solid lines) and sample sizes nN,2 and nS,2 for the
optimal restricted adaptive design (dashed lines)

counterparts, the following comparisons show published adaptive methods with
sub-optimal sampling rules can be less efficient than simpler non-adaptive
designs.

Koyama et al. [5] propose an adaptive two-stage procedure for simultaneous
testing of superiority and non-inferiority. After the first stage, stopping is
possible for inferiority, non-inferiority or superiority. If the trial continues, the
second stage sample size is set as a function of the first stage test statistic,
Z1. The sample size function and terminal decision rules are chosen to achieve
specified overall error probabilities αN , αS , βN , and βS . Koyama et al. [5]
provide an example with δN = 1.0, δS = 0.5, σ = 4, αN=αS = 0.025, βN = 0.1
and βS = 0.2. While we have focused on designs with δS > δN , our framework
also applies to the case δS < δN studied by [5], [6] and [16]. We have compared
Koyama et al’s adaptive procedure with a two-stage non-adaptive design with
the same error probabilities optimised for F ∗. In this design, the first analysis
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Figure 10: Expected sample size functions for optimal non-adaptive, restricted
adaptive and adaptive 2-group designs and the optimal non-adaptive 3-group
design

is scheduled after 337 observations per treatment and the final analysis after
1200 observations. Expected sample sizes per treatment are shown in Table 2.
Not only is the non-adaptive procedure more efficient, but its maximal sample
size per treatment is only 1200, compared to more than 1500 for the adaptive
design.

The method proposed by Shih et al. [4] falls within the framework for 2-
stage adaptive procedures defined in Section 3.1. Early stopping for futility,
non-inferiority or superiority is possible at the first analysis and critical values
at both analyses are chosen to control the overall type I error probabilities at
specified values αN and αS . The procedure does not aim to achieve a particular
overall power, rather the second stage sample size is chosen with reference to
conditional power given the first stage data. We have simulated the design
presented for the survival data example in Section 3 of Shih et al. [4] and found
the overall power curves and expected sample size function of this design: with a
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Eθ(N) for Koyama Eθ(N) for a 2-group
θ et al’s design non-adaptive design

−δN 337 337

0 643 625

δS 996 937

Table 2: Comparison of Koyama et al’s [5] adaptive design and an optimal
non-adaptive design

survival endpoint, “sample size” should be interpreted as the number of events
observed at termination. We constructed a non-adaptive 2-group sequential
design with the same type I error probability and overall power curves at least
as high over the range of effect sizes. This non-adaptive group sequential design
had lower expected sample size by between 3% and 11% at values of θ in the
range −δN to 2 δN . We attribute the lower efficiency of the adaptive procedure
to the choice of sample size function: for the optimal adaptive rule, values of
n2 are highest in the middle of each arm of the continuation region and lower
nearer the boundary points, whereas the conditional power construction implies
n2 increases monotonically as θ̂ decreases.

Wang et al. [2] propose an adaptive group sequential closed (AGSC)
procedure which starts out as a group sequential design but can shift adaptively
between superiority and non-inferiority objectives. When δN < δS and nNf >
nSf , the initial design has nSf observations and K analyses. At each interim
analysis, conditional power calculations determine whether to shift to the non-
inferiority objective. If so, group sizes are increased to lead to a final sample
size of nNf at analysis K with down-weighting as in the method of Cui et al. [3]
to maintain the type I error rate. Type II error rates are not controlled directly
but are governed by nNf , nSf , the group sequential stopping boundary and the
adaptive decision rule.

We evaluated the AGSC method by simulation with one million replicates.
We assumed normal responses with σ2 = 9, αN = αS = 0.025, δN = 0.4 and
δS = 0.8. The initial design had five equally spaced analyses and a total of
nSf = 221 observations per treatment arm, increasing to nNf = 883 under
adaptation. Figure 11 compares the AGSC method and a non-adaptive 5-group
sequential design with KS = 2, nKS = 221, K = 5, and n5 = 883. The non-
adaptive design has higher power and a substantially lower expected sample
size function. Since the AGSC method has no lower boundary to allow stopping
for inferiority, its high expected sample size under low values of θ is to be
expected. At higher effect sizes, using non-sufficient statistics as a result of
down-weighting later observations is a source of inefficiency. More important,
we believe, is the reliance on uncertain estimates of θ̂ at the interim analyses
in making the decision to increase sample size four-fold. While we have found
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Figure 11: Expected sample size functions and power curves for Wang et al’s
AGSC design and an optimal non-adaptive 5-group sequential design

the addition of a lower futility boundary improves performance for low values
of θ, the method still fails to match the performance of the non-adaptive group
sequential test at higher effect sizes.

4 An example in type 2 diabetes

The EMEA guidance [21] recommends decrease from baseline HbA1c, a measure
of blood glucose control, as the primary endpoint for studies of type 2 diabetes.
In the trial reported by Home et al. [22], response was the percentage decrease
in HbA1c, the non-inferiority margin was δN = 0.4 and a standard deviation
of 1.4 was used in the sample size calculation. Göke et al. [23] report a clinical
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trial with power to detect an improvement of δS = 0.5 under the new treatment
and, again, a standard deviation of 1.4 was used to determine sample size.

Consider designing a trial to compare a new treatment for type 2 diabetes
against a standard, testing for both superiority and non-inferiority. Suppose
responses are normally distributed with XAi ∼ N(μA, σ2) on the new treatment
and XBi ∼ N(μB , σ2) on the standard. Denoting the treatment effect by
θ=μA − μB, we wish to test simultaneously the null hypothesis HN,0: θ ≤ −0.4
against θ > −0.4 with power specified at θ = 0 and the null hypothesis
HS,0 : θ ≤ 0 against θ > 0 with power at θ = 0.5. Thus, we set δN = 0.4,
δS = 0.5, αN = 0.025, αS = 0.025, βN = 0.1, and βS = 0.1 in our general
framework. With σ = 1.4, fixed sample sizes per treatment are nSf = 165 and
nNf = 258 for the two individual hypothesis tests.

For nNf/nSf around 1.5, the results of Section 3.2 indicate adaptation may
be helpful if only two analyses are possible. We computed an adaptive two-group
design optimised for F ∗ with n1 = 99 and no upper limit for the second group
size. We also derived a “restricted adaptive” design, as introduced in Section 3.2,
where n1 = 99 and, if sampling continues, the choice of the final sample size is
either 198 or 309. The two upper curves in Figure 12 are the expected sample
size functions for these restricted adaptive and adaptive designs. We see that
restricting the second group size to just two values has a negligible effect on
efficiency.

Comparison of expected sample size functions allows an informed choice
of a suitable design. In making this choice, investigators may also consider
the logistical challenges of setting up a trial with data-driven choice of the
second group size. Information leakage should be considered since, in both the
adaptive and restricted adaptive designs, knowledge of the second stage sample
size provides an indication of the first stage results. In this joint testing problem,
leakage can also be an issue for a non-adaptive group sequential design: in a
3-group procedure with KS = 2, continuation past the second analysis implies
the new treatment has not been found to be superior and the decision will be
either “non-inferior” or “inferior”.

The error spending method of Section 2.5 can be used to give a design with
close to optimal efficiency as well as the flexibility to deal with unpredictable
group sizes. If we use ρ family error spending functions with ρ = 1 and design
for K = 3 analyses with KS = 2 and γ = 0.4, the inflation factors are rS = 1.167
and rN = 1.195, so nmax,S = 1.167nSf = 193 and the maximum sample size
is nmax = 1.195 nNf = 308. If observed sample sizes follow the design pattern
of n1 = 97, n2 = 193 and n3 = 308, power of 0.9 is attained exactly in both
hypothesis tests. The expected sample size function for this design shown in
Figure 12 is almost identical to that obtained by a 3-group sequential design
with rS = rN = 1.2 optimised for F ∗.

Suppose patient accrual is lower than expected and only ñ1 = 71 responses
are observed at the first analysis. Since ñ1 < γnmax,S, there is no inner
wedge at the first analysis. If accrual remains slow throughout the trial, a
fourth analysis will be needed to reach nmax but the error spending design
adjusts easily to the new sequence of sample sizes. Suppose we observe
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Figure 12: Expected sample size functions for designs in the type 2 diabetes
example

ñ2 = 144, ñ3 = 220 and ñ4 = 308. The critical values for what is now
a 4-group design are computed following the prescription in Section 2.5: the
resulting boundaries are shown in Figure 13. The type I error probabilities
are automatically controlled at αN = 0.025 and αS = 0.025 and the attained
type II error probabilities are Pθ=0(Conclude “Inferiority”) = 0.102 and
Pθ=δS (Conclude “Inferiority or Non-inferiority”) = 0.088, both close to their
intended values of βN = βS = 0.1. The inner wedge plays an important
role, allowing stopping for any of the three possible outcomes, superiority, non-
inferiority and inferiority, at analyses two and three. The expected sample size
function in this case is the lowest curve in Figure 12. So, not only does the
error spending design deal well with the observed pattern of group sizes, but
results for this four group design show it gains efficiency by adapting to a higher
number of smaller group sizes when these arise in practice.
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5 Discussion

We have introduced a framework to define group sequential designs which test
simultaneously for superiority and non-inferiority and allow early stopping for
any one of the three conclusions of superiority, non-inferiority and inferiority. We
can compute the design of this type which minimises a weighted combination of
expected sample sizes at several effect sizes. We have also defined error spending
versions of these designs which can handle unpredictable group sizes while
retaining almost optimal efficiency. Expressing these error spending designs in
terms of information for the effect size parameter shows they are applicable to a
wide variety of response types and can deal with nuisance parameters governing
the sample size needed for a specific power through the information monitoring
approach of Mehta and Tsiatis [19].

We have followed other authors in addressing the situation where the non-
inferiority margin δN is smaller than the effect size δS at which power is set in the
test for superiority. Here, much larger sample sizes are required when the study
focuses on distinguishing between non-inferiority and inferiority. If such large
sample sizes are known to be available if needed, one might expect investigators
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to consider increasing the power of the test for superiority to detect smaller
effect sizes than δS . If this occurs, nSf will increase and the ratio nNf/nSf will
be closer to one. Our framework will still be appropriate and the inner wedge,
which allows early stopping to declare non-inferiority, will play an important
role in such cases.

In the two-decision problem, Barber and Jennison [12] found the greatest
benefit of an additional interim analyses to arise when moving from a fixed
sample test to a two-group test. For the three-decision problem, two analyses are
required simply to meet the different error constraints for the pair of hypothesis
tests. When sample sizes for the two testing objectives are very different, a
total of four analyses is needed to allow two suitably placed analyses for each
hypothesis test. Thus, it is a feature of the group sequential designs for the
three decision problem that a larger number of interim analyses is likely to be
worthwhile than for group sequential designs for the two-decision problem.

In the “adaptive” designs considered in Section 3, future group sizes are
based on current data, in particular the observed effect θ̂. Remember, though,
that our “non-adaptive” group sequential designs also respond to the observed
data: the stopping rule provides a very definite response and, when nNf > nSf ,
the absence of an upper continuation region at the last few analyses shows a
shift of focus to the test between non-inferiority and inferiority.

In exploring the adaptive choice of group sizes, we have found only minor
benefits of adaptation in two-stage designs, the case most often considered in
the literature. In fact, we saw in Section 3.3 that non-adaptive group sequential
designs can out-perform some proposed adaptive methods with the same number
of analyses. The greatest advantage we have found of an adaptive over an
optimal non-adaptive 2-group design is around 3% of the fixed sample size.
This may be a significant benefit in a clinical trial with thousands of patients
— but then there is reason to pursue the even greater benefits of a non-
adaptive 3-group sequential design. We have not invested effort in deriving
optimal adaptive designs with three or more analyses as we do not anticipate
substantively different results from the two-group case.

APPENDIX

I Monotonicity of type I and type II error
probabilities

It seems intuitive that the probability of rejecting a null hypothesis such as
HS,0: θ ≤ 0 should increase with θ in any sensible experimental design. A
coupling argument can provide a proof for some group sequential designs (see,
for example, Jennison and Turnbull [9, Page 183]), but this approach does not
extend to group sequential designs with an inner wedge. Adaptive designs pose
further problems, indeed Jennison and Turnbull [24, Section 4.2]) present an
adaptive design with a non-monotone power function. However, Shih et al. [4]
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are able to prove monotonicity of the type I error probability within the null
hypothesis for two-stage adaptive designs. We now generalise their result to
K-group designs.

Consider first the non-adaptive case and a K-group design, as defined
in Section 2.1. Let fk(zk; θ) denote the density of Zk at analysis k under
treatment effect θ in the absence of any prior early stopping. Define pk(zk) to
be the conditional probability that Z1, . . . , Zk−1 lie in the continuation regions
(a1, b1) ∪ (c1, d1), . . . , (ak−1, bk−1) ∪ (ck−1, dk−1) given that Zk = zk. Since Zk

is sufficient for θ, this probability does not depend on θ. We can write

Pθ(Declare “Superiority”) =
K∑

k=1

∫ ∞

dk

fk(zk; θ) pk(zk) dzk. (13)

Now, marginally, Zk ∼ N(θ
√Ik, 1). Thus, if dk ≥ 0, fk(zk; θ) is an increasing

function of θ for all θ ≤ 0 and zk > dk. It follows that all the integrands in the
right hand side of (13) are increasing in θ for θ ≤ 0. Hence, as long as dk ≥ 0
for each k = 1, . . . , K, Pθ(Declare “Superiority”) increases monotonely with θ
for θ ≤ 0 and the maximum type I error probability over θ ≤ 0 occurs at θ = 0.
The condition dk ≥ 0 implies that stopping to reject HS,0: θ ≤ 0 is only possible
when θ̂k ≥ 0, which is to be expected in any sensible design.

A similar argument shows Pθ(Declare “Non-inferiority or Superiority”) is
monotone over θ ≤ −δN . In this case, the integrals in (13) have range
(bk, ck) ∪ (dk,∞) and the condition for integrands to be increasing for θ ≤
−δN becomes bk ≥ −δN

√Ik, so HN,0: θ ≤ −δN is only rejected when
θ̂k ≥ −δN . The same approach can be used to establish monotonicity
results for type II error probabilities: Pθ(Conclude “Inferiority”) decreases
with θ for θ ≥ 0 as long as this decision only occurs when θ̂k ≤ 0, and
Pθ(Conclude “Inferiority” or “Non-inferiority”) decreases with θ for θ ≥ δS as
long as this decision requires θ̂k ≤ δS .

We can obtain results for adaptive group sequential designs by essentially
the same argument. Since the sample size at each analysis now depends on
previous responses, the sum over k in (13) becomes a double sum over k and
the set of possible sequences {I1, . . . , Ik}. In some designs the critical value
dk may depend on the whole sequence {I1, . . . , Ik}. It is useful, conceptually,
to define the sequence of Z-statistics at all information levels that might arise,
noting the joint distribution theory stated at the start of Section 2.5 applies
to this whole sequence. We let fk(zk, Ik; θ) denote the N(θ

√Ik, 1) density of
Zk for treatment effect θ and information level Ik in the absence of any prior
early stopping. We define pk(zk, I1, . . . , Ik) to be the conditional probability of
following the sequence of information levels I1, . . . , Ik to reach analysis k with
information Ik and Zk = zk, given that Zk takes this value when information
is equal to Ik. Again, this conditional probability does not dependent on θ. In
place of (13) we now have

Pθ(“Superiority”) =
k∑

K=1

∑
{I1,...,Ik}

∫ ∞

dk(I1,...,Ik)

fk(zk, Ik; θ) pk(zk, I1, . . . , Ik) dzk.
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As before, all the integrands in this equation are monotone increasing in θ, as
long as each critical value dk(I1, . . . , Ik) is positive and, hence, the maximum
type I error rate over θ ≤ 0 occurs at θ = 0. Results for other error probabilities
follow as before with the same conditions on critical values when these are
expressed in terms of the final θ̂k.

II Deriving optimal group sequential designs by

solving Bayes decision problems

We illustrate our methods in the derivation of a design minimising F ∗ subject to
error constraints (1) to (4). In this case, we place a five point prior distribution
on θ with probability 1/5 at −δN , −δN/2, 0, δS/2 and δS . We define a loss
function associated with decisions on termination DI : declare inferiority, DN :
declare-inferiority, and DS : declare inferiority,

L(D, θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k1 for D = DN or DS and θ = −δN

k2 for D = DS and θ = 0
k3 for D = DI and θ = 0
k4 for D = DI or DN and θ = δS

0 otherwise.

(14)

With a cost c(θ) = 1 per observation at each value of θ, the total expected cost
is

F ∗+{k1 Pθ=−δN (DN∪DS)+k2 Pθ=0(DS)+k3 Pθ=0(DI)+k4 Pθ=δS (DI∪DN )}/5.

We use dynamic programming, as described below, to solve this unconstrained
Bayes decision problem for either non-adaptive or adaptive designs. It then
remains to perform a numerical search for values of k1, k2, k3 and k4 which give
a solution satisfying the error probability constraints (1) to (4). The standard
Lagrangian argument implies that this Bayes sequential decision rule minimises
F ∗ among all designs satisfying (1) to (4).

Consider first the non-adaptive case where nk, k = 1, . . . , K, are pre-
specified. Let p(k)(θ|zk) denote the posterior distribution of θ given Zk =
zk. If sampling continues until the final analysis K, a decision DI , DN ,
or DS must be chosen. The critical values at this analysis are obtained by
solving k3 p(K)(0|zK) = k1 p(K)(−δN |zK) to find bK , and k4 p(K)(δS |zK) =
k2 p(K)(0|zK) to find dK ; the monotone likelihood ratio property of the normal
distribution implies each of these equations has a unique solution. The dynamic
programming algorithm works backwards from this point to find the optimal
decision rule at earlier analyses.

If Zk = zk, the expected loss on stopping to make the Bayes optimal decision
at stage k is

γ(k)(zk) = min{k3 p(k)(0|zk) + k4 p(k)(δS |zk), k1 p(k)(−δN |zk) + k4 p(k)(δS |zk),
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k1 p(k)(−δN |zk) + k2 p(k)(0|zk)},
the minimum of the expected costs of stopping for inferiority, non-inferiority or
superiority.

We denote by F k+1(zk+1|zk) the conditional cumulative distribution
function of Zk+1 given Zk = zk. For k = 1, . . . , K − 2, the additional expected
cost for proceeding from stage k to stage k + 1 and acting optimally thereafter
is

β(k)(zk) = (nk+1 − nk)
5∑

i=1

c(θi)p(k)(θi|zk)

+
∫

min{β(k+1)(zk+1), γ(k+1)(zk+1)}dF (k+1)(zk+1|zk) (15)

while at stage K − 1, we have

β(K−1)(zK−1) = (nK − nK−1)
5∑

i=1

c(θi) p(K−1)(θi|zK−1)

+
∫

γK(zK)dF (K)(zK |zK−1). (16)

The functions β(k)(zk) can be calculated recursively, working backwards from
analysis K−1: using the stage k+1 stopping boundary and values of β(k+1) and
γ(k+1) previously calculated on a grid of zk+1 values, the integral in (15) can
be found by numerical integration using, say, Simpson’s rule. At each analysis
k, the roots of β(k)(zk) = γ(k)(zk) are found by a numerical search and these
define the stopping boundaries.

The above method can be extended to find optimal adaptive designs using
the approach followed by [7] for the two-decision problem. Consider the case
K = 2, with n1 fixed and n2 allowed to take values in the set {n2,1, . . . , n2,M}.
We first find the M pairs of critical values b2,m and d2,m defining the optimal
decisions when the second analysis takes place at cumulative sample size n2,m,
m = 1, . . . , M . We then divide the range of values of Z1 into intervals
over which each of the following actions is found to be optimal: stop and
declare inferiority, stop and declare non-inferiority, stop and declare superiority,
continue to analysis 2 with cumulative group size n2,m, m = 1, . . . , M . As
before, a numerical search is performed to find the set of costs k1, k2, k3, and k4

for which the solution satisfies the error probability constraints (1) to (4) and
this gives the solution to the original constrained problem. This process is then
nested within a search over n1 to optimise both group sizes.

III Calculation of critical values for error

spending designs

Consider an analysis k with γ Imax,S ≤ Ik ≤ Imax,S , the case where all four
critical values, ak, bk, ck and dk, are required. We assume boundary values for
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analyses 1 to k− 1 have already been calculated. Define the increments in error
probabilities under θ = 0 for analysis k

Δfk
S = fS(Ik) − fS(Ik−1) and Δgk

N = gN (Ik) − gN(Ik−1).

For the other two error probabilities, under θ = −δN and δS , we set increments

Δfk
N = fN(Ik) − fN (Ik−1) and Δgk

S = gS(Ik) − gS(Ik−1)

unless this is the first analysis with Ik ≥ γ Imax,S , in which case we take

Δfk
N = fN (Ik) − Pθ=−δN (Stop to declare superiority by analysis k − 1)

and

Δgk
S = gS(Ik) − Pθ=δS (Stop to declare inferiority by analysis k − 1)

to account for the error probability incurred at analyses where fN (I) and gS(I)
are zero.

We denote the continuation region at analysis i by Ci = [ai, bi]∪ [ci, di]. Two
one-dimensional searches can be used to find ak and dk satisfying

Pθ=0(Z1 ∈ C1, . . . , Zk−1 ∈ Ck−1, Zk < ak) = Δgk
N

and
Pθ=0(Z1 ∈ C1, . . . , Zk−1 ∈ Ck−1, Zk > dk) = Δfk

S .

Let
Δfk1

N = Pθ=−δN (Z1 ∈ C1, . . . , Zk−1 ∈ Ck−1, Zk > dk)

and
Δgk1

S = Pθ=δS (Z1 ∈ C1, . . . , Zk−1 ∈ Ck−1, Zk < ak).

We now want to find bk and ck satisfying

Pθ=−δN (Z1 ∈ C1, . . . , Zk−1 ∈ Ck−1, Zk ∈ [bk, ck]) = Δfk
N − Δfk1

N (17)

and
Pθ=δS(Z1 ∈ C1, . . . , Zk−1 ∈ Ck−1, Zk ∈ [bk, ck]) = Δgk

S − Δgk1
S . (18)

Since bk and ck must lie in the interval [ak, dk], an upper bound bu
k for bk is

found by solving

Pθ=−δN (Z1 ∈ C1, . . . , Zk−1 ∈ Ck−1, Zk ∈ [bu
k , dk]) = Δfk

N − Δfk1
N (19)

and a lower bound cl
k for ck by solving

Pθ=δS (Z1 ∈ C1, . . . , Zk−1 ∈ Ck−1, Zk ∈ [ak, cl
k]) = Δgk

S − Δgk1
S . (20)

Using these values of bu
k and cl

k, we can now find a lower bound bl
k for bk as the

solution to

Pθ=−δN (Z1 ∈ C1, . . . , Zk−1 ∈ Ck−1, Zk ∈ [bl
k, cl

k]) = Δfk
N − Δfk1

N
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and an upper bound cu
k for ck as the solution to

Pθ=δS (Z1 ∈ C1, . . . , Zk−1 ∈ Ck−1, Zk ∈ [bu
k , cu

k ]) = Δgk
S − Δgk1

S .

We have now reduced the original interval [ak, dk] to [bl
k, cu

k ] and can repeat the
same steps with cu

k in place of dk in (19) and bl
k in place of ak in (20). We have

found repeated iterations of these steps to give an efficient method for finding
bk and ck satisfying (17) and (18).
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