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Abstract

The outer layers of the Earth’s atmosphere are known as the ionosphere, a plasma of free electrons

and positively charged atomic ions. The electron density of the ionosphere varies considerably with

time of day, season, geographical location and the sun’s activity. Maps of electron density are useful

because local changes in this density can produce inaccuracies in the Navy Navigation Satellite System

(NNSS) and Global Positioning System (GPS). Satellite to ground-based receiver measurements produce

tomographic information about the density in the form of path integrated snap-shots of the total electron

content which must be inverted to generate maps. We propose a Bayesian approach to the inversion prob-

lem using spatial priors which allow us parsimoniously to include knowledge of how density varies with

height. Less helpfully, this parameterisation does not lend itself well to standard Metropolis-Hastings

algorithms and so we develop a much more efficient form of Markov chain Monte Carlo sampler using

a transformation of variables based on a principal components analysis of initial output.

Keywords: Bayesian Modelling, Ionospheric Mapping, Inversion, Markov Chain Monte Carlo, Princi-

pal Components, Tomography.

1 Introduction

The Earth’s atmosphere is categorised into five regions at increasing height from the Earth’s surface, the tro-

posphere, stratosphere, mesosphere, thermosphere and exosphere. The two outermost layers of the Earth’s

atmosphere, the thermosphere and exosphere, starting at about 75km from the Earth’s surface are sufficiently

thin that ultraviolet radiation causes them to be ionized; electrons are knocked out of atoms by photons, and
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the sparsity of the atmosphere allows them to live free for some time before recombining with a nearby

positive ion. This plasma of free electrons and positively charged atomic ions is known as the ionosphere.

One noticeable effect of the ionosphere for us is on the transmission of radio waves, with the ionosphere

acting almost as a mirror to bounce signals around the Earth. Less helpfully, the ionosphere also affects the

radio wave signals of satellite based navigational systems with a negative effect on their accuracy. This effect

could be assessed and accounted for using a map of electron density (which varies considerably including,

but not exclusively, with altitude, time of day, season, geographical location and with the sun’s activity).

With a view to generating such maps, satellite to ground-based receiver systems can be used to provide

tomographic information about the density in the form of path integrated snap-shots of the total electron

content. These tomographic data must then be inverted to map the electron density.

In Section 2 we discuss the tomographic inversion problem based on NNSS data. We propose a Bayesian

approach using priors which allow us to include knowledge of how electron density varies with height as

well as spatial smoothness at fixed altitude. This parameterisation does not lend itself well to standard

Metropolis-Hastings algorithms and so we develop a much more efficient transformation-of-variables mod-

ification linked to principal components in Section 3. Sections 4 and 5 present results, discussions and

directions for further work. Finally an investigation of the stability of the principal components MCMC is

given in the Appendix.

2 Inversion of ionospheric data

2.1 Data and existing methodology

The data which will be used here exploit the fact that the extent to which radio waves are affected by

the electron density of the ionosphere depends on their frequency. By transmitting two satellite-to-ground

receiver signals simultaneously at two different frequencies, it is possible to measure the Total Electron

Content (TEC) along that particular satellite-to-ground path. The TEC is effectively a path integral of the

electron density (and is measured in TECU, 1 TECU being1016 electrons perm2). Such data are believed by

engineers to have very high accuracy, but they do only give tomographic projections of the electron density.

Moreover, since the paths are between moving satellites and fixed ground-based receivers which must be in

their line of sight, the geometry means a rather restricted set of projections in comparison to, say, Magnetic

Resonance Imaging used in medicine.

Existing approaches to inverting TEC projections discretise space and correspondingly approximate the

path integrals. Writing the set of TEC observations as a vectorY , the set of electron densities over space

discretised into a set of voxels as a vectorD, and forming a matrix W withijth entry the length of theith
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Figure 1: The approximate geometry of paths between a Navy Navigation Satellite System (NNSS) satellite

and a chain of four ground based receivers (for clarity only a subset of intermediate satellite positions have

been shown, there are 572 paths in total).

path across thejth spatial voxel, the system to be inverted is written as

Y = WD. (1)

Recovering the discretised electron densityD is complicated because this is an under-determined system;

there are usually large areas of the discretised ionosphere through which no paths pass. For example, Fig-

ure 1 shows the geometry of a sequence of measurements made from an orbiting NNSS satellite to four

ground-based receivers. Various authors have proposed iterative algorithms which can be used for this type

of inversion problem, see for example Gordon, Bender and Herman (1970) and Censor (1983). A non-

iterative algorithm for two-dimensional imaging was proposed in 1992 by Fremouw, Secan and Howe, and

extended in 2001 by Spencer and Mitchell. It is this last approach, known as MIDAS (Multi-Instrument Data

Analysis System) which we will consider as the motivation for the work that follows. MIDAS transforms the

voxel-based representation of the electron density into an alternative domain, partly using a Fourier basis,

and performs a generalised inversion in this domain using a singular value decomposition. Although compu-

tationally fast, MIDAS does not provide interval estimates of the electron density and can also occasionally

generate negative estimates of the density as there is no explicit positivity constraint imposed.
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2.2 A Bayesian Modelling approach

We wish to use a Bayesian approach to explore the space of probable electron densitiesD which could

have given rise to the observed TEC measurementsY . Although the measurement system is believed to

be virtually noise-free, what little noise there is will be augmented by the modelling error of discretisation

in formulating the data as linear combinations of average voxel densities, Equation (1). We shall make the

assumption that the TEC data are conditionally independent givenD andτ2 with

Yi|D, τ2 ∼ N([WD]i, 1/τ2), i = 1, . . . , I (2)

where the weightsW are assumed known,τ2 is the common precision, and the variance termτ−2 represents

both measurement and discretisation error. This modelling assumption will be examined later. We assign a

quite standard choice of prior for the precisionτ2 using Jeffreys’ invariance rule

pτ2(τ2) ∝ 1
τ2

, τ2 > 0. (3)

One possible choice for a prior distribution forD which would reflect the fact that we expect the electron

density to have smooth spatial variation would be an intrinsic Gaussian Markov Random Field (GMRF)

model (Rue and Held (2005))

pD(D) ∝ exp(−βD

∑
i∼j

(Di − Dj)2) (4)

wherei ∼ j defines a nearest neighbour structure on the voxels, andβD is a non-negative parameter con-

trolling the degree of smoothness expected. It would not be uncommon to expand this model to incorporate

different degrees of smoothness in different directions; in this example, we might expect different smooth-

ness in the vertical and horizontal directions. However, we have more information about the electron density

than this. Chapman (1931) considers the rate at which electrons are produced, which is proportional to the

intensity of the ionising radiation and to the density of the gas being ionised. The competing effects of

greater radiation intensity but lower gas density as altitude increases give rise to a unimodal profile of den-

sity with height which takes its name from him, theChapman profile. For a single gas whose absorption

coefficient is assumed constant with wavelength, the Chapman profile can be described by the equation

γ(z) = γ0 exp(1 − z − e−z)

= γ0 exp(−z2

2!
+

z3

3!
− z4

4!
+ . . .) (5)

whereγ(z) is the density at a heightz measured relative to the height of maximum density (z = 0) where

the density isγ0. Figure 2 indicates the shape of this idealised profile. The reality of the ionosphere is more

complicated, not least by the fact that multiple gases exist in different proportions at different altitudes.
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Figure 2: The shape of the Chapman profile.

We indirectly propose a prior for the densitiesD by proposing a prior for an approximation to the basic

Chapman profile. Consider thenth vertical column in the spatial discretisation bearing in mind Equation

(5). We approximate the Chapman profile at this location by a scaled Normal probability density function,

with electron density at heighth given by

γ̃n(h) =
γn√
2πσ2

n

exp(−(h − µn)2

2σ2
n

) (6)

whereµn represents the peak electron density,σ2
n represents a scaling parameter andγn represents the

total electron count in that vertical column. This approximation is assumed to hold for all points on the

ground lying in thenth column,n = 1, . . . ,N , giving usN Chapman curve approximations. We relate the

discretised densitiesD to the approximated Chapman curves{γ̃n(h)} by setting the density in each voxel to

be constant and equal to the correspondingγ̃n(h) evaluated ath, the mid-height of that voxel. Notice that we

have moved fromN × Nh D variables (whereN is the number of vertical columns, andNh is the number

of discretisation values in the height direction) to3 × N values of parameters{µn, σ2
n, γn}. The behaviour

we would still like to capture though is that the electron density changes quite slowly and smoothly. We

consider the priors

p({µn, σ2
n, γn}) = pµ({µn})pσ2({σ2

n})pγ({γn})
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pµ({µn}) ∝ exp(−βµ

∑
i∼j

(µi − µj)2)I[0<{µn}<µmax]

pσ2({σ2
n}) ∝ exp(−βσ2

∑
i∼j

(σ2
i − σ2

j )
2)I[0<{σ2

n}<σ2
max]

pγ({γn}) ∝ exp(−βγ

∑
i∼j

(γi − γj)2)I[0<{γn}<γmax] (7)

where∼ indicates a common nearest neighbour structure andβµ, βσ2 , βγ are non-negative parameters con-

trolling the degree of smoothness. These parameters{µn, σ2
n, γn} are all restricted to finite ranges which in

practice can be chosen sufficiently wide that the posterior would have negligible mass outside them.

We are interested in the posterior distribution of the ionospheric parameters{µn, σ2
n, γn} and the nui-

sance parameterτ2 given the satellite-to-receiver observationsY1, . . . , YI :

p({µn, σ2
n, γn}, τ2|y1, . . . , yI) ∝ pµ({µn})pσ2({σ2

n})pγ({γn})pτ2(τ2)
I∏

i=1

p(yi|{µn, σ2
n, γn}, τ2) (8)

2.3 The application of standard MCMC

The posterior distribution defined by Equation (8) is rather intractable and we will need to resort to Markov

chain Monte Carlo methods for inference (see Gilks, Richardson and Spiegelhalter (1996) for an overview).

In order to test both the efficiency of a standard single-site MCMC implementation and the ability of the

model to invert the signals{yi} to recover information about the electron density, we consider first a small

simulated dataset. Figure 3 shows both the geometry of the test study and the shapes of the approximated

Chapman profiles, Equation (6), which will be used to simulate a test data set. From these scaled curves,

each voxel is assigned an electron density value equal to the correspondingγ̃n(h) evaluated at the heighth

which is the mid-height of that voxel. DataY1, . . . , YI are then simulated according to model Equation (2),

where the weightsW are the path lengths across each voxel, andτ2 is taken to be 2000 reflecting the belief

that measurement error is small. There are a couple of points to note. First, in this test example, there are ray

paths between all satellite positions and receivers; in real data sets this is not necessarily the case because of

the curvature of the Earth. Secondly, the level of discretisation is extremely coarse, especially in the vertical

direction, with the number ofDi actually equaling the number of Chapman curve parameters{µn, σ2
n, γn}.

A standard application of MCMC updates each of the{µn, σ2
n, γn} andτ2 parameters in turn, using a

Gibbs sampler for the updates ofτ2 and random walk Metropolis updates for all of the other parameters.

The smoothing parametersβµ, βγ , βσ2 are, for the moment, held fixed and the proposal distributions for the

Metropolis random walk moves are tuned to have acceptance rates of 20-40%. Figure 4 shows trace plots of

the first 150000 iterations of an MCMC run using this set-up together with the values used in the synthesis

of the data. It is clear that convergence is slow, for example the precision parameter only really reaches

the right region of the parameter space after about 75000 iterations. Before this point, the other parameters
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Figure 3: Physical set-up for the small simulated example. Red lines indicate the ray paths between 3

ground receivers and 12 satellite positions. The spatial discretisation is into five vertical sections and three

horizontal ones. The solid blue lines indicate the shapes of the approximated Chapman profiles{γ̃n(h)},

Equation (6), at the five vertical sections which will be used to simulate data. The curves do not indicate the

values of the scalings{γn} which will be, from left to right, 35, 30, 25, 20 and 29.D values for each voxel

are evaluated at the mid-height point.
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experience quite high variation, but after it this is damped down considerably. This is not perhaps surprising

given the form of the likelihood, Equation (2), and the fact that the value ofτ2 used in the simulation of the

data is very high, implying a variance for the data of 1/2000.

Unfortunately there is a more serious problem than the slow convergence. From Figure 4 it is clear that

several of the Chapman parameters have settled into regions of the parameter space quite far from the values

used to generate the data. While this could in some instances suggest that the posterior provides greater

support for these non-synthesising values, in this case running the sampler with different starting values or

different random number generator seeds can lead to the chains settling in different regions: The mixing is

extremely poor. Figure 3 helps to explain why this is the case. Updating a single Chapman parameter alters

all the density valuesD in the corresponding column in a non-linear fashion. In terms of the likelihood

contribution to the posterior, what matters is that the weighted combination of theseD values match the

observed data valuesY1, . . . , YI well (bearing in mind how small the noise variance is). Once a combination

of {µn, σ2
n, γn} has been found which does give a reasonable match, it is hard to move away to any another

well-matching set by single-site updates alone since this may involve moving through a sequence of far less

likely combinations. One possibility here might be a block update of several parameters simultaneously,

although it is not immediately clear how to block the parameters in order to maintain this “data-matching”.

The perhaps more intuitive solution is to consider a transformation of variables approach, proposing small

changes to theD values themselves (and back-transforming to recover the new values of the{µn, σ2
n, γn}).

(In this set-up of three horizontal divisions, each column has threeD values and three Chapman parameters.)

To evaluate the acceptance probability of a move of this type, the Jacobian of the transformation is required.

Any perturbation of theD which does not give rise to a valid set of{µn, σ2
n, γn} (for example a negative

value ofµ) will be rejected automatically as it will violate the range constraints incorporated into the priors.

Figure 5 gives the trace plots from an MCMC run using, alternately, the single-site moves and the

moves inD space. While it still takes the algorithm a large number of iterations to reach the right area of

the parameter space, the extreme “stickiness” of the single-site sampler is avoided. What the traces now

reveal is part of the reason why this is a potentially hard inversion problem. For example, consider the

turquoise trace plots which exhibit much higher variability than the other four sets of curves. This set of

traces correspond to the fifth column in Figure 3. Looking at the ray paths passing through this column, it

is clear that many of the rays are close to vertical or only have a short path across the top of the column.

Moreover, the discretisation means that theD values are calculated using only the Chapman values at the

mid-height point of the voxel. As this curve has a highµ value, the two lowerD contributions are very close

to zero, simply because of the shape of the Chapman curve. This effectively means that three parameter

valuesµ5, σ
2
5 , γ5 can vary relatively widely while still maintaining a fairly constant set ofD values.
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Figure 4: Trace plots of the precisionτ2 and sets of Chapman parameters{µn}, {σ2
n}, {γn} for a single-site

MCMC run. The values used to generate the simulated data are indicated as solid horizontal lines. The five

columns left to right are represented in the plot by colours black, red, green, blue and turquoise respectively.
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Figure 5: Trace plots of the precisionτ2 and sets of Chapman parameters{µn}, {σ2
n}, {γn} for an MCMC

run incorporating updates of theD values. The values used to generate the simulated data are indicated as

solid horizontal lines. The five columns left to right are represented in the plot by colours black, red, green,

blue and turquoise respectively.
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It could be argued that the level of discretisation here is entirely artificial and certainly that only three

levels of vertical discretisation is inadequate. The number of slices can certainly be increased to improve

the sampling of the Chapman curve, and indeed experiments with this simulated data set show that this is

helpful. However if the ray paths only intersect voxels where the electron density is very low, we would

expect more uncertainty in the inversion for such columns. Considering the geometry for the NNSS data set

in Figure 1, the sparsity of the ray-paths is apparent. Once we move to more than three horizontal sections,

the MCMC move inD space is more complicated to define as there is no longer a dimension match between

the number of voxels in a column and the corresponding number of Chapman parameters. Rather than

concentrate on how this move can be generalised, we want to view this example of how a transformation of

variables can improve MCMC performance to motivate a largely automatic route to improved mixing.

3 Principal Component MCMC

One of the well known introductory examples in MCMC for illustrating how single-site updates work is

that of a bivariate distribution whose constituent variables are not aligned with the coordinate axes (see, for

example, the first chapter of Gilks, Richardson and Spiegelhalter (1996) or Figure 6). Proposed moves are

of one variable at a time and so are parallel to the coordinate axes. If the variables were uncorrelated, then

this would be ideal. However, depending on the degree of correlation between the two variables, mixing

can be very slow as the sampler slowly “tacks” up and down the area of high probability. The obvious

solution would be to make a suitable simultaneous block update of both variables, enabling moves in the

natural directions of the target distribution. The catch is that, in general, little is known in advance about

the structure of the distribution and so it is not possible to specify what blocking of the components is

suitable. However, if the variance matrix were known, then we could calculate the principal components of

the distribution (see, for example, Chatfield and Collins (1980)). A principal component analysis will give

us linear combinations of the original variables which are uncorrelated. Additionally the eigenvalues from

the principal component analysis will give us the scale of variability in each of these new directions.

We propose to use the principal component idea to generate blockings of the original variables. De-

noting the normalised eigenvectors and corresponding eigenvalues of the principal component analysis by

e1, . . . , en andλ1, . . . , λn wheren is the dimension of the originalX, the proposed block moves are

x′ = x + ziei, i = 1, . . . , n (9)

whereZi ∼ N(0, δλi) and δ is a scalar used to control the acceptance rate. As the transformation of

variables is linear and the proposal distribution is symmetric, the acceptance probabilities for these moves

will simply take the form of the usual Metropolis rates.
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Figure 6: The contours of a distribution showing how the axes of the main variation are not aligned with the

directions in which updates will be proposed by a single-site sampler.

Realistically of course, we do not know the variance of the distribution. Our suggestion is to use a

preliminary run of a standard sampler to estimate either the covariance or the correlation matrix of the dis-

tribution (the correlation may be more appropriate in cases where the constituent components ofX are on

quite different scales). We might expect the idea of reparameterisation by principal components to give

the best MCMC performance in situations where the target distribution is close to multivariate normal and

where the variance structure is well estimated. In the Appendix, we investigate the effect of having little

information from which to estimate the principal components. We also consider whether the reparameteri-

sation remains of benefit when the target distribution is increasingly non-normal. Both sets of investigations

show promising results for this methodology.

For the 3-level synthetic example of the previous section, we approximate the variance structure from

a standard single-site update MCMC run. As the mixing is so bad for this MCMC, we abandon the first

100000 iterations to burn-in (see Figure 4). The scaling parameterδ is taken to be 2.4 for all the principal

component moves, giving an acceptance rate of 0.07 for the first principal component and between 0.23
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µ1 µ2 µ3 µ4 µ5

MCMC 4099 6256 4373 8008 7159

PCMCMC 234 198 227 186 6597

σ2
1 σ2

2 σ2
3 σ2

4 σ2
5

MCMC 6129 7274 5416 6710 15444

PCMCMC 120 292 219 239 12201

γ1 γ2 γ3 γ4 γ5

MCMC 4371 7830 4471 7795 5455

PCMCMC 155 359 152 216 7850

Table 1: Comparison of the estimated integrated autocorrelation times using standard MCMC and PCM-

CMC for the 3-level synthetic example. In both cases, the estimates are from the final 50000 iterations.

and 0.42 for the others. Figure 7 shows the trace plots using PCMCMC corresponding to Figures 4 and

5; mixing and convergence are clearly improved over the standard single-site MCMC for all but the final

column. To confirm this, Table 1 gives the estimated integrated autocorrelation times for the parameters

of the five approximated Chapman profiles. What we see is that the PCMCMC has dramatically improved

the performance for those parameters which exhibited some slow movement with the single-site sampler.

However, for the fifth column the original MCMC run was particularly stuck with the parameters as good as

fixed. As a result the principal component approach has essentially identified the three original parameters

µ5, σ
2
5 , γ5 with the three eigenvectors with the three smallest eigenvalues. The fact thatµ5 is barely moving

away from a value which is higher than the synthetic value, whileσ2
5 is barely moving away from a lower

value than the synthetic one means that quite large changes in the scalingγ5 have little effect on theD values.

The lack of any improvement is easily spotted by a comparison of the MCMC and PCMCMC integrated

autocorrelation times.

Overall the PCMCMC approach has dramatically improved the mixing behaviour for inverting the syn-

thetic data. Although it is disappointing that this automatic reparameterisation has not performed as well as

the tailored solution on the particularly difficult triplet of parameters, the reasons for this are well understood

and the poor performance is easily noticed. Such pathological behaviour would not be expected in practice

where discretisation levels are set at much more realistic levels. However it is always important to know the

limitations of any algorithm and this experiment has shown us what we can expect of PCMCMC.
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Figure 7: Trace plots of the precisionτ2 and sets of Chapman parameters{µn}, {σ2
n}, {γn} using the

PCMCMC algorithm. The values used to generate the simulated data are indicated as solid horizontal lines.

The five columns left to right are represented in the plot by colours black, red, green, blue and turquoise

respectively.
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4 Applications of PCMCMC to ionospheric mapping

We are now is a position to fit the Bayesian model given by Equation (8) to data gathered in a satellite

pass whose geometry is summarised in Figure 1. The data themselves are tomographic projections of the

electron density along the satellite to receiver rays. There are various points to consider: the estimation of

the nuisance parametersβµ, βγ , βσ2 , the choice of posterior summaries, the assessment of model fit.

We begin with the treatment of the nuisance parameters arising from the choice of the smoothing spatial

priors, Equation (7). Perhaps the most satisfying approach would be to treat these parameters in a fully

Bayesian manner but this is infeasible as the normalising constants of these priors, even when restricted

to a finite support, are not tractable. Heikkinen and H¨ogmander (1994) discuss a similar problem and

possible alternative strategies in a spatial problem arising in ecology. We opt here for estimating theβs using

maximum pseudo-likelihood (Besag (1975)). This technique can be implemented in alternation with updates

of the main parameters during an initial MCMC run until the nuisance parameter estimates stabilise. Further,

in this example, we opt to use only the middle third of the columns to estimateβµ, βγ , βσ2 ; considering again

Figure 1 we are aiming to include only columns which contribute to a significant number of the observations.

Once the maximum pseudo-likelihood estimates of the nuisance parameters have stabilised, the remain-

der of the initial MCMC run can be used for estimation of the variance with a view to finding approximate

eigenvalues and eigenvectors. Some care needs to be taken over numerical stability in this application as

the three parameters of the Chapman profile approximations are on vastly different scales. To compare the

efficiency of the original MCMC to the PCMCMC algorithms, both samplers were run for 100000 itera-

tions, estimating integrated autocorrelation times from the second half of both runs. Table 2 demonstrates

the impressive scale of the improvement obtained from this computationally intensive stage.

The PCMCMC algorithm as described generates posterior samples of the parameters describing the

approximate Chapman profiles,µ, γ, σ2 as well as the noise parameterτ2. However we may wish to make

inferences about the discretised electron density itself,D, in which case each iteration’s output should be

transformed according to Equation (6). In either case, the important feature is that we can produce interval

estimates of whatever quantity is of interest. What we present here are (non-simultaneous) 95% credible

intervals forD. Figure 8 shows the MIDAS (Spencer and Mitchell 2001) solution to the inversion problem

together with the posterior mean estimate ofD and the upper and lower ends of the credible intervals for

D. As black indicates low values of electron density and white high values, the image of the upper ends of

the credible intervals shows a broader band of grey pixels than the image of the lower ends. Comparing the

MIDAS and posterior mean estimates, a few points to note are, firstly, that MIDAS has produced a smoother

estimate than the Bayesian reconstruction. This may in part be due to the way in which MIDAS works,
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MCMC PCMCMC MCMC PCMCMC MCMC PCMCMC

µ1 9505 7.7 σ2
1 3552 6.1 γ1 1396 5.3

µ2 10185 7.8 σ2
2 4089 6.6 γ2 1285 5.4

µ3 11036 8.3 σ2
3 4572 6.9 γ3 3281 5.6

µ4 11916 8.8 σ2
4 4640 7.1 γ4 3886 6.1

µ5 12842 8.6 σ2
5 6957 7.4 γ5 957 5.6

µ6 13793 9.3 σ2
6 6669 7.4 γ6 730 5.3

µ7 14413 9.1 σ2
7 6884 7.4 γ7 672 5.3

µ8 15217 8.7 σ2
8 7662 7.9 γ8 518 5.9

µ9 15829 8.4 σ2
9 11381 8.6 γ9 339 4.7

µ10 15053 8.4 σ2
10 13750 8.9 γ10 735 5 6.6

µ11 15040 8.4 σ2
11 13565 9.2 γ11 11994 7.7

µ12 15203 8.5 σ2
12 13295 10.0 γ12 12374 7.9

µ13 15149 8.6 σ2
13 12289 10.3 γ13 11258 8.2

µ14 14762 8.6 σ2
14 11188 10.4 γ14 10468 7.7

µ15 13268 8.2 σ2
15 10007 10.3 γ15 2375 6.2

µ16 11851 7.4 σ2
16 9868 9.6 γ16 3337 5.4

µ17 9604 6.9 σ2
17 7834 9.1 γ17 1719 5.8

µ18 7621 6.5 σ2
18 5919 8.6 γ18 385 5.8

µ19 6228 6.3 σ2
19 4719 8.4 γ19 538 6.1

µ20 5269 6.2 σ2
20 4017 8.1 γ20 704 5.8

µ21 4528 6.0 σ2
21 3505 7.7 γ21 774 5.6

µ22 3463 5.8 σ2
22 1775 7.5 γ22 740 5.6

Table 2: Comparison of the estimated integrated autocorrelation times using standard MCMC and PCM-

CMC for the ionospheric data set.
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obtaining a least-squares fit to the data using a basis function of smoothly varying images. Secondly, both

MIDAS and the Bayesian approach identify an area of high electron density in the left of the region. This is

all the more surprising given that few rays pass directly through this region of high density (see the ray paths

in Figure 1) although rays do pass through the columns in which it is situated. As with our experiments in

earlier sections, we would expect a reasonable amount of uncertainty associated with such a feature; visually

the credible intervals forD do indicate greatest width around this feature. On the far right of the image,

there are also some columns through which no ray passes at all and so the only information we have about

the values in these columns comes through our prior expectation of smoothness. The mean estimates here

are essentially flat left to right (ie there is little change from column to column), as we might have expected.

The widths of the corresponding credible intervals are largely governed by the strengths of the smoothing

parameters of the priors.

We also need to consider the question of model fit and appropriateness of the assumptions made in

formulating the likelihood. Figure 9 gives residual versus fitted value plots from both the MIDAS fit to

the data and the Bayesian model (using residuals calculated by averaging the iteration-wise residuals). In

the latter case, the fitted value of the noise variance in the model is1/τ2 = 0.7. As there is certainly

residual structure in both cases, we have further identified the residuals associated with the four receivers

using different colours. In the case of the MIDAS reconstruction, the greatest discrepancies are for the two

left-hand receivers from Figure 1 (denoted in green and blue in the residual plot), ie those which are more

affected by the area of high electron density. Generally the Bayesian model is able to provide a comparable

or better fit to the data than the MIDAS algorithm including for these two receivers.

We also note though that while there is no apparent dependence of the residuals on the receiver or the

size of the fitted value, there is a marked cyclical structure for all four receivers which calls into question our

assumption of conditional independence of the observations. The data acquisition process of the satellite

passing over the receivers does mean that the observations are not made simultaneously, a fact which we

have ignored in our modelling. Successive observations, which are more closely spaced than indicated in

Figure 1, follow rather similar routes (especially when considered in the discretised pixel representation) but

through an ionosphere which has moved on in time (for the NNSS satellites, the orbiting time is about 20

minutes). There are also approximations to the geometry arising from flattening an inherently 3-dimensional

problem into the two dimensions portrayed in Figure 1.
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Figure 8: The ionosphere maps of free electron densities in units of1011el/m2 obtained from MIDAS

(upper left), the posterior mean (upper right), the lower end of 95% non-simultaneous credible intervals

(bottom left), the upper end of 95% non-simultaneous credible intervals (bottom right).
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Figure 9: Residuals plots (with residuals defined as data minus the fitted value). The four different colours

indicate the four different receivers (ordering from left to right in Figure 1: blue, green, red, black). Top

panel: residuals from the MIDAS fit. Bottom panel: residuals from the Bayesian fit.
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5 Discussion

We have seen that a rather simple Bayesian model is able to invert the type of tomographic data arising

in studies of the ionosphere, improving upon an existing method in terms of data fit. A large attraction of

any statistical approach is the generation of interval estimates but in this case the non-simultaneous credible

intervals forD should be treated with some caution as the residuals suggests a more complex structure than

was assumed in this initial modelling, possibly due to an unacknowledged temporal aspect. Since for this

application, the ultimate goal is to generate 4-dimensional time + space electron density maps, the temporal

structure of the data is the next obvious question to be tackled.

In order to get reasonable mixing of an MCMC algorithm, we have needed to find transformations of

the original parameterisation. The principal component based approach proposed here is computationally

demanding in set-up, but relatively robust at least for unimodal distributions and surprisingly effective. It

also has the benefit of being non-specific to this particular application and might therefore prove useful in

other hard sampling problems. In some cases, the orientation of the distribution to be sampled from may

vary across the parameter space. It will then be desirable to replace the global set of principal component

directions by local values. These may be computed by fitting a local multivariate normal approximation

to the target distribution, using numerical approximations for the second derivatives of the log density.

One option is to use a preliminary exploration to define sets of directions to work with in different parts

of the sample space. Alternatively, a new set of directions can be generated for each move: local fitting

of an approximating normal distribution is performed to create a proposal and, again, in constructing the

reverse step that appears in the Metropolis-Hastings formula for the acceptance probability. Our initial

investigations of highly curved distributions, such as those with high values ofa in Appendix 2, indicate

the computational effort in repeated computation of principal component directions is justified if the target

distribution is essentially confined to a very thin region of varying orientation.

Appendix: PCMCMC stability

To be confident in the ability of the proposed PCMCMC algorithm to improve mixing, we must investigate

how it behaves when the motivating assumptions (i.e. sampling along the principal directions of a multivari-

ate normal) break down. Given that in practice the principal directions must be estimated from what may be

a poorly mixed MCMC sample, we will first consider sensitivity to inaccuracies here. We will then consider

what loss of performance there is as the distribution moves away from the assumption of normality.

20



A.1 Sensitivity to badly estimated principal components

One of the reasons why we resort to MCMC is that the distribution of interest is too complicated to handle

analytically. It is unrealistic to imagine that we might know the covariance structure exactly, and we would

only perhaps think of transforming variables in exactly those cases where an MCMC sampler failed to

mix well in the original parameterisation. We need to investigate how PCMCMC performs if the principal

components are badly estimated.

We will consider sampling from the highly correlated bivariate normal

 X1

X2


 ∼ N





 0

0


 ,


 1.0 0.999

0.999 1.0





 (10)

usingn steps of a Metropolis algorithm started at the mean of the distribution (to avoid issues of burn in) and

with a proposal standard deviation of 0.1 in both directions giving acceptance rates of about 45%. Figure 10

shows sample paths for chains of lengths betweenn = 20 andn = 10000 overlaid with the standardised

eigenvectors estimated from the corresponding sample covariance matrices. Based on then = 10000 run,

the integrated autocorrelation times forX1 andX2 for this Metropolis sampler are 4756 and 5023.

Table 3 gives the corresponding estimated correlation and eigenvalues (the true values for the eigenvalues

and eigenvectors are 1.999 and 0.001, and(1/
√

2, 1/
√

2) and (1/
√

2,−1/
√

2)). While the eigenvectors

stabilise even for quite smalln, the eigenvalues take much longer, largely because the Metropolis sampler

mixes so badly that the variances ofX1 and X2 are severely under-estimated as can be seen from the

scales of Figure 10. Based on these sets of estimated principal components, PCMCMC is run for 10000

iterations, initialised at the mean of the Metropolis run and using 2.4 times the square root of the eigenvalues

for a proposal standard deviation (with a view to achieving an acceptance rate of about 45%). Table 3

shows the statistics of these runs. Forn = 20, n = 50 andn = 100 the Metropolis under-estimation

of the variances leads to high acceptance rates, and correspondingly high integrated autocorrelation times.

Although the ergodic averages forn = 20 seem quite far from zero, they are in fact within 2 estimated

standard errors once the integrated autocorrelation time has been taken into account. However, even for

n = 20 the integrated autocorrelation times are a tenth those of the Metropolis sampler, and this drops to

a thousandth forn = 10000. In this example, it seems that remarkably few steps of the original sampler

are required in order to generate an efficient PCMCMC sampler. In the case of normal target distribution, it

seems almost impossible to do worse by considering this approach.
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Figure 10: The sample paths of a Metropolis sampler run forn iterations for the distribution given in

Equation (10). The estimated unit eigenvectors are overlaid in red.
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ρ̂ λ̂1 λ̂2 Accept. X̄1 V (X1) τ̂2 X̄2 V (X2) τ̂2

rates (X1) (X2)

n = 20 0.736 0.0023 0.0003 97%, 60% 0.301 0.90 562 0.302 0.90 569

n = 50 0.890 0.0144 0.0008 91%, 48% -0.043 0.97 121 -0.044 0.97 125

n = 100 0.861 0.0067 0.0005 85%, 56% 0.263 0.99 306 0.263 0.98 316

n = 500 0.977 0.0800 0.0009 84%, 46% 0.041 0.95 23 0.042 0.95 23

n = 1000 0.997 0.7184 0.0010 61%, 44% -0.001 1.03 6 -0.002 1.03 6

n = 10000 0.999 2.268 0.0010 45%, 46% -0.014 0.94 4 -0.014 0.94 4

Table 3: The performance of a PCMCMC sampler for the distribution given by Equation (10) when the eigen

structure is estimated based on a Metropolis run of lengthn (see Figure 10). Estimatedρ, and estimated

eigenvalues from the MCMC chain, acceptance rates for the moves in the two eigen directions, ergodic

averages, variances and estimated integrated autocorrelation times forX1 andX2 from the PCMCMC chain.

A.2 Sensitivity to Non-normality

We now turn to the effect of non-normality on PCMCMC. Suppose thatX1 andX2 are distributed

 X1

X2


 ∼ N





 5

2


 ,


 2.02 0.396

0.396 0.22





 (11)

and that we construct a new pair of random variables by

Z1 = X1 + a(X2 − 2)2

Z2 = X2, (12)

wherea is a constant. We will consider this distribution fora = 4, 40 and 400, demonstrating increasing

deviation from normality asa increases (although the distribution remains unimodal). A standard Metropo-

lis sampler is started at[6, 1]T and run using normal proposals with standard deviations 1 and 0.1 in theZ1

andZ2 directions for 200,000 iterations with the first 50,000 iterations discarded as burn-in. Principal com-

ponents are then calculated (using the correlation matrix), and PCMCMC again run for 200,000 iterations

with the first 50,000 iterations discarded as burn-in and a scaling of 2.4 for the step size. Figure 11 shows

the MCMC paths themselves after burn-in; the differences between the exploration of the distribution using

the standard Metropolis sampler and PCMCMC are very clear using this representation. Asa increases,

both samplers struggle, but PCMCMC performs better of the two in terms of moving into the tails. The

difficulty in mixing is also clear in Table 4 which gives estimated integrated autocorrelation times for the
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Acceptance rates E(Z1) Z̄1 τ̂2(Z1) E(Z2) Z̄2 τ̂2(Z2)

a = 4 MCMC 32%, 33% 5.16 5.095 489 2 1.994 447

PCMCMC 40%, 37% 5.177 7.5 2.003 6.7

a = 40 MCMC 32%, 34% 6.6 6.49 1678 2 2.003 637

PCMCMC 13%, 14% 6.550 112 1.998 67

a = 400 MCMC 33%, 12% 21 9.091 8064 2 2.011 589

PCMCMC 5%, 7% 14.912 1364 2.028 371

Table 4: Comparison of the performance of a Metropolis sampler and a PCMCMC sampler for the distribu-

tion given by Equation (12) witha = 4, a = 40 anda = 400: Acceptance rates, theoretical means, ergodic

averages and estimated integrated autocorrelation times.

Z1 andZ2 chains (estimated using the observed rather than known theoretical means). As the distribution

moves further from normal, the advantage of PCMCMC over the Metropolis sampler decreases from a dra-

matic improvement in integrated autocorrelation time whena = 4 to a modest gain whena = 400. In this

example, the non-normality of the target distribution has definitely not eliminated the benefits of PCMCMC.
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