Mid-course sample size modification in clinical trials based on the
observed treatment effect

Christopher Jennison
Department of Mathematical Sciences,
University of Bath, Bath BA2 7AY, U. K.
email: cj@maths.bath.ac.utel: +44 (0)1225 826468ax: +44 (0)1225 323436
and
Bruce W. Turnbull
Department of Statistical Science,
227 Rhodes Hall, Cornell University, Ithaca, New York 14853-3801, U. S. A.
email: turnbull@orie.cornell.eduel: +1 607 255 9131fax: +1 607 255 9129

SUMMARY
It is not uncommon to set the sample size in a clinical trial to attain specified power at a value for the treatment

effect deemed likely by the experimenters, even though a smaller treatment effect would still be clinically important.
Recent papers have addressed the situation where such a study produces only weak evidence of a positive treatment
effect at an interim stage and the organizers wish to modify the design in order to increase the power to detect a smaller
treatment effect than originally expected. Raising the power at a small treatment effect usually leads to considerably

higher power than was first specified at the original alternative.

Several authors have proposed methods which are not based on sufficient statistics of the data after the adaptive
re-design of the trial. We discuss these proposals and show in an example how the same objectives can be met while
maintaining the sufficiency principle, as long as the eventuality that the treatment effect may be small is considered
at the design stage. The group sequential designs we suggest are quite standard in many ways but unusual in that
they place emphasis on reducing the expected sample size at a parameter value under which extremely high power is
to be achieved. Comparisons of power and expected sample size show that our proposed methods can out-perform
L. Fisher’s “variance spending” procedure. Although the flexibility to re-design an experiment in mid course may be

appealing, the cost in terms of the number of observations needed to correct an initial design may be substantial.

Key words:Clinical trials; Group sequential tests; Sample size re-estimation; Two-stage procedure; Flexible

design; Variance spending.
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1 Introduction

We consider a situation which is not unusual in Phase Il clinical trials that involve the comparison of a new
treatment with a placebo or standard therapy. A statistical design is specified in the protocol based in part
on specification of a Type | error rate, and poweirl — 3 at a given effect size). The design may be for a

fixed sample size or there may be provision for early stopping via a group sequential monitoring boundary.
At some intermediate point during the course of the trial, the principal investigators examine the outcome
data collected so far and decide they wish to modify the original design. They may, for example, have been
over-optimistic in the choice of the design effect siZgwhereas it is now apparent that the benefit of the
new treatment is liable to be somewhat less thand it is unlikely that a significant result will be achieved

at the planned end of the trial. Even so, the estimated effect may still be large enough to be deemed clinically
significant and worthwhile.

At this stage, the question is often posed to the study statistician (and perhaps to a regulatory body,
such as the FDA) whether the trial design can be modified and the sample size enlarged, without violating
the trial's credibility and statistical validity. In the past, a strict answer to this question was usually “No”.
The alternative strategy of abandoning a trial if early results appear unpromising and starting a new trial
can also lead to grossly inflated Type | error rates — in extreme, this is akin to “sampling to a foregone
conclusion” (Cornfield). However, recently Fishérand Shen & Fishérhave proposed the so-called
“variance spending” method whereby the sample size and other features of the current trial can be modified
while maintaining thex level, even though these modifications were unplanned at the start of the trial.
Other authors have proposed similar and related methods that can adapt a design to interim outcome data.
These include Bauer & KohrfeProschan & Hunsbergérl.an & Trost® Cui, Hung & Wang’ Lehmacher
& Wassmer® Chi & Liu,? Denne!®!! Miiller & Schafet?!'3 and Wang, Hung, Tsong & Cuf. Wassmer®
summarizes and reviews many of these articles. In some of these papers, the authors describe methods in
which the design is changed in response to interim results accordjprg-&pecifiedrules; other methods
offer greater freedom to adapt to interim data inumplannedway. Fishet emphasizes that the variance
spending method allows mid-course changes in trial design “undreamed of” before the study started and
such considerations lead him to term these “self-designing” trials.

In the next section we describe an example of a trial in which examination of response data at an
unplanned interim analysis suggests a larger study should have been conducted. In Section 3 we show

how Fisher’s variance spending method can overcome this problem, we explain its equivalence to other



methods and present new methodology for deriving a confidence interval on termination; for the most part
we confine attention to the two-stage method proposed by Figh#nwe make occasional remarks on multi-

stage versions. In order to assess the efficiency of the variance spending method it is necessary to consider
its use with a fully specified rule for revising sample size. In Section 3.4 we present a typical version of

a sample size rule and in Section 3.5 we discuss possible inefficiencies in the variance spending approach
due to use of a non-sufficient statistic and variability in the final sample size. In Section 4 we calculate the
overall power function and average sample size function of this procedure and show that in this example
flexibility does not come without a price. In comparison, we present standard group sequential procedures
which provide the same power for fewer observations on average: these procedures could have been used
had the experimenters considered the possibility of a smaller effect size and agreed on a minimal clinically
significant effect size at the initial design stage. Our conclusion is that more careful initial planning can lead
to significant savings in resources. Although flexible procedures allow a mid-course correction to be made
in a statistically valid manner, it is better still to determine the correct objective at the start.

Note that the sample size re-estimation procedures we consider here should not be confused with those
used when there is an unknown nuisance parameter such as a response variance. There is already an
extensive literature on this topic; see, for example, the recent paper by WhiteheHtieet &r a survey,
Jennison & Turnbully” Chapter 14. The procedures are also not to be confused with adaptive designs where
treatment allocation proportions can be varied depending on accumulating results. The even more numerous

papers on this topic are surveyed in Jennison & TurnButhapter 17.

2 Problems posed by unplanned interim analyses

Consider a balanced two-sample comparison in which observafionson treatment4d and Xp; on
treatmentB, i = 1,2,..., are independent, normally distributed with common variasiteand means

14 andy g, respectively. We assume the variance is known and, without loss of generality;’tadde

0.5. The parameter of interest is the unknown difference in treatment mgang,, — 1.5, and it is desired

to test the null hypothesi&: # = 0 against the one-sided alternati#e> 0 with Type | error probability

a. Although this problem may seem unrealistically simple, it does in fact serve as a prototype for a wide
variety of responses, and methods developed for this situation have wide applicability; see, for example,
Jennison & Turnbull” Chapter 3.

We suppose the experimenters initially plan a fixed sample test attaining powgrat the alternative
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# = 0. This requires a sample size

Zat+ 2 2
oo 52/3) 1)

per treatment arm (recalo? = 1) wherez, = ®~!(1 — p) denotes the upper tail point of the standard
normal distribution.

Now suppose the data are examined at an intermediate stage of the trial when a frattiom planned
observations have been collected. Denote the estimétearhputed from then observations per treatment
accumulated so far by

b, = % ; (Xai — XBi).

Consider the not uncommon scenario wheyes positive but somewhat smaller than the effect giz
which powerl — 3 was specified. If the true value 6fis close tod;, it is unlikely that H, will be rejected
— the conditional power at = 0, is low. However, the experimenters now realize that the magnituéfe of
is clinically meaningful and the original target effect sizewas over-optimistic. In retrospect, they regret
not designing the test to have power 7 atf = 9, rather than ap = 4. This would have required the
larger sample siz&’n, where¢ = 5/51.

A naive approach to “rescue” this trial would be simply to increase the number of remaining observations

on each arm fronfl — r)n to (1 — r)n, wherevy is chosen so thatn + (1 — r)n = £2n, i.e.,

_ &
’7 - 1 —r 9
and proceed to use the naive final test statistic
1 &
Z = NG ; (Xai — Xpi).

However, since the random varialdds a function of the first stage data, thisstatistic does not follow
a N(0,1) distribution underH, and the test that rejecid, whenZ > :, doesnot have Type | error rate
«. Cui et al show that, typically, the Type | error rate of such a test is inflated® to 40%; using
other rules to determine the second stage sample size, it can more than double — see Proschan, Follmann &
Waclawiw,® Table 4, Proschan & Hunsbergend Shun et al?

The experimenters may consider the alternative option of ignoring the data collected so far and starting
a completely new trial with a larger sample size. Not only is this wasteful of data but, as noted in Section 1,
persistent use of this strategy is liable to produce an excess of false positive results in a manner akin to the

process of sampling to a foregone conclusion discussed by Corhfield.
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3 L. Fisher’s variance spending approach

3.1 Definition

Fishe? has proposed a method which allows changes to the sample size at an unplanned interim analysis
while still preserving the Type | error rate. At an intermediate stage whef < r < 1) observations have

been observed on each treatment arm, define

rm

S1=Y_ (Xai — Xpi),
=1

then

S1 ~ N(rnf, rn) and Wp = % ~ N(ryno,r). 2

In the variance spending framewoil; is said to have spent a fractierof the total variance in the final
z-statistic.

Suppose the second stage sample size is now changed frem)n to v(1 — r)n, wherey > 0. One
might, for example, choose to give a total sample size that would attain a certain powér at f, or
to meet a conditional power requirementdat f,. We shall consider a specific rule for choosimdater
but it should also be remembered that Fisher's method allows a free choicwitiiout reference to any
pre-specified rule.

Letn* = rn + (1 — r)n denote the total sample size per treatment arm, after revision, and define the

second stage variables

n*

So= Y (Xai—Xp)
i=rn+1
and
,}/—1/252

Wy = .
2 \/ﬁ

Then,conditional on the first stage data
Sy ~ N(y(1 =r)nf, v(1 —r)n)

and
Wy ~ N(/7(1—r)y/nb, 1—r). (3)
The key point to note is that undéf,: ¢ = 0, we havelW, ~ N(0,1 — r) whatever the data-dependent

choice ofy, soWs is independent of the first stage data andigf. (For independence results in a more

general adaptive design framework, see Liu, Proschan and Pdiger.
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The variance oWV, , 1 — r, is the remaining part of the total variantenot already used bi#’;. The
variance spending test statistic is

S1+~7128,
NG

and this has av(0, 1) distribution underH,. RejectingH, whenZ > z, maintains the Type | error

Z=W+Wy= (4)

probability «, even thoughy depends on the first stage data.

To see that this test has power greater thefor 6 > 0, write W, = r/n 6 + Y7 whereY; ~ N(0, r)
andW, = \/7(1 —r)y/n 6+ Y, whereY, ~ N(0, 1 —r). Here,y is a positive random variable dependent
onYj, butY; is independent of;. Thus, forf > 0,

Z =Wi+Wy > YV 4+Yy ~ N(O, 1)

and so the probability thaéf exceeds,, andHj is rejected is greater than

The variance spending approach can be extended to allow more than one re-design poirit.aRisher
Shen & Fishet describe a multi-stage procedure in which a finastatistic is created from a sequence of
statisticsWy, ..., Wx (where K is not necessarily fixed in advance) based on adaptively weighted sample
sums. UndeH, the conditional distribution of eadlr;, given its predecessors is normal with zero mean and
their conditional variances sum to one. It follows by, for example, embedding the partial’8uuns .+ W,

in a standard Brownian motion, that= W, + ...+ Wx ~ N(0,1).

3.2 Equivalent methods

Cui et al propose a method for modifying group sizes in the later stages of a group sequential test while
maintaining the original Type | error rate. The following description generalizes their procedure to allow
more than one re-design point — although in practice at most one change to a trial’s protocol may well be
desirable. In the original design, té group sizes aren, . .., rxn, wheren is the maximum sample size
chosen for the group sequential test and- ... + rx = 1. In each grougk = 1, ..., K, observations are
summarized by the statistic

Sk,

Wk = % ~ N(Tk\/ﬁg, Tk)

where S, is the difference between sums of responses on treatmieatsl B. When the groug: sample

size is increased by a factgy, in response to data in groupgo k& — 1, the new statistic

—1/2
S
Wy = b2k N0 £ 5)



is formed which has N(y,;l/%k\/ﬁe, rj) conditional distribution. Thus, undéfy: & = 0, the distribution

of eachW,, is unaffected by the change in group size and the original group sequential boundary can still
be used to give a test with Type | error rate The factomk_l/2 in (5) applies the same weighting as in
Fisher’'s variance spending approach. With a single re-design point, the fagtars equal to one for a
certain number of group$ say, and then change to a new, common value for groups to K. Using Cui

et al's method in a group sequential test with two stages and no early stopping at the first stage produces
exactly Fisher's two-stage variance spending test.

If a formal interim analysis is included in a trial protocol, one would expect the experimenters to consider
the option of stopping to reject or to accefly at the interim analysis. When a variance spending test is
adopted because of an unplanned interim analysis, such early stopping is not strictly allowable. However, if
interim results are very negative, one may decide for ethical or economic reasons to stop for “futility” with
acceptance aff; indeed, Shen & Fishémadvocate the use of such a futility boundary. This can only reduce
the Type | error, producing a conservative test.

Another method for adapting a group sequential test to deal with data-dependent modifications to group
sizes has been proposed by Derdnand Miiller & Schafet?!? The key to this method is preserving the
conditional Type | error probability, given current data and the original experimental design, when the future
course of the trial is changed. The following calculation shows that applying this principle at stage one of a
two-stage group sequential test with re-calculation of the remaining sample size but no stopping at the first
stage yields Fisher’s variance spending test. With the notation of Section 3;15fs; is observed after

rn pairs of observations, the conditional Type | error probability in the original design is

S S
Poo{ 1\;—52>2a|51:31}7

whereS; ~ N(0, (1 — r)n) underf = 0, and this probability is equal to

1 o . 51
Ao =12 (G~ ) ©

With a new second stage sample size/0f — r)n per treatment arm§, ~ N (0, v(1 — r)n) underf = 0
and probabilityA(s;) is maintained by rejectingf, for

Sa

Ve 7oAk

a condition which simplifies to



just as in Fisher’s test.
There is good reason why all these methods should be equivalent. Integrating over the distribution of

S1, we can write the Type | error probability of the original test as

/_O:O A(s1)f(s1)ds1 = «

where A(sy) is the conditional Type | error probability give$y = s; defined in (6) andf is the N (0, rn)

density ofS;. In an adaptive approach, the second stage sample size may be revised after learning the value
of Sy, then, after observings,, Hy is accepted or rejected according to a rule stated in ternts efnd

S,. Our concern is the nature of this rule. Suppose that under a certain rule the conditional Type | error
probability givenS; = s; and~(1 — r)n pairs of observations in stage twoiX sy, ). In order to retain

Type | error probability whatever system is used to choose the second stage sample size, we require

/O;B(Slﬁ(ﬁ))f(sl)dﬁ =« (7)

for any positive functioriy. If no change is made to the initial design, the original test will be used so we
know B(s1,1) = A(s1). Suppose there is a set of valugsof positive Lebesgue measure for which
B(s1,7*(s1)) > A(sy) for some positive functiony*, then definingy(s;) = ~*(s1) on this set and
A(s1) = 1 otherwise would make the left hand side of (7) greater thaso we can deduce that such a
set ofs; values does not exist. Likewise, there can be no similar set on whieh, v*(s1)) < A(sy). It
follows that for eachs; (with the possible exception of a set of measure zdBd}, , ) is independent of

and equal tod(s;) — and the preceding discussion shows the final decision rule is therefore that of Fisher’s
variance spending test.

Several authors, including WassmérChi & Liu® and Posch & Bauér have described the two-stage
tests of Bauer & Kéhné Proschan & Hunsbergeand others in a common framework. In these procedures,
the second stage design is chosen in the light of first stage outcomes and data from the two stages are
combined according to a pre-specified rule. Responses from each stage can be summariZedahyea
or z-statistic for testing the null hypothesis. Working in terms of th&tatisticsZ; andZ, calculated from
stage one and stage two data respectively, a conditional Type | error fur@tian is defined with the
property

o0
/_Oo C(z1)p(z1)dz = « (8)

where¢(x) denotes the standard normal density:aHaving observed’; = z1, Hy is rejected in favor of



f > 0 after stage two if
Zoy > ® 1 - C(2)}

or, equivalently, if the stage twf-value is less thad@'(z;). The condition (8) ensures the overall Type |

error rate is equal ta.. It may seem surprising that Fisher’s variance spending test can be described in the
same manner since it is applicable in the absence of any initial intent to use a two-stage procedure. In this
case, the fixed sample analysis originally planned determines the conditional Type | error fuhctjon

defined in (6) and this plays the same role’4s; ) above.

3.3 P-values and confidence intervals

It is useful to augment the result of a hypothesis test by statifgvalue for testing the null hypothesis

and a confidence interval for the parameter of interest. In a two-stage variance spending test with no early
stopping at the first stage, definingPavalue of the observed data for testify: = 0 is straightforward.

Since the standardized statisficdefined by (4) has a standard normal distribution urdigrthe one-sided

P-value for testingH against? > 0 is simply
p=1—®(Z).

Shen & Fishet (p. 197) note that their method does not provide an estimatie lof the following, we
overcome the complication that and hence the mean 8§, depends or%; to produce a confidence interval
for #. Our derivation generalizes to Shen & Fisher's multi-stage setting. In a two-stage variance spending
test, as defined in Section 3.1,
S1 —rnf ~ N(0, rn)

and
v Y28y — A (1 —1r)nb ~ N(O, (1 —r)n)

independently of;. Thus,
S1+y7 Y28y — {r+ A (1 —r)}nf ~ N(0, n)

SO
Pe{—zaﬁ < S A7V —{r+ A1 -1 < za\/ﬁ} =1-a



and, by the usual pivoting argument,
Sl + 771/252 + Za
{fr+vvl=r)in = {r+F1-r)}/n

isal — a confidence interval fof.

This confidence interval can also be derived by inverting a family of tests of hypottiesés= 6
where the critical region of each test is defined using the conditional error probability argument applied in
testingH, in Section 3.2. This method has the advantage of extending to the adaptively re-designed group
sequential tests of Cui et alTo do this, we start with a test of a single vatie- 6 with data collected under
the original group sequential design. JA— « critical region is constructed based on, say, the stage-wise
ordering of the sample space (see Jennison & TurdbuBlection 8.4 and references therein). At the time
of an adaptive re-design, one computes the conditional probability of rejettiagd if the study were
to continue as originally planned and then maintains this conditional probability in setting up the critical
region for a test of = @ in the modified design, using the same rule to order the remaining sample space.
On termination, the confidence interval comprises all vaties # which have not been rejected in their
individual tests.

Brannath, Posch and Badémresent more general methods for obtainifgzalues and confidence
intervals when repeated design adaptations are allowed. See also Liu atid3@htjon 6.

A more troublesome problem arises if unplanned early stopping is introduced at an interim stage,
such as stopping for futility with acceptance 8fy when a positive result looks very unlikely. It is then
unclear what the space of outcomes that could have arisen really is (to specify this, one needs to say what
the experimenters would have decided to do in every possible eventuality) and this appears to preclude

construction of a confidence interval with the required frequentist coverage probability.

3.4 Arule for choosing~y

The prime motivation for variance spending tests and related methods is the desire for flexible modification
of a trial design in response to intermediate results when no such adaptation was originally planned.
Nevertheless, it is helpful to consider formal rules for how such adaptation might be carried out. Examining
the overall properties of response adaptive designs conducted according to specific rules will aid in
understanding these methods and help assess the cost, in terms of efficiency, of this flexibility.

As before, we denote b@\/l = S1/(rn) the estimate of computed fromn observations per treatment

arm observed at an unplanned, intermediate analysis and Qeﬁﬂé/%. Fishef discusses a strategy for
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choosingy to obtain conditional power — /3, given the data observed so far, if in féct §/¢ = 0. Inthe

variance spending test, the conditional power gi¥en= s; underf = 0, is

@{{r+¢ﬂl—rﬂ¢ﬁ@—¢a}

V(L—r)
and equating this probability tb— 3 gives

(VI—=rz5+ 24 — r/n0;)>
= (lﬁ— r)2n 62 - ®)

Some truncation may be necessary to ensureytispositive but does not exceed a reasonable upper bound.
We shall pursue the alternative proposal by Cui étadlequating the total sample size to that which
would achievaunconditionalpower1 —  for a true value of equal tod;, but we adapt this rule to allow for

the special weighting of the second stage data. Recall from (2) and (3) that in the skatistit; + 15,
Wi ~ N(rynf,r)
and, conditionally on the first stage data,
Wy ~ N(y/A(1 —r)y/nb, 1—r).

A fixed sample test designed from the outset to achieve pbwet atd = ¢ /¢ would havet?n observations

per treatment arm and use a standardized test stafiStigth distribution

7' ~ N(&Vno, 1).

Equating the mean of’ with the sum ofE(W;) and the conditional expectation Bf; gives

E=r+ (1 ~-r)
or, equivalently, 2
_ (=
T= <1 — 1“) ' 4o

If 6, is small and positive¢ and~ will be very large. Thus, it is advisable to bound the valug aised
in (10). Since a small positive value 6fmay give rise to negative values ®f, the maximal value ofy is
also appropriate for negati\Eq. (However, ifd, is sufficiently low, one may choose to abandon the trial

for futility and stop at this point with acceptance gf.) If 01 > 6, then¢ < 1 and the above rule leads to
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v < 1, i.e., a decrease in the second stage sample size. This is quite acceptable but at least some truncation
is necessary to keeppositive. With these modifications, we obtain the general rule
-~ 2

1(6) = (%) 1)
where ~

M for 6,/0 <M™!

E01)=1{ §/8, for M'<8/5<h! (12)

h for 6,/6>h1.

The values ofy generated by this rule lie in the ranffe—r)?/(1—r)? to (M —r)2/(1—r)2. Whenh = 1,

no decrease is allowed from the originally planned sample size,

3.5 Properties of variance spending tests

By design, a variance spending test has Type | error probabilitiFurther properties depend on how the
sample size inflation factoy is chosen in the light of first stage data. The fact that the final test stafistic
defined by (4) is not a function of a sufficient statistic fogives some cause for concern. Of course, the
unequal weighting of first and second stage observations is necessary to ensure independgnaadof
Wy and, indeed, the argument of Section 3.2 shows the finahtasthave this form if Type | error rate
« is to be maintained when unplanned design changes take place. Nevertheless, it is instructive to make
comparisons with trial designs the experimenters could have chosen had they anticipated the possibility of a
smaller effect size before commencing the study.
An initial measure of possible inefficiency can be obtained from the derivation of the rule for choosing
~ in Section 3.4. There, we noted that the sample size needed for a fixed sample test designed to achieve
powerl — 3 atf = §/¢ is £2n per treatment arm, whereis given by (1). In contrast, a variance spending
test adapting an initial design with powker 5 atd = 6 when an estimaté, = d/¢ is observed at an interim
analysis requires* = {r + (1 — r) }n observations per arm whefe= (¢ —r)?/(1 — r)2. A measure of
inefficiency of the variance spending test is thus
2
e Wg(;n_ nin _ {r T . } 7 (13)

Table 1 shows numerical values of this measure for the ease0.5, i.e., when the trial is re-designed

after half the originally planned sample size. In the limittas> oo, the second stage teri#, contributes

12



Table 1: A measure of inefficiency of a variance spending testwith0.5, as given by equation (13), and

the relative cost of re-starting the trial afresh with increased power.

¢ 05 06 0.8 1 2 3 4 10 o~
Inefficiency ofZ 2 1.44 1.06 1 125 144 156 181 2
Relative cost to re-stant 3 239 178 150 1.12 1.06 1.03 1.01 i

essentially all the information aboétand this is diluted by adding/; which has the same variance but, by
comparison, negligible information abaitthe situation is reversed aslecreases to = 0.5 where, in the
limit, all the information abouf comes fromi¥/;.

Particularly when¢ is much greater tham, experimenters may be tempted to abandon the original
experiment, discard the observations, and start a new fixed sample trial with pewertd = §/£. This
new trial would requiret?n observations per treatment arm in addition to thein the abandoned study.

The “relative cost” in the bottom line of Table 1 is the ratio of the total sample size&; £2n, involved in

this strategy to the sample size & needed by a fixed sample test designed from the outset with power
1—patd =4/ When(é —1)2 > 1 —r,i.e., whené > 1.71 for the case: = 0.5, starting a fresh trial
would be more efficient than using the variance spending test. However, as mentioned previouslyothis is
really a valid option since it inflates the overall Type | error rate.

The “inefficiencies” in Table 1 are suggestive of the cost of using a non-sufficient statistic in the variance
spending method. They do not, however, take account of the variabil'&ym an estimate df and the
resulting random distribution of the factor A proper assessment of the overall performance of a variance
spending test requires integration over the distributiom;ofwhich is normal with mead and variance
1/(rn). We present such integrals for the overall power and ASN functions below and we use these criteria
in assessing the example in Section 4.

If anything, the variation in second stage sample size could have a detrimental effect. Consider a study
with a random sample size d¥ observations per treatment arm, wheév¥eis not itself influenced by the
observations’ values. A hypothesis testff: # = 0 conducted with Type | error rai@ conditional on the
value of N has power

E{®(VN O — z,)}.

Since®(z) is an increasing, concave functionaofor x > 0 andv N §—z, is concave inV, the conditional
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power®(v/N 0 — z,) is concave inV wheny/N 6 — z, > 0, i.e., for values ofV which give power at least

0.5. It follows by Jensen’s inequality that, whé¥i varies in this range, overall power is maximized\ifis

equal to its expectation with probability one, i.e., when sample size does not in fact vary. Under the initial
design, there is a good chance of distinguishing between the éase® andf = § using a sample of
observations per treatment arm. At an intermediate stage with only a fraction of these obsergations,
liable to vary over the range zero & leading to considerable variation in the sample size implied by (11)
and (12). We should not, therefore, be surprised if a variance spending test has rather low power for its
expected sample size.

The power of the variance spending test can be calculated as
Py{RejectHy} = Py{7 > 20} = /PO{Z > 2o | 0} fo(By) dBy. (14)

It follows from the definition ofZ and the distribution of¥; stated in (3) that

ry/n

Vv —=r)

01+ V{v(01)(1 = r)n} o — \/(17(1_74)}

P,,{Z>za|§1}:<1>{
The density of); is

2w
and hence (14) can be evaluated numerically. The expected sample size per treatment arm or Average

Sample Number (ASN) is

i) =\ exp { - 501 -0

ASN= E(n*) = rn + (1 r)n/’y(gl)fg(gl) b,

which, again, is readily evaluated by numerical integration.

In the next section we shall apply the above formulae to evaluate the power function and ASN curve
of a representative example of a variance spending test. We then use these results to assess the price one
may have to pay for the flexibility of the variance spending approach as compared to other less flexible

procedures.

4 An example

4.1 Sampling and stopping rules

We shall use the following example to evaluate a typical variance spending test by the standard criteria

of power and expected sample size functions. The original plan is for a fixed sample test and sample
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size is modified at an intermediate analysis using the adaptation of Cui esatispling rule described

in Section 3.4; early stopping for futility introduced at the interim analysis alléiygo be accepted for
sufficiently poor responses. Although the results presented here are for this single example, we have found
very similar results in a variety of other examples using different valuesaf andh, or calculating second

stage sample size by the conditional power formula (9) proposed by Eisher.

As before, observations on treatmentsand B are distributed as¥; ~ N(pa,0.5) and Xp; ~
N(up,0.5), interest is in the parametér= ;.4 — g, and the null hypothesi&ly: # = 0 is to be tested
against the one-sided alternati/e- 0 with Type | error ratex = 0.025. In the non-sequential test originally
planned, powet — 5 = 0.9 is set at) = ¢, requiring a sample size

_ (2a +23)* _10.51
I EE

per treatment arm. Intermediate data are examined halfway through the trial,=€,5, and the second
stage sample size is inflated by the fact()@) defined by (11) and (12) usinty = 4 andh = 0.5.

Specifically,§1 is calculated from the firsi/2 observations per treatment, we define
4 for  6,/6<0.25
£=X 6/6, for 025<6,/5<2
05 for 6,/6>2,

and a furthery n/2 observations are taken on each arm where
v =4(£—-0.5)2

The second stage sample increases ik §, remains unchanged i = &, and decreases #f > 5. The
inflation factor~ lies in the interval(0,49) and the total sample size,” = (1 + v)n/2, is bounded by
(0.5 4+ 49 x 0.5)n = 25n.

The null hypothesis is rejected in favor @t 0 if

Si+47128,
S = ——=
NG > 20.025
where
n/2 n*
SIZZ(XAi_XBi) and Sy = Z (XAi_XBi)-
=1 i:n/2+1

As it stands, whenevet; < 0.25§ this rule gives{ = 4 and~ = 49, the value associated with a

test achieving powed.9 at# = 0.256. In order to save sample size when there is little prospect of a
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positive outcome, we add a futility boundary at the first stage which stipulates stopping to Hgaégie
conditional probability of rejecting, underf = 0.25 § and withy = 49 is less thar).8, a condition which
is met wherf, /§ < —0.1735.

At the other extreme, substitutifgg = 24 into the formulas = /6, gives¢ = 0.5 andy = 0.
The N (,/7n/2,n/2) distribution ofy~1/25, tends to aV (0, n/2) distribution asy approaches zero so we
simply takey~'/2S, ~ N(0,n/2) for the case = 0.5 arising wherd; > 24. In practice one might prefer
to take a single observation on each treatment — byt\ail be small, the expectation of /25, will be

close to zero and the main role of this term is still to contribute the required amount to the varighce of

4.2 Power and ASN functions

Figure 1 shows the power function of the variance spending test along with that of the original fixed sample
size test. It is evident that the variance spending test has been successful in increasing power over the range
of 6 values. After a sharp initial rise, its power function increases slowyrasves from aroun@.3 6 to §

and the overall shape of the power curve is quite different from that of any fixed sample test.

The argument of Section 3.1 that power is greater thdar all positive 8 does not readily extend to
prove that the power function increases monotonely Withndeed, a general result is not possible since
examples exist where powernst monotone. The power function in Figure 2 is for a sampling rule similar
to our example but witl§ replaced by the maximum @f and0.5: after rising t00.914 atd = 0.8 ¢, power
falls back t00.884 atf = 1.4 ) before starting to increase again.

It is possible that

S1+771%8, > 200 (15)

and the variance spending test rejefdts while
Si+ S < zoVn* (16)

and a standard-test calculated from alk* observations per treatment would not rej&t Denné! notes

an analogous problem in adaptive group sequential tests and we may choose to follow his suggestion for
such a situation, rejectingl, only if both conditions (15) and (16) are satisfied. Although this lowers both
Type | error rate and power, the effect is surprisingly small and the maximum reduction in the variance

spending test’s power at any point is less thare.
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Figure 1. Power of the variance spending (VS) test and the originally planned fixed sample size test with

power0.9 atf = §.
1 —
0.9

0.8

0.3 0 VS test

0.2 * fixed sample size test

0.1

0 1 1 1 1 1 |
0 0.2 0.4 0.6 0.8 1 1.2
0/%

Figure 3 compares properties of the variance spending test with the fixed sample test that hasdpower
atd = 0.69. The left hand panel shows the difference in the shapes of the two power curves, the fixed
sample test having the greater poweréas 0.6 § but the lower power, by some margin, at smallealues.

The ASN per treatment arm of the variance spending test is plotted in the right hand panel of Figure 3,
expressed in units of = 10.51/42, the number of observations per arm originally planned. The steep rise

in ASN asf decreases frorfitowards zero is in keeping with the goal of a sample size inversely proportional

to 62 for # between.25§ and2 6§ that motivated this sampling rule. The variation in ASN is substantial
with values around 2n for 6 near zero compared 8» or less ford > §. In contrast, the fixed sample test

has constant sample size@f0.62 = 2.78n. If it had been realized at the outset that greater power was
desirable, this fixed sample test would have been an attractive candidate, offering broadly similar gains in

power to the variance spending test for a generally lower sample size.
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Figure 2: Non-monotone power function of an adaptively defined test.
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4.3 Lack of efficiency of the variance spending test

In Section 3.5 we presented a measure of possible inefficiency in the variance spending test due to its use
of a non-sufficient statistic fof. The high ASN seen in Figure 3 relative to that of a fixed sample test
with broadly similar power curve is further evidence of such inefficiency. Figure 4 compares the variance
spending test's ASN function with the fixed sample size needed to obtain the same power at each individual
value off. Since this fixed sample size varies withthe values plotted on the line labeled FSS do not
represent the ASN curve of any particular test, but this is still a reasonable point of comparison: many
sequential and group sequential tests would hdegvar ASN at each value of in such a comparison.

For generat, if the value ofy were independent &f;, the expectation of
Si+77128,

vn

would be{r + ,/7(1 — r)}/n 6, which is the same as the expectation of a standardized statistic based on

—

{r + 7(1 — r)}*n equally weighted observations per treatment arm. We therefore defirefféotive
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Figure 3: Power and ASN of the variance spending (VS) test and a fixed sample size test witld pater
0 =0.66.

0.9 124 0 VS test
H * fixed sample
0.8 1ol ; p
size test
0.7
0.6 81
o5 5 .
ch <
0.4f
0.3} 0 VS test 4r
0.2 * fixed sample 7
size test 2t
0.1
O 1 1 1 1 1 O 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0/0 0/0

ASN scale is in multiples of,, the sample size originally chosen to give po@gratf = .

sample sizén the variance spending test as

Nett = {r -+ y7(1 = r)}"n.

A little algebra shows thaWg¢; is always less than or equal to the actual samplersize {r +~(1 —r)}n
with equality only wheny = 1. The average effective sample size for our example test (with 0.5),
labeled ESS in Figure 4, lies below the ASN but, for the most part, above the equivalent fixed sample size,
FSS. Thus, at most values, power is still less than one might expect given the average effective sample
size.
The remaining lack of power can be attributed to the variabilityvgs, along the lines of the discussion
of variable sample size in Section 3.5. As an example, consider thé cage5 0. The density of; when
6 = 0.50 is shown in the left hand panel of Figure 5 and the resulting distributioNggfin the right hand
panel. This distribution comprises a density plus two point probability masses arising frof5 and4,
for which~y = 0 and49 and Ngg = n/4 and16n respectively. The average effective sample sizein,

is noticeably less than the ASN 6f00n. A sizea = 0.025 fixed sample test witli.17n observations per
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Figure 4: ASN and average effective sample size (ESS) of the variance spending test compared to the fixed

sample size (FSS) needed to obtain the same power at each individual vélue of
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Sample size scale is in multiples of the original fixed sample size,

treatment arm has powerd81 atf = 0.54. If, however, a test is carried out with a random sample size
taken from the distribution alNg¢ using a conditional significance levelgiven the observed sample size,

its overall power is only.703 atf = 0.5 J. The variance spending test’s power ther® .88 lies between

these two values, indicating that it suffers from the effects of the variable sample size but these are partly
ameliorated by the way in whict depends orb;: low values ofy are chosen whef; is high and good
conditional power can be achieved with a small number of additional observations, while high vajues of
occur whensS; is low and a higher stage two sample size provides a substantial rise in conditional power.
We note, however, that this beneficial effect is of limited value since, as the line FSS in Figure 4 shows, a
fixed sample size of just.40n per arm is all that is needed to achieve the variance spending test's power of

0.848 in a simple, fixed sample test.
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Figure 5: Density of; whenf = 0.56 (left panel) and consequent distribution/8§¢ (right panel).

p=0.22
=0.0003
e T
0 5 0.25n 16n
Density off; is N has a density of0.25n, 16n) plus
N(0.56,252/10.51) point masses aVes = 0.25n and16n.

One can ask whether better results might have been obtained if the first and second stage data had been
combined through some other test statistic. As explained in Section 3.2, use of such a testis only allowable if
designated in the initial protocol, thus, this is not a legitimate option in the scenario of an unplanned interim
analysis in what was intended to be a simple fixed sample size trial. Bauer & KdiseeR.A. Fisher’s
method for combining?-values for a one-sided test &f;: # = 0 against) > 0. The first and second stage

P-values are
p1=1=2(S1/\/{rn}) and py =1—@(S2/\/{y(1 —r)n}),

respectively. Undek,, — log(p; p2) has0.5 times ay? distribution ord degrees of freedom, so a hypothesis

test with Type | error rater can be obtained by rejectind if

pip2 < exp{—0.5x3,},

wherex?,vp denotes the uppertail point of ay? distribution. Fora: = 0.025, the critical value fop; ps is
0.0038. Combining this rule with the sampling rule of our example, produces a fairly similar power curve
to that of the variance spending test: the curves cross twice betfveerd) andd = ¢ and are within

0.03 of each other everywhere. However, the power of Fisher's combination test does approach one more
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rapidly and the difference between, for example, poves9 for Fisher's combination test alidd61 for the

variance spending test &t= § may be regarded as significant. More might have been expected of Fisher’'s
combination test in view of the very good power properties of this test in a simpler application reported by
Bauer & Kéhné (Table 3); however, it should be noted that the design in our example, in particular the rule

for stopping for futility at the first analysis, is not tailored to Fisher’s combination test.

4.4 Competing group sequential tests

In Section 4.2 we compared the variance spending test with a fixed sample test achieving similar overall
power. This fixed sample design could have been chosen if the experimenters had anticipated the need for
greater power. In this case, there are other options too: group sequential tests can satisfy error probability
requirements with lower average sample size than fixed sample tests. Error spending group sequential tests
are a currently popular choice and have the ability to deal with variation in observed group sizes about their
intended values. We shall present results for one-sided error spending testsgrfah@ly” described by
Jennison & Turnbull! Section 7.3; for simplicity, we present results when group sizes are actually equal to
their planned values. The tests described below are chosen to dominate the variance spending test in terms
of both power and ASN fof values in the region of primary interest between zeroand

The two-stage, one-sided group sequential test shown in Figure 6 has Type | erfob2atend power
0.9 atd = 0.33 5. The form of stopping boundary is quite standard, namehfamily error spending test
with p = 1. An unusual feature of the design is the timing of the first analysis aftejistobservations
per treatment, one fourth of the maximum sample size: this allows sufficiently early stopping to make good
reductions in ASN at parameter values néat §, where power is very close to one. Setting po@wérat
f = 0.336 ensures that the group sequential test's power curve lies completely above that of the variance
spending test. The left hand panel of Figure 7 shows that, in addition, the group sequential test provides
muchgreater power for values @faround0.3 § and above. At the same time, the ASN curves in the right
hand panel demonstrate that this is achieved with considerably lower average sample size. Furthermore, the
group sequential test's maximum sample sizd @dn per treatment arm is far below that ®%n for the
variance spending test.

A two-stage group sequential test is comparable with the variance spending test in that both have a total
of two analyses. However, the variance spending test has the freedom to vary the second stage group size

in the light of first stage data while that of the group sequential test is pre-determined. Careful timing of a
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Figure 6: A two-stage, one-sided group sequential te&ffd = 0 with Type | error rateh.025 and power
0.9 atd = 0.336.
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group sequential test’s early analyses helps attain low average sample sizes at the higher galuesref
power is close to one. This is evident in the above two group design where the first analysis is set at one
quarter of the total sample size. The five and ten-stage, one-sided group sequential boundaries shown in
Figures 8 and 9 are also fprfamily error spending tests withh= 1. Both tests have Type | error rade)25
and power0.9 at# = 0.33 ¢ and their power curves are indistinguishable from that of the two-stage test
in Figure 6. The five-stage test has its first analysis at one tenth of the total sample size, with equal group
sizes thereafter, while the ten-stage test has ten equally sized groups. The ASN curves in Figure 10 show
the usual improvements in ASN arising from more frequent analyses and particular improvement at higher
values off, helped by the additional, well placed, early analyses. Again, the maximum sample sizes per
treatment arm ot 1.4n for the five group test antll.9n for the ten group test are well below the variance
spending test'@5n.

These comparisons with standard group sequential designs illustrate the possible cost of the flexibility

available in the variance spending approach. The increased power and reduced sample size of the group
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Figure 7: Power and ASN curves of the variance spending (VS) test and two-stage group sequential test.
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ASN scale is in multiples of the original fixed sample size,

sequential tests argue eloquently for more careful consideration of the appropriate power requirement, and

choice of a suitable design, well before a trial gets under way.

5 Discussion

There is no dispute that a variance spending test can rescue a trial from a poor initial design. The flexibility
of these tests can also be used to adapt a trial to a change in treatment definition (such as a new dosage or
selection of one dose from the range of doses used initially), or to the substitution of an alternate endpoint;
see, for example, Bauer & KohrieBauer & RohmeP> Fishef and Lehmacher & Wassméin another
form of adaptation, Wang, et'dluse Cui et al’s method to create a group sequential test which can switch
adaptively between hypothesis tests of superiority and non-inferiority.

It may not be so obvious that this flexibility can come at a substantial price. Our evaluations have been
in the context of changing a trial’s sample size in mid-course in order to attain power at a smaller effect size

than originally anticipated. The message from our example is clear: a variance spending test can require
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Figure 8: A five-stage, one-sided group sequential tegff¢ = 0 with Type | error rated.025 and power
0.9 atd = 0.336.
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many more observations than a group sequential test with superior power. Thus, consideration should be
given at the planning stage to what is desirable for the full range of possible effect sizes, including those
deemed unlikely at that point. If observing a particular valué af an interim analysis will be enough to
persuade the investigators that high power is appropriate at that vaduéheh it makes sense to design the
study with such power from the outset.

We have concentrated in this paper on an in depth analysis of one example. In addition to this, we
have studied similar examples with different values:fpthe fraction of data available when the design is
adapted, and for the parametdisandh which govern truncation of the modified sample size through the
definition (12) ofé(@l). We have implemented sample size rules based on conditional power, as described
at the start of Section 3.4. In Section 4.3, we reported on methods in which data from the two stages are
combined through R.A. Fisher's> method rather than the variance spending rule. We have also recently
investigated methods proposed by Fish&hen & Fishet and Cui et & which allow re-design within an

initially planned group sequential test. Our findings in all these cases follow the same pattern as for the
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Figure 9: A ten-stage, one-sided group sequential te&f,0f) = 0 with Type | error rated.025 and power

0.9 atfd = 0.339.
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example presented in Section 4: on calculating the overall power curve of the adaptive procedure, with

specified rules for the re-calculation of sampling size and the terminal decision, it is evident that non-

adaptive group sequential tests could have achieved better power with smaller expected sample size across

the range of) values of interest. We do not claim that all adaptive designs must be seriously inefficient,

but the examples we have investigated indicate the need to evaluate procedures and compare other options

before possibly applying them.

The increase in sample size by a factor of 25 allowed in our example is clearly very high and many

adaptive modifications will be on a smaller scale. It is noteworthy, however, that this increase is not

particularly effective since Figure 3 shows that a fixed sample test with just 2.8 times the initial sample

size broadly matches the attained power curve. If one seeks to attain pewefor ¢ as low as)/2 (rather

thand/4), the valueM = 2 should be used in (12) and this gives the more plausible maximum sample

size of5n. Calculations show the variance spending procedure using this sampling rule attain®@ower

atd = 0.746. The power curve is dominated at all points by fixed sample and group sequential tests with
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Figure 10: ASN curves of the variance spending (VS) test and group sequential tetsivtid10 stages.
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power0.9 at0.57 § and, as for our earlier example, group sequential tests offer lower ASN than the variance

spending test over a wide rangefofalues. The two group test has a maximum sample si3e36fn and

lower ASN for allf values between zero an §; five and ten group tests offer greater reductions in ASN.
Remarks by some authors suggest a desire to set a specific pewgr,at whatever is the true value of

the effect size parameter; for example, Shen and FigSaction 3) refer to the valugat which power is

set as being an underestimate, a proper estimate, or an overestimate of the underlying treatment difference

#. This is a curious motivation for adaptive designs with the apparent objective of a power curve which

rises sharply nea# = 0 and then remains perfectly flat. What is surprising is that adaptive designs with

the sampling rules we have presented do actually come close to having such power curves! However,

maintaining a significant risk of a negative outcome when the effect size is high seems quite perverse. This

whole philosophy seems to be generated from a misconception about the role of power calculations: power

should be guaranteed at valuesfahat would be of clinical or commercial interest, bearing in mind the
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sampling cost needed to detect a particularly small effect size. Then, the design will be suitable whatever
the true value o#f.

As long as the experimenters’ objectives can be properly established at the outset, there are good reasons
to expect standard group sequential designs to dominate variance spending tests. Knowing the correct goal
helps design the trial efficiently, use of a sufficient statistic is in keeping with fundamental principles, and
one can choose from tests optimized to a selection of criteria (see Barber & Jéhnistmiance spending
tests have the special feature that future group sizes can be adapted to previously observed responses. The
extension of group sequential tests to “sequentially planned” designs proposed by Zcproitides this
property, which may be of value when only a small number of groups are permitted. However, we should not
let consideration of these more complex designs obscure the excellent performance, seen in our example, of

standard group sequential tests with pre-specified group sizes.

Acknowledgement
This research was supported in part by NIH grant RO1 CA66218.

References

1. Cornfield, J. A Bayesian test of some classical hypotheses — with applications to sequential clinical
trials. J. American Statistical Associatip@l, 577-594 (1966).

N

. Fisher, L.D. Self-designing clinical trialStatistics in Medicingl7, 1551-1562 (1998).

3. Shen, Y. and Fisher, L. Statistical inference for self-designing designing clinical trials with a one-sided
hypothesisBiometrics 55, 190-197 (1999).

H

Bauer, P. and Kéhne, K. Evaluation of experiments with adaptive interim analsesetrics 50,
1029-1041 (1994). Correctidiometrics 52, 380 (1996).

5. Proschan, M.A. and Hunsberger, S.A. Designed extension of studies based on conditional power.
Biometrics 51, 1315-1324 (1995).

6. Lan, K.K.G. and Trost, D.C. Estimation of parameters and sample size reestim@tamreedings of

Biopharmaceutical Sectipimerican Statistical Association, Alexandria, Virginia, pp. 48-51 (1997).

~

. Cui, L., Hung, H.M.J. and Wang, S-J. Madification of sample size in group sequential clinical trials.
Biometrics 55, 853-857 (1999).

28



8. Lehmacher, W. and Wassmer, G. Adaptive sample size calculation in group sequenti@iviakstrics
55, 1286—-1290 (1999).

9. Chi, G.Y.H. and Liu, Q. The attractiveness of the concept of a prospectively designed two-stage clinical
trial. J. Biopharmaceutical Statistic9, 537-547 (1999).

10. Denne, J.S. Estimation following extension of a study on the basis of conditional palver.
Biopharmaceutical Statistic40, 131-144 (2000).

11. Denne, J.S. Sample size recalculation using conditional p&tetistics in Medicing20, 2645-2660
(2001).

12. Miiller, H-H. and Schéfer, H. Changing a design during the course of an experiment. Unpublished

manuscript (2000).

13. Miller, H-H. and Schéfer, H. Adaptive group sequential designs for clinical trials: Combining the

advantages of adaptive and of classical group sequential proceBime®etrics 57, 886—891 (2001).

14. Wang, S-J, Hung, H.M.J., Tsong, Y. and Cui, L. Group sequential test strategies for superiority and
non-inferiority hypotheses in active controlled clinical trialStatistics in Medicing20, 1903-1912
(2001).

15. Wassmer, G. Basic concepts of group sequential and adaptive group sequential test procedures.
Statistical Papers41, 253-279 (2000).

16. Whitehead, J., Whitehead, A., Todd, S., Bolland, K. and Sooriyarachchi, M.R. Mid-trial design reviews
for sequential clinical trialsStatistics in Medicing20, 165-176 (2001).

17. Jennison, C. and Turnbull, B.M&roup Sequential Methods with Applications to Clinical Trjals
Chapman & Hall/CRC, Boca Raton (2000).

18. Proschan, M.A., Follmann, D.A. and Waclawiw, M.A. Effects of assumption violations on Type | error

rate in group sequential monitorinBiometrics 49, 1131-1143 (1992).

19. Shun, Z., Yuan, W., Brady, W.E. and Hsu, H. Type | error in sample size reestimations based on

observed treatment difference (with commentaBgatistics in Medicing20, 497-520 (2001).

29



20

21

22.

23.

24.

25.

26.

27.

Liu, Q., Proschan, M.A. and Pledger, G.W. A unified theory of two-stage adaptive dekiginserican

Statistical Associationln press.

. Wassmer, G. A comparison of two methods for adaptive interim analyses in clinicalBitsetrics

54, 696705 (1998).

Posch, M. and Bauer, P. Adaptive two stage designs and the conditional error fuBttioretrical
Journal 41, 689-696 (1999).

Brannath, W., Posch, M. and Bauer, P. Recursive combination tektAmerican Statistical
Association97, 236-244 (2002).

Liu, Q. and Chi, G.Y.H. On sample size and inference for two-stage adaptive deBigmetrics 57,
172-177 (2001).

Bauer, P. and R6hmel, J. An adaptive method for establishing a dose-response relat®tasibifrs
in Medicine 14, 1595-1607 (1995).

Barber, S. and Jennison, C. Optimal asymmetric one-sided group sequentiaBtesistrika 89,
49-60 (2002).

Schmitz, N.Optimal Sequentially Planned Decision Procedurdsecture Notes in Statistics, 79,
Springer-Verlag: New York (1993).

30



