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SUMMARY
It is not uncommon to set the sample size in a clinical trial to attain specified power at a value for the treatment

effect deemed likely by the experimenters, even though a smaller treatment effect would still be clinically important.

Recent papers have addressed the situation where such a study produces only weak evidence of a positive treatment

effect at an interim stage and the organizers wish to modify the design in order to increase the power to detect a smaller

treatment effect than originally expected. Raising the power at a small treatment effect usually leads to considerably

higher power than was first specified at the original alternative.

Several authors have proposed methods which are not based on sufficient statistics of the data after the adaptive

re-design of the trial. We discuss these proposals and show in an example how the same objectives can be met while

maintaining the sufficiency principle, as long as the eventuality that the treatment effect may be small is considered

at the design stage. The group sequential designs we suggest are quite standard in many ways but unusual in that

they place emphasis on reducing the expected sample size at a parameter value under which extremely high power is

to be achieved. Comparisons of power and expected sample size show that our proposed methods can out-perform

L. Fisher’s “variance spending” procedure. Although the flexibility to re-design an experiment in mid course may be

appealing, the cost in terms of the number of observations needed to correct an initial design may be substantial.

Key words:Clinical trials; Group sequential tests; Sample size re-estimation; Two-stage procedure; Flexible

design; Variance spending.
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1 Introduction

We consider a situation which is not unusual in Phase III clinical trials that involve the comparison of a new

treatment with a placebo or standard therapy. A statistical design is specified in the protocol based in part

on specification of a Type I error rate,�, and power1� � at a given effect size,Æ. The design may be for a

fixed sample size or there may be provision for early stopping via a group sequential monitoring boundary.

At some intermediate point during the course of the trial, the principal investigators examine the outcome

data collected so far and decide they wish to modify the original design. They may, for example, have been

over-optimistic in the choice of the design effect size,Æ, whereas it is now apparent that the benefit of the

new treatment is liable to be somewhat less thanÆ and it is unlikely that a significant result will be achieved

at the planned end of the trial. Even so, the estimated effect may still be large enough to be deemed clinically

significant and worthwhile.

At this stage, the question is often posed to the study statistician (and perhaps to a regulatory body,

such as the FDA) whether the trial design can be modified and the sample size enlarged, without violating

the trial’s credibility and statistical validity. In the past, a strict answer to this question was usually “No”.

The alternative strategy of abandoning a trial if early results appear unpromising and starting a new trial

can also lead to grossly inflated Type I error rates — in extreme, this is akin to “sampling to a foregone

conclusion” (Cornfield1). However, recently Fisher,2 and Shen & Fisher3 have proposed the so-called

“variance spending” method whereby the sample size and other features of the current trial can be modified

while maintaining the� level, even though these modifications were unplanned at the start of the trial.

Other authors have proposed similar and related methods that can adapt a design to interim outcome data.

These include Bauer & Köhne,4 Proschan & Hunsberger,5 Lan & Trost,6 Cui, Hung & Wang,7 Lehmacher

& Wassmer,8 Chi & Liu,9 Denne,10;11 Müller & Schäfer12;13 and Wang, Hung, Tsong & Cui.14 Wassmer15

summarizes and reviews many of these articles. In some of these papers, the authors describe methods in

which the design is changed in response to interim results according topre-specifiedrules; other methods

offer greater freedom to adapt to interim data in anunplannedway. Fisher2 emphasizes that the variance

spending method allows mid-course changes in trial design “undreamed of” before the study started and

such considerations lead him to term these “self-designing” trials.

In the next section we describe an example of a trial in which examination of response data at an

unplanned interim analysis suggests a larger study should have been conducted. In Section 3 we show

how Fisher’s variance spending method can overcome this problem, we explain its equivalence to other
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methods and present new methodology for deriving a confidence interval on termination; for the most part

we confine attention to the two-stage method proposed by Fisher,2 but we make occasional remarks on multi-

stage versions. In order to assess the efficiency of the variance spending method it is necessary to consider

its use with a fully specified rule for revising sample size. In Section 3.4 we present a typical version of

a sample size rule and in Section 3.5 we discuss possible inefficiencies in the variance spending approach

due to use of a non-sufficient statistic and variability in the final sample size. In Section 4 we calculate the

overall power function and average sample size function of this procedure and show that in this example

flexibility does not come without a price. In comparison, we present standard group sequential procedures

which provide the same power for fewer observations on average: these procedures could have been used

had the experimenters considered the possibility of a smaller effect size and agreed on a minimal clinically

significant effect size at the initial design stage. Our conclusion is that more careful initial planning can lead

to significant savings in resources. Although flexible procedures allow a mid-course correction to be made

in a statistically valid manner, it is better still to determine the correct objective at the start.

Note that the sample size re-estimation procedures we consider here should not be confused with those

used when there is an unknown nuisance parameter such as a response variance. There is already an

extensive literature on this topic; see, for example, the recent paper by Whitehead et al16 or, for a survey,

Jennison & Turnbull,17 Chapter 14. The procedures are also not to be confused with adaptive designs where

treatment allocation proportions can be varied depending on accumulating results. The even more numerous

papers on this topic are surveyed in Jennison & Turnbull,17 Chapter 17.

2 Problems posed by unplanned interim analyses

Consider a balanced two-sample comparison in which observationsXAi on treatmentA and XBi on

treatmentB, i = 1; 2; : : : , are independent, normally distributed with common variance�2 and means

�A and�B , respectively. We assume the variance is known and, without loss of generality, take�2 to be

0:5. The parameter of interest is the unknown difference in treatment means,� = �A��B, and it is desired

to test the null hypothesisH0: � = 0 against the one-sided alternative� > 0 with Type I error probability

�. Although this problem may seem unrealistically simple, it does in fact serve as a prototype for a wide

variety of responses, and methods developed for this situation have wide applicability; see, for example,

Jennison & Turnbull,17 Chapter 3.

We suppose the experimenters initially plan a fixed sample test attaining power1� � at the alternative
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� = Æ. This requires a sample size

n =
(z� + z�)

2

Æ2
(1)

per treatment arm (recall2�2 = 1) wherezp = ��1(1 � p) denotes the upperp tail point of the standard

normal distribution.

Now suppose the data are examined at an intermediate stage of the trial when a fractionr of the planned

observations have been collected. Denote the estimate of� computed from thern observations per treatment

accumulated so far by

b�1 = 1

rn

rnX
i=1

(XAi �XBi):

Consider the not uncommon scenario whereb�1 is positive but somewhat smaller than the effect sizeÆ at

which power1 � � was specified. If the true value of� is close tob�1, it is unlikely thatH0 will be rejected

— the conditional power at� = b�1 is low. However, the experimenters now realize that the magnitude ofb�1
is clinically meaningful and the original target effect size,Æ, was over-optimistic. In retrospect, they regret

not designing the test to have power1 � � at � = b�1 rather than at� = Æ. This would have required the

larger sample size�2n, where� = Æ=b�1.
A naive approach to “rescue” this trial would be simply to increase the number of remaining observations

on each arm from(1� r)n to (1� r)n, where is chosen so thatrn+ (1� r)n = �2n, i.e.,

 =
�2 � r

1� r
;

and proceed to use the naive final test statistic

Z =
1p
(�2n)

�2nX
i=1

(XAi �XBi):

However, since the random variable� is a function of the first stage data, thisZ statistic does not follow

aN(0; 1) distribution underH0 and the test that rejectsH0 whenZ > z� doesnot have Type I error rate

�. Cui et al7 show that, typically, the Type I error rate of such a test is inflated by30% to 40%; using

other rules to determine the second stage sample size, it can more than double — see Proschan, Follmann &

Waclawiw,18 Table 4, Proschan & Hunsberger5 and Shun et al.19

The experimenters may consider the alternative option of ignoring the data collected so far and starting

a completely new trial with a larger sample size. Not only is this wasteful of data but, as noted in Section 1,

persistent use of this strategy is liable to produce an excess of false positive results in a manner akin to the

process of sampling to a foregone conclusion discussed by Cornfield.1
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3 L. Fisher’s variance spending approach

3.1 Definition

Fisher2 has proposed a method which allows changes to the sample size at an unplanned interim analysis

while still preserving the Type I error rate. At an intermediate stage whenrn (0 < r < 1) observations have

been observed on each treatment arm, define

S1 =
rnX
i=1

(XAi �XBi);

then

S1 � N(rn�; rn) and W1 =
S1p
n
� N(r

p
n�; r): (2)

In the variance spending framework,W1 is said to have spent a fractionr of the total variance1 in the final

z-statistic.

Suppose the second stage sample size is now changed from(1 � r)n to (1 � r)n, where > 0. One

might, for example, choose to give a total sample size that would attain a certain power at� = b�1 or

to meet a conditional power requirement at� = b�1. We shall consider a specific rule for choosing later

but it should also be remembered that Fisher’s method allows a free choice of without reference to any

pre-specified rule.

Let n� = rn+ (1 � r)n denote the total sample size per treatment arm, after revision, and define the

second stage variables

S2 =
n�X

i=rn+1

(XAi �XBi)

and

W2 =
�1=2S2p

n
:

Then,conditional on the first stage data,

S2 � N((1� r)n�; (1� r)n)

and

W2 � N(
p
(1� r)

p
n �; 1� r): (3)

The key point to note is that underH0: � = 0, we haveW2 � N(0; 1 � r) whatever the data-dependent

choice of, soW2 is independent of the first stage data and ofW1. (For independence results in a more

general adaptive design framework, see Liu, Proschan and Pledger.20)
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The variance ofW2 , 1 � r, is the remaining part of the total variance1 not already used byW1. The

variance spending test statistic is

Z =W1 +W2 =
S1 + �1=2S2p

n
(4)

and this has aN(0; 1) distribution underH0. RejectingH0 whenZ > z� maintains the Type I error

probability�, even though depends on the first stage data.

To see that this test has power greater than� for � > 0, writeW1 = r
p
n � + Y1 whereY1 � N(0; r)

andW2 =
p
(1� r)

p
n �+ Y2 whereY2 � N(0; 1� r). Here, is a positive random variable dependent

onY1, butY2 is independent ofY1. Thus, for� > 0,

Z = W1 +W2 > Y1 + Y2 � N(0; 1)

and so the probability thatZ exceedsz� andH0 is rejected is greater than�.

The variance spending approach can be extended to allow more than one re-design point. Fisher2 and

Shen & Fisher3 describe a multi-stage procedure in which a finalz-statistic is created from a sequence of

statisticsW1; : : : ;WK (whereK is not necessarily fixed in advance) based on adaptively weighted sample

sums. UnderH0, the conditional distribution of eachWk given its predecessors is normal with zero mean and

their conditional variances sum to one. It follows by, for example, embedding the partial sumsW1+: : :+Wk

in a standard Brownian motion, thatZ =W1 + : : :+WK � N(0; 1).

3.2 Equivalent methods

Cui et al7 propose a method for modifying group sizes in the later stages of a group sequential test while

maintaining the original Type I error rate. The following description generalizes their procedure to allow

more than one re-design point — although in practice at most one change to a trial’s protocol may well be

desirable. In the original design, theK group sizes arer1n; : : : ; rKn, wheren is the maximum sample size

chosen for the group sequential test andr1 + : : : + rK = 1. In each groupk = 1; : : : ;K, observations are

summarized by the statistic

Wk =
Skp
n
� N(rk

p
n �; rk)

whereSk is the difference between sums of responses on treatmentsA andB. When the groupk sample

size is increased by a factork in response to data in groups1 to k � 1, the new statistic

Wk =

�1=2
k Skp

n
(5)
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is formed which has aN(
�1=2
k rk

p
n �; rk) conditional distribution. Thus, underH0: � = 0, the distribution

of eachWk is unaffected by the change in group size and the original group sequential boundary can still

be used to give a test with Type I error rate�. The factor�1=2k in (5) applies the same weighting as in

Fisher’s variance spending approach. With a single re-design point, the factorsk are equal to one for a

certain number of groups,l say, and then change to a new, common value for groupsl + 1 toK. Using Cui

et al’s method in a group sequential test with two stages and no early stopping at the first stage produces

exactly Fisher’s two-stage variance spending test.

If a formal interim analysis is included in a trial protocol, one would expect the experimenters to consider

the option of stopping to reject or to acceptH0 at the interim analysis. When a variance spending test is

adopted because of an unplanned interim analysis, such early stopping is not strictly allowable. However, if

interim results are very negative, one may decide for ethical or economic reasons to stop for “futility” with

acceptance ofH0; indeed, Shen & Fisher3 advocate the use of such a futility boundary. This can only reduce

the Type I error, producing a conservative test.

Another method for adapting a group sequential test to deal with data-dependent modifications to group

sizes has been proposed by Denne11 and Müller & Schäfer.12;13 The key to this method is preserving the

conditional Type I error probability, given current data and the original experimental design, when the future

course of the trial is changed. The following calculation shows that applying this principle at stage one of a

two-stage group sequential test with re-calculation of the remaining sample size but no stopping at the first

stage yields Fisher’s variance spending test. With the notation of Section 3.1, ifS1 = s1 is observed after

rn pairs of observations, the conditional Type I error probability in the original design is

P�=0

�
S1 + S2p

n
> z� j S1 = s1

�
;

whereS2 � N(0; (1� r)n) under� = 0, and this probability is equal to

A(s1) = 1� �

�
z�p

(1 � r)
� s1pf(1 � r)ng

�
: (6)

With a new second stage sample size of(1 � r)n per treatment arm,S2 � N(0; (1 � r)n) under� = 0

and probabilityA(s1) is maintained by rejectingH0 for

S2pf(1 � r)ng > ��1f1�A(s1)g;

a condition which simplifies to
s1 + �1=2S2p

n
> z�;
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just as in Fisher’s test.

There is good reason why all these methods should be equivalent. Integrating over the distribution of

S1, we can write the Type I error probability of the original test as

Z
1

�1

A(s1)f(s1) ds1 = �

whereA(s1) is the conditional Type I error probability givenS1 = s1 defined in (6) andf is theN(0; rn)

density ofS1. In an adaptive approach, the second stage sample size may be revised after learning the value

of S1, then, after observingS2, H0 is accepted or rejected according to a rule stated in terms ofS1 and

S2. Our concern is the nature of this rule. Suppose that under a certain rule the conditional Type I error

probability givenS1 = s1 and(1 � r)n pairs of observations in stage two isB(s1; ). In order to retain

Type I error probability� whatever system is used to choose the second stage sample size, we require

Z
1

�1

B(s1; ~(s1))f(s1) ds1 = � (7)

for any positive function~. If no change is made to the initial design, the original test will be used so we

know B(s1; 1) = A(s1). Suppose there is a set of valuess1 of positive Lebesgue measure for which

B(s1; 
�(s1)) > A(s1) for some positive function�, then defining~(s1) = �(s1) on this set and

~(s1) = 1 otherwise would make the left hand side of (7) greater than�, so we can deduce that such a

set ofs1 values does not exist. Likewise, there can be no similar set on whichB(s1; 
�(s1)) < A(s1). It

follows that for eachs1 (with the possible exception of a set of measure zero),B(s1; ) is independent of

and equal toA(s1) — and the preceding discussion shows the final decision rule is therefore that of Fisher’s

variance spending test.

Several authors, including Wassmer,21 Chi & Liu9 and Posch & Bauer,22 have described the two-stage

tests of Bauer & Köhne,4 Proschan & Hunsberger5 and others in a common framework. In these procedures,

the second stage design is chosen in the light of first stage outcomes and data from the two stages are

combined according to a pre-specified rule. Responses from each stage can be summarized by aP -value

or z-statistic for testing the null hypothesis. Working in terms of thez-statisticsZ1 andZ2 calculated from

stage one and stage two data respectively, a conditional Type I error functionC(z1) is defined with the

property Z
1

�1

C(z1)�(z1) dz1 = � (8)

where�(x) denotes the standard normal density atx. Having observedZ1 = z1, H0 is rejected in favor of

8



� > 0 after stage two if

Z2 > ��1f1� C(z1)g

or, equivalently, if the stage twoP -value is less thanC(z1). The condition (8) ensures the overall Type I

error rate is equal to�. It may seem surprising that Fisher’s variance spending test can be described in the

same manner since it is applicable in the absence of any initial intent to use a two-stage procedure. In this

case, the fixed sample analysis originally planned determines the conditional Type I error functionA(s1)

defined in (6) and this plays the same role asC(z1) above.

3.3 P -values and confidence intervals

It is useful to augment the result of a hypothesis test by stating aP -value for testing the null hypothesis

and a confidence interval for the parameter of interest. In a two-stage variance spending test with no early

stopping at the first stage, defining aP -value of the observed data for testingH0: � = 0 is straightforward.

Since the standardized statisticZ defined by (4) has a standard normal distribution underH0, the one-sided

P -value for testingH0 against� > 0 is simply

p = 1� �(Z):

Shen & Fisher3 (p. 197) note that their method does not provide an estimate of�. In the following, we

overcome the complication that, and hence the mean ofS2, depends onS1 to produce a confidence interval

for �. Our derivation generalizes to Shen & Fisher’s multi-stage setting. In a two-stage variance spending

test, as defined in Section 3.1,

S1 � rn� � N(0; rn)

and

�1=2S2 �
p
 (1� r)n� � N(0; (1� r)n)

independently ofS1. Thus,

S1 + �1=2S2 � fr +
p
 (1� r)gn� � N(0; n)

so

P�

n
�z�

p
n � S1 + �1=2S2 � fr +

p
 (1� r)gn� � z�

p
n
o
= 1� �

9



and, by the usual pivoting argument,

S1 + �1=2S2

fr +p (1� r)gn � z�

fr +p (1� r)gpn
is a1� � confidence interval for�.

This confidence interval can also be derived by inverting a family of tests of hypothesesH: � = ~�

where the critical region of each test is defined using the conditional error probability argument applied in

testingH0 in Section 3.2. This method has the advantage of extending to the adaptively re-designed group

sequential tests of Cui et al.7 To do this, we start with a test of a single value� = ~� with data collected under

the original group sequential design. A1 � � critical region is constructed based on, say, the stage-wise

ordering of the sample space (see Jennison & Turnbull,17 Section 8.4 and references therein). At the time

of an adaptive re-design, one computes the conditional probability of rejecting� = ~� if the study were

to continue as originally planned and then maintains this conditional probability in setting up the critical

region for a test of� = ~� in the modified design, using the same rule to order the remaining sample space.

On termination, the confidence interval comprises all values� = ~� which have not been rejected in their

individual tests.

Brannath, Posch and Bauer23 present more general methods for obtainingP -values and confidence

intervals when repeated design adaptations are allowed. See also Liu and Chi,24 Section 6.

A more troublesome problem arises if unplanned early stopping is introduced at an interim stage,

such as stopping for futility with acceptance ofH0 when a positive result looks very unlikely. It is then

unclear what the space of outcomes that could have arisen really is (to specify this, one needs to say what

the experimenters would have decided to do in every possible eventuality) and this appears to preclude

construction of a confidence interval with the required frequentist coverage probability.

3.4 A rule for choosing

The prime motivation for variance spending tests and related methods is the desire for flexible modification

of a trial design in response to intermediate results when no such adaptation was originally planned.

Nevertheless, it is helpful to consider formal rules for how such adaptation might be carried out. Examining

the overall properties of response adaptive designs conducted according to specific rules will aid in

understanding these methods and help assess the cost, in terms of efficiency, of this flexibility.

As before, we denote byb�1 = S1=(rn) the estimate of� computed fromrn observations per treatment

arm observed at an unplanned, intermediate analysis and define� = Æ=b�1. Fisher2 discusses a strategy for
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choosing to obtain conditional power1� �, given the data observed so far, if in fact� = Æ=� = b�1. In the

variance spending test, the conditional power givenS1 = s1 under� = b�1 is

�

(
fr +p(1� r)gpn b�1 � z�p

(1� r)

)

and equating this probability to1� � gives

 =
(
p
1� r z� + z� � r

p
n b�1)2

(1� r)2n b�2
1

: (9)

Some truncation may be necessary to ensure that is positive but does not exceed a reasonable upper bound.

We shall pursue the alternative proposal by Cui et al7 of equating the total sample size to that which

would achieveunconditionalpower1�� for a true value of� equal tob�1, but we adapt this rule to allow for

the special weighting of the second stage data. Recall from (2) and (3) that in the statisticZ =W1 +W2,

W1 � N(r
p
n�; r)

and, conditionally on the first stage data,

W2 � N(
p
(1� r)

p
n �; 1� r):

A fixed sample test designed from the outset to achieve power1�� at� = Æ=� would have�2n observations

per treatment arm and use a standardized test statisticZ 0 with distribution

Z 0 � N(�
p
n �; 1):

Equating the mean ofZ 0 with the sum ofE(W1) and the conditional expectation ofW2 gives

� = r +
p
(1� r)

or, equivalently,

 =

�
� � r

1� r

�2
: (10)

If b�1 is small and positive,� and will be very large. Thus, it is advisable to bound the value of� used

in (10). Since a small positive value of� may give rise to negative values ofb�1, the maximal value of is

also appropriate for negativeb�1. (However, if b�1 is sufficiently low, one may choose to abandon the trial

for futility and stop at this point with acceptance ofH0.) If b�1 > Æ, then� < 1 and the above rule leads to
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 < 1, i.e., a decrease in the second stage sample size. This is quite acceptable but at least some truncation

is necessary to keep positive. With these modifications, we obtain the general rule

(b�1) =
 
~�(b�1)� r

1� r

!2

(11)

where

~�(b�1) =
8>>>><
>>>>:

M for b�1=Æ �M�1

Æ=b�1 for M�1 < b�1=Æ � h�1

h for b�1=Æ > h�1:

(12)

The values of generated by this rule lie in the range(h�r)2=(1�r)2 to (M �r)2=(1�r)2. Whenh = 1,

no decrease is allowed from the originally planned sample size,n.

3.5 Properties of variance spending tests

By design, a variance spending test has Type I error probability�. Further properties depend on how the

sample size inflation factor is chosen in the light of first stage data. The fact that the final test statisticZ

defined by (4) is not a function of a sufficient statistic for� gives some cause for concern. Of course, the

unequal weighting of first and second stage observations is necessary to ensure independence ofW1 and

W2 and, indeed, the argument of Section 3.2 shows the final testmusthave this form if Type I error rate

� is to be maintained when unplanned design changes take place. Nevertheless, it is instructive to make

comparisons with trial designs the experimenters could have chosen had they anticipated the possibility of a

smaller effect size before commencing the study.

An initial measure of possible inefficiency can be obtained from the derivation of the rule for choosing

 in Section 3.4. There, we noted that the sample size needed for a fixed sample test designed to achieve

power1 � � at � = Æ=� is �2n per treatment arm, wheren is given by (1). In contrast, a variance spending

test adapting an initial design with power1�� at� = Æ when an estimateb�1 = Æ=� is observed at an interim

analysis requiresn� = fr + (1� r)gn observations per arm where = (� � r)2=(1 � r)2. A measure of

inefficiency of the variance spending test is thus

fr + (1� r)gn
�2n

=

(
r +

(� � r)2

1� r

)
1

�2
: (13)

Table 1 shows numerical values of this measure for the caser = 0:5, i.e., when the trial is re-designed

after half the originally planned sample size. In the limit as� ! 1, the second stage termW2 contributes
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Table 1: A measure of inefficiency of a variance spending test withr = 0:5, as given by equation (13), and

the relative cost of re-starting the trial afresh with increased power.

� 0.5 0.6 0.8 1 2 3 4 10 1

Inefficiency ofZ 2 1.44 1.06 1 1.25 1.44 1.56 1.81 2

Relative cost to re-start 3 2.39 1.78 1.50 1.12 1.06 1.03 1.01 1

essentially all the information about� and this is diluted by addingW1 which has the same variance but, by

comparison, negligible information about�; the situation is reversed as� decreases tor = 0:5 where, in the

limit, all the information about� comes fromW1.

Particularly when� is much greater than1, experimenters may be tempted to abandon the original

experiment, discard the observations, and start a new fixed sample trial with power1 � � at � = Æ=�. This

new trial would require�2n observations per treatment arm in addition to thern in the abandoned study.

The “relative cost” in the bottom line of Table 1 is the ratio of the total sample size,rn+ �2n, involved in

this strategy to the sample size of�2n needed by a fixed sample test designed from the outset with power

1 � � at � = Æ=�. When(� � 1)2 > 1 � r, i.e., when� > 1:71 for the caser = 0:5, starting a fresh trial

would be more efficient than using the variance spending test. However, as mentioned previously, this isnot

really a valid option since it inflates the overall Type I error rate.

The “inefficiencies” in Table 1 are suggestive of the cost of using a non-sufficient statistic in the variance

spending method. They do not, however, take account of the variability inb�1 as an estimate of� and the

resulting random distribution of the factor. A proper assessment of the overall performance of a variance

spending test requires integration over the distribution ofb�1, which is normal with mean� and variance

1=(rn). We present such integrals for the overall power and ASN functions below and we use these criteria

in assessing the example in Section 4.

If anything, the variation in second stage sample size could have a detrimental effect. Consider a study

with a random sample size ofN observations per treatment arm, whereN is not itself influenced by the

observations’ values. A hypothesis test ofH0: � = 0 conducted with Type I error rate� conditional on the

value ofN has power

Ef�(
p
N � � z�)g:

Since�(x) is an increasing, concave function ofx for x > 0 and
p
N ��z� is concave inN , the conditional
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power�(
p
N �� z�) is concave inN when

p
N �� z� > 0, i.e., for values ofN which give power at least

0:5. It follows by Jensen’s inequality that, whenN varies in this range, overall power is maximized ifN is

equal to its expectation with probability one, i.e., when sample size does not in fact vary. Under the initial

design, there is a good chance of distinguishing between the cases� = 0 and� = Æ using a sample ofn

observations per treatment arm. At an intermediate stage with only a fraction of these observations,b�1 is

liable to vary over the range zero toÆ, leading to considerable variation in the sample size implied by (11)

and (12). We should not, therefore, be surprised if a variance spending test has rather low power for its

expected sample size.

The power of the variance spending test can be calculated as

P�fRejectH0g = P�fZ > z�g =
Z
P�fZ > z� j b�1gf�(b�1) db�1: (14)

It follows from the definition ofZ and the distribution ofW2 stated in (3) that

P�fZ > z� j b�1g = �

(
r
p
np

(1� r)
b�1 +pf(b�1)(1 � r)ng � � z�p

(1� r)

)
:

The density ofb�1 is

f�(b�1) =
r
rn

2�
exp

�
�rn

2
(b�1 � �)2

�

and hence (14) can be evaluated numerically. The expected sample size per treatment arm or Average

Sample Number (ASN) is

ASN= E(n�) = rn+ (1� r)n

Z
(b�1)f�(b�1) db�1

which, again, is readily evaluated by numerical integration.

In the next section we shall apply the above formulae to evaluate the power function and ASN curve

of a representative example of a variance spending test. We then use these results to assess the price one

may have to pay for the flexibility of the variance spending approach as compared to other less flexible

procedures.

4 An example

4.1 Sampling and stopping rules

We shall use the following example to evaluate a typical variance spending test by the standard criteria

of power and expected sample size functions. The original plan is for a fixed sample test and sample
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size is modified at an intermediate analysis using the adaptation of Cui et al’s7 sampling rule described

in Section 3.4; early stopping for futility introduced at the interim analysis allowsH0 to be accepted for

sufficiently poor responses. Although the results presented here are for this single example, we have found

very similar results in a variety of other examples using different values ofr,M andh, or calculating second

stage sample size by the conditional power formula (9) proposed by Fisher.2

As before, observations on treatmentsA andB are distributed asXAi � N(�A; 0:5) andXBi �

N(�B ; 0:5), interest is in the parameter� = �A � �B, and the null hypothesisH0: � = 0 is to be tested

against the one-sided alternative� > 0 with Type I error rate� = 0:025. In the non-sequential test originally

planned, power1� � = 0:9 is set at� = Æ, requiring a sample size

n =
(z� + z�)

2

Æ2
=

10:51

Æ2

per treatment arm. Intermediate data are examined halfway through the trial, i.e.,r = 0:5, and the second

stage sample size is inflated by the factor(b�1) defined by (11) and (12) usingM = 4 andh = 0:5.

Specifically,b�1 is calculated from the firstn=2 observations per treatment, we define

� =

8>>>><
>>>>:

4 for b�1=Æ � 0:25

Æ=b�1 for 0:25 < b�1=Æ � 2

0:5 for b�1=Æ > 2;

and a further n=2 observations are taken on each arm where

 = 4 (� � 0:5)2:

The second stage sample increases ifb�1 < Æ, remains unchanged ifb�1 = Æ, and decreases ifb�1 > Æ. The

inflation factor lies in the interval(0; 49) and the total sample size,n� = (1 + )n=2, is bounded by

(0:5 + 49� 0:5)n = 25n.

The null hypothesis is rejected in favor of� > 0 if

Z =
S1 + �1=2S2p

n
> z0:025

where

S1 =

n=2X
i=1

(XAi �XBi) and S2 =
n�X

i=n=2+1

(XAi �XBi):

As it stands, wheneverb�1 < 0:25 Æ this rule gives� = 4 and = 49, the value associated with a

test achieving power0:9 at � = 0:25 Æ. In order to save sample size when there is little prospect of a
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positive outcome, we add a futility boundary at the first stage which stipulates stopping to acceptH0 if the

conditional probability of rejectingH0 under� = 0:25 Æ and with = 49 is less than0:8, a condition which

is met whenb�1=Æ < �0:1735.

At the other extreme, substitutingb�1 = 2 Æ into the formula� = Æ=b�1 gives � = 0:5 and  = 0.

TheN(
p
 n=2; n=2) distribution of�1=2S2 tends to aN(0; n=2) distribution as approaches zero so we

simply take�1=2S2 � N(0; n=2) for the case� = 0:5 arising whenb�1 > 2 Æ. In practice one might prefer

to take a single observation on each treatment — but as will be small, the expectation of�1=2S2 will be

close to zero and the main role of this term is still to contribute the required amount to the variance ofZ.

4.2 Power and ASN functions

Figure 1 shows the power function of the variance spending test along with that of the original fixed sample

size test. It is evident that the variance spending test has been successful in increasing power over the range

of � values. After a sharp initial rise, its power function increases slowly as� moves from around0:3 Æ to Æ

and the overall shape of the power curve is quite different from that of any fixed sample test.

The argument of Section 3.1 that power is greater than� for all positive� does not readily extend to

prove that the power function increases monotonely with�. Indeed, a general result is not possible since

examples exist where power isnot monotone. The power function in Figure 2 is for a sampling rule similar

to our example but with� replaced by the maximum of�2 and0:5: after rising to0:914 at� = 0:8 Æ, power

falls back to0:884 at� = 1:4 Æ before starting to increase again.

It is possible that

S1 + �1=2S2 > z�
p
n (15)

and the variance spending test rejectsH0, while

S1 + S2 < z�
p
n� (16)

and a standardz-test calculated from alln� observations per treatment would not rejectH0. Denne11 notes

an analogous problem in adaptive group sequential tests and we may choose to follow his suggestion for

such a situation, rejectingH0 only if bothconditions (15) and (16) are satisfied. Although this lowers both

Type I error rate and power, the effect is surprisingly small and the maximum reduction in the variance

spending test’s power at any point is less than0:02.
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Figure 1: Power of the variance spending (VS) test and the originally planned fixed sample size test with

power0:9 at� = Æ.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ/δ

P
ow

er

o  VS test

*  fixed sample size test

Figure 3 compares properties of the variance spending test with the fixed sample test that has power0:9

at � = 0:6 Æ. The left hand panel shows the difference in the shapes of the two power curves, the fixed

sample test having the greater power for� > 0:6 Æ but the lower power, by some margin, at smaller� values.

The ASN per treatment arm of the variance spending test is plotted in the right hand panel of Figure 3,

expressed in units ofn = 10:51=Æ2 , the number of observations per arm originally planned. The steep rise

in ASN as� decreases fromÆ towards zero is in keeping with the goal of a sample size inversely proportional

to �2 for � between0:25 Æ and2 Æ that motivated this sampling rule. The variation in ASN is substantial

with values around12n for � near zero compared to3n or less for� > Æ. In contrast, the fixed sample test

has constant sample size ofn=0:62 = 2:78n. If it had been realized at the outset that greater power was

desirable, this fixed sample test would have been an attractive candidate, offering broadly similar gains in

power to the variance spending test for a generally lower sample size.
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Figure 2: Non-monotone power function of an adaptively defined test.
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4.3 Lack of efficiency of the variance spending test

In Section 3.5 we presented a measure of possible inefficiency in the variance spending test due to its use

of a non-sufficient statistic for�. The high ASN seen in Figure 3 relative to that of a fixed sample test

with broadly similar power curve is further evidence of such inefficiency. Figure 4 compares the variance

spending test’s ASN function with the fixed sample size needed to obtain the same power at each individual

value of�. Since this fixed sample size varies with�, the values plotted on the line labeled FSS do not

represent the ASN curve of any particular test, but this is still a reasonable point of comparison: many

sequential and group sequential tests would have alower ASN at each value of� in such a comparison.

For generalr, if the value of were independent ofS1, the expectation of

Z =
S1 + �1=2S2p

n

would befr +p(1 � r)gpn �, which is the same as the expectation of a standardized statistic based on

fr + p
(1 � r)g2n equally weighted observations per treatment arm. We therefore define theeffective
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Figure 3: Power and ASN of the variance spending (VS) test and a fixed sample size test with power0:9 at

� = 0:6 Æ.
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ASN scale is in multiples ofn, the sample size originally chosen to give power0:9 at� = Æ.

sample sizein the variance spending test as

Neff = fr +p(1� r)g2n:

A little algebra shows thatNeff is always less than or equal to the actual sample sizen� = fr+ (1� r)gn

with equality only when = 1. The average effective sample size for our example test (withr = 0:5),

labeled ESS in Figure 4, lies below the ASN but, for the most part, above the equivalent fixed sample size,

FSS. Thus, at most� values, power is still less than one might expect given the average effective sample

size.

The remaining lack of power can be attributed to the variability inNeff, along the lines of the discussion

of variable sample size in Section 3.5. As an example, consider the case� = 0:5 Æ. The density ofb�1 when

� = 0:5 Æ is shown in the left hand panel of Figure 5 and the resulting distribution ofNeff in the right hand

panel. This distribution comprises a density plus two point probability masses arising from� = 0:5 and4,

for which  = 0 and49 andNeff = n=4 and16n respectively. The average effective sample size,6:17n,

is noticeably less than the ASN of9:00n. A size� = 0:025 fixed sample test with6:17n observations per
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Figure 4: ASN and average effective sample size (ESS) of the variance spending test compared to the fixed

sample size (FSS) needed to obtain the same power at each individual value of�.
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Sample size scale is in multiples of the original fixed sample size,n.

treatment arm has power0:981 at � = 0:5 Æ. If, however, a test is carried out with a random sample size

taken from the distribution ofNeff using a conditional significance level� given the observed sample size,

its overall power is only0:703 at � = 0:5 Æ. The variance spending test’s power there of0:848 lies between

these two values, indicating that it suffers from the effects of the variable sample size but these are partly

ameliorated by the way in which depends onS1: low values of are chosen whenS1 is high and good

conditional power can be achieved with a small number of additional observations, while high values of

occur whenS1 is low and a higher stage two sample size provides a substantial rise in conditional power.

We note, however, that this beneficial effect is of limited value since, as the line FSS in Figure 4 shows, a

fixed sample size of just3:40n per arm is all that is needed to achieve the variance spending test’s power of

0:848 in a simple, fixed sample test.
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Figure 5: Density ofb�1 when� = 0:5Æ (left panel) and consequent distribution ofNeff (right panel).
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Density ofb�1 is Neff has a density on(0:25n; 16n) plus

N(0:5Æ; 2Æ2=10:51) point masses atNeff = 0:25n and16n.

One can ask whether better results might have been obtained if the first and second stage data had been

combined through some other test statistic. As explained in Section 3.2, use of such a test is only allowable if

designated in the initial protocol, thus, this is not a legitimate option in the scenario of an unplanned interim

analysis in what was intended to be a simple fixed sample size trial. Bauer & Köhne4 use R.A. Fisher’s

method for combiningP -values for a one-sided test ofH0: � = 0 against� > 0. The first and second stage

P -values are

p1 = 1� �(S1=
pfrng) and p2 = 1� �(S2=

pf(1 � r)ng);

respectively. UnderH0,� log(p1 p2) has0:5 times a�2 distribution on4 degrees of freedom, so a hypothesis

test with Type I error rate� can be obtained by rejectingH0 if

p1 p2 < expf�0:5�24;�g;

where�2�;p denotes the upperp tail point of a�2� distribution. For� = 0:025, the critical value forp1 p2 is

0:0038. Combining this rule with the sampling rule of our example, produces a fairly similar power curve

to that of the variance spending test: the curves cross twice between� = 0 and � = Æ and are within

0:03 of each other everywhere. However, the power of Fisher’s combination test does approach one more
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rapidly and the difference between, for example, power0:989 for Fisher’s combination test and0:961 for the

variance spending test at� = Æ may be regarded as significant. More might have been expected of Fisher’s

combination test in view of the very good power properties of this test in a simpler application reported by

Bauer & Köhne4 (Table 3); however, it should be noted that the design in our example, in particular the rule

for stopping for futility at the first analysis, is not tailored to Fisher’s combination test.

4.4 Competing group sequential tests

In Section 4.2 we compared the variance spending test with a fixed sample test achieving similar overall

power. This fixed sample design could have been chosen if the experimenters had anticipated the need for

greater power. In this case, there are other options too: group sequential tests can satisfy error probability

requirements with lower average sample size than fixed sample tests. Error spending group sequential tests

are a currently popular choice and have the ability to deal with variation in observed group sizes about their

intended values. We shall present results for one-sided error spending tests in the “�-family” described by

Jennison & Turnbull,17 Section 7.3; for simplicity, we present results when group sizes are actually equal to

their planned values. The tests described below are chosen to dominate the variance spending test in terms

of both power and ASN for� values in the region of primary interest between zero andÆ.

The two-stage, one-sided group sequential test shown in Figure 6 has Type I error rate0:025 and power

0:9 at � = 0:33 Æ. The form of stopping boundary is quite standard, namely a�-family error spending test

with � = 1. An unusual feature of the design is the timing of the first analysis after just2:5n observations

per treatment, one fourth of the maximum sample size: this allows sufficiently early stopping to make good

reductions in ASN at parameter values near� = Æ, where power is very close to one. Setting power0:9 at

� = 0:33 Æ ensures that the group sequential test’s power curve lies completely above that of the variance

spending test. The left hand panel of Figure 7 shows that, in addition, the group sequential test provides

muchgreater power for values of� around0:3 Æ and above. At the same time, the ASN curves in the right

hand panel demonstrate that this is achieved with considerably lower average sample size. Furthermore, the

group sequential test’s maximum sample size of10:0n per treatment arm is far below that of25n for the

variance spending test.

A two-stage group sequential test is comparable with the variance spending test in that both have a total

of two analyses. However, the variance spending test has the freedom to vary the second stage group size

in the light of first stage data while that of the group sequential test is pre-determined. Careful timing of a
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Figure 6: A two-stage, one-sided group sequential test ofH0: � = 0 with Type I error rate0:025 and power

0:9 at� = 0:33 Æ.
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group sequential test’s early analyses helps attain low average sample sizes at the higher values of�, where

power is close to one. This is evident in the above two group design where the first analysis is set at one

quarter of the total sample size. The five and ten-stage, one-sided group sequential boundaries shown in

Figures 8 and 9 are also for�-family error spending tests with� = 1. Both tests have Type I error rate0:025

and power0:9 at � = 0:33 Æ and their power curves are indistinguishable from that of the two-stage test

in Figure 6. The five-stage test has its first analysis at one tenth of the total sample size, with equal group

sizes thereafter, while the ten-stage test has ten equally sized groups. The ASN curves in Figure 10 show

the usual improvements in ASN arising from more frequent analyses and particular improvement at higher

values of�, helped by the additional, well placed, early analyses. Again, the maximum sample sizes per

treatment arm of11:4n for the five group test and11:9n for the ten group test are well below the variance

spending test’s25n.

These comparisons with standard group sequential designs illustrate the possible cost of the flexibility

available in the variance spending approach. The increased power and reduced sample size of the group
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Figure 7: Power and ASN curves of the variance spending (VS) test and two-stage group sequential test.
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sequential tests argue eloquently for more careful consideration of the appropriate power requirement, and

choice of a suitable design, well before a trial gets under way.

5 Discussion

There is no dispute that a variance spending test can rescue a trial from a poor initial design. The flexibility

of these tests can also be used to adapt a trial to a change in treatment definition (such as a new dosage or

selection of one dose from the range of doses used initially), or to the substitution of an alternate endpoint;

see, for example, Bauer & Köhne,4 Bauer & Röhmel,25 Fisher2 and Lehmacher & Wassmer.8 In another

form of adaptation, Wang, et al14 use Cui et al’s7 method to create a group sequential test which can switch

adaptively between hypothesis tests of superiority and non-inferiority.

It may not be so obvious that this flexibility can come at a substantial price. Our evaluations have been

in the context of changing a trial’s sample size in mid-course in order to attain power at a smaller effect size

than originally anticipated. The message from our example is clear: a variance spending test can require
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Figure 8: A five-stage, one-sided group sequential test ofH0: � = 0 with Type I error rate0:025 and power

0:9 at� = 0:33 Æ.
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many more observations than a group sequential test with superior power. Thus, consideration should be

given at the planning stage to what is desirable for the full range of possible effect sizes, including those

deemed unlikely at that point. If observing a particular value ofb� at an interim analysis will be enough to

persuade the investigators that high power is appropriate at that value of�, then it makes sense to design the

study with such power from the outset.

We have concentrated in this paper on an in depth analysis of one example. In addition to this, we

have studied similar examples with different values forr, the fraction of data available when the design is

adapted, and for the parametersM andh which govern truncation of the modified sample size through the

definition (12) of~�(b�1). We have implemented sample size rules based on conditional power, as described

at the start of Section 3.4. In Section 4.3, we reported on methods in which data from the two stages are

combined through R.A. Fisher’s�2 method rather than the variance spending rule. We have also recently

investigated methods proposed by Fisher,2 Shen & Fisher3 and Cui et al7 which allow re-design within an

initially planned group sequential test. Our findings in all these cases follow the same pattern as for the
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Figure 9: A ten-stage, one-sided group sequential test ofH0: � = 0 with Type I error rate0:025 and power

0:9 at� = 0:33 Æ.
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example presented in Section 4: on calculating the overall power curve of the adaptive procedure, with

specified rules for the re-calculation of sampling size and the terminal decision, it is evident that non-

adaptive group sequential tests could have achieved better power with smaller expected sample size across

the range of� values of interest. We do not claim that all adaptive designs must be seriously inefficient,

but the examples we have investigated indicate the need to evaluate procedures and compare other options

before possibly applying them.

The increase in sample size by a factor of 25 allowed in our example is clearly very high and many

adaptive modifications will be on a smaller scale. It is noteworthy, however, that this increase is not

particularly effective since Figure 3 shows that a fixed sample test with just 2.8 times the initial sample

size broadly matches the attained power curve. If one seeks to attain power1�� for � as low asÆ=2 (rather

than Æ=4), the valueM = 2 should be used in (12) and this gives the more plausible maximum sample

size of5n. Calculations show the variance spending procedure using this sampling rule attains power0:9

at � = 0:7 Æ. The power curve is dominated at all points by fixed sample and group sequential tests with
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Figure 10: ASN curves of the variance spending (VS) test and group sequential tests with2, 5 and10 stages.
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power0:9 at0:57 Æ and, as for our earlier example, group sequential tests offer lower ASN than the variance

spending test over a wide range of� values. The two group test has a maximum sample size of3:35n and

lower ASN for all� values between zero and1:2 Æ; five and ten group tests offer greater reductions in ASN.

Remarks by some authors suggest a desire to set a specific power,1� �, at whatever is the true value of

the effect size parameter; for example, Shen and Fisher3 (Section 3) refer to the valueÆ at which power is

set as being an underestimate, a proper estimate, or an overestimate of the underlying treatment difference

�. This is a curious motivation for adaptive designs with the apparent objective of a power curve which

rises sharply near� = 0 and then remains perfectly flat. What is surprising is that adaptive designs with

the sampling rules we have presented do actually come close to having such power curves! However,

maintaining a significant risk of a negative outcome when the effect size is high seems quite perverse. This

whole philosophy seems to be generated from a misconception about the role of power calculations: power

should be guaranteed at values of� that would be of clinical or commercial interest, bearing in mind the
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sampling cost needed to detect a particularly small effect size. Then, the design will be suitable whatever

the true value of�.

As long as the experimenters’ objectives can be properly established at the outset, there are good reasons

to expect standard group sequential designs to dominate variance spending tests. Knowing the correct goal

helps design the trial efficiently, use of a sufficient statistic is in keeping with fundamental principles, and

one can choose from tests optimized to a selection of criteria (see Barber & Jennison26). Variance spending

tests have the special feature that future group sizes can be adapted to previously observed responses. The

extension of group sequential tests to “sequentially planned” designs proposed by Schmitz27 provides this

property, which may be of value when only a small number of groups are permitted. However, we should not

let consideration of these more complex designs obscure the excellent performance, seen in our example, of

standard group sequential tests with pre-specified group sizes.
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