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ABSTRACT

An important area of interest in microscopy may be the shape and spatial

arrangement of the objects under study, aspects such size, interaction and

orientation. Confocal fluorescence microscopy is a useful device for imaging

three dimensional specimens because of its non-destructive and non-invasive

nature which preserves such spatial information. However,imaging problems

still arise; low signal-to-noise ratio, convolution by unknown point spread

functions and attenuation of the signal by the object under study lead to degraded

blurred images. The goal may be not only to enhance the visualappearance of the

3D images but also to give quantitative summaries of some of shape parameters.

This article attempts to tackle the complicated 3D deconvolution problem in

a statistical framework using a Bayesian approach. Simulation techniques are

required to make inference about the true scene given the 3D data. Interval

estimates can be made of size and shape attributes from the posterior distribution.

KEYWORDS: Bayesian statistics; Confocal microscopy; Image analysis; Markov

chain Monte Carlo methods; Object recognition; Stochasticsimulation; Three-

dimensional deconvolution.

∗Corresponding author: Department of Statistics and OR, Kuwait University, P.O.Box 5969 Safat,

Kuwait, 13060
†Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
‡Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK

1



1 INTRODUCTION

The use of mathematical and statistical techniques in biological imaging is now quite

advanced (Glasbey and Horgan (1995) [7]). This article aimsto describe some of

the additional benefits resulting from some of the more recent advances in Bayesian

modelling and computational approaches. The paper will be illustrated by considering

cartilage data obtained by confocal fluorescence microcopy. Cartilage degradation is

a hallmark of some major disease groups such as osteoarthritis (Woessneret al (1993)

[15]), and aspects such as the types of cells, their numbers and their condition are

important in determining the progress of disease.

The structure of this paper is as follows: In Section2, the data set is described

along with problems associated with imaging using confocalmicroscopy. We then

define a statistical model for how the data arise from a particular object configuration

(the likelihood), and describe how we may incorporate priorobject information into the

final model using Bayes theorem. Simulation techniques to handle the statistical model

are discussed in Section3; Sections 3.1 and 3.2 then introduce two approaches to

optimise the computational resources by constructing informative initial configurations

(the first is fully automated, the second allows user intervention). The output of

these algorithms is a sequence of realisations from the statistical model, and it is via

these that we make inference about the objects under study, the number of cells or

their shape characteristics. The benefit over some existingtechniques is that we can

construct interval estimates of these attributes, attempting to acknowledge some of the

segmentation uncertainty in the problem, and allowing moremethodological image-

to-image comparisons. Examples of some extracted properties of the cartilage cells

are given in Section4. We finish with some brief conclusions.

2 A BAYESIAN MODEL FOR CONFOCAL MICROSCOPY

2.1 THE LIKELIHOOD FUNCTION

The experimental data consist of a stack of two-dimensionalimages, which we denote

collectively by Y , generated by confocal fluorescence microscopy for an area of

cartilage growth. Despite ongoing developments in the technology, the images do
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FIGURE 1: The 3D data represented as consecutive 2D optical sections.

suffer from some particular forms of degradation (Wilson (1990) [14], (1996) [11]).

Firstly, the images appear blurred and out-of-focus as a result of scattering of the light

(incoming and outgoing). Shaw and Rawlins (1991) [12] assessed the point spread

function (psf) for different types of microscopes, and concluded that in most planes,

it could be described by a central disc surrounded by rings ofsubsidiary maxima.

Attenuation is another important distortion effect in the three dimensional image; due

to diffraction and absorption of photons as they pass through the specimen, the signals

gets weaker as focal points moves toward deeper optical sections (see Figure1).

In order to approach the estimation problem in a Bayesian setting, we need to
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formulate models for how the data arise from any particular object configuration (the

likelihood model) and for any prior beliefs we have about theobject (the prior model).

We will begin with the likelihood,L(y|x). The microscope measures low numbers of

fluorescence photon counts which in theory come from the focal point, but in practice

are affected by specimen-dependent spatially varying scatter and attenuation effects.

There will then also be some instrument measurement noise. Additionally, the counts

may be operator adjusted to improve the contrast (so that a zero count maps to the

black-level, and the highest reading is below the maximum reading level).

Let i, j, k index the voxels, wherek represents depth into the specimen, andi and

j index the pixel grid at any particular depth. The recordsYijk can be considered

as scaled convolutions of sensor noise with the blurred, attenuated values of the

underlying scene. We assume that the background medium has typical fluorescence

level τ0, and each (cartilage) cell has a typical increase in fluorescence level over

and aboveτ0 of λijk for voxels ijk lying in the cell (with each cell assumed to

have a constant increase, andλijk = 0 for voxels in the background). We assume

that emissions from each voxel follow a Poisson distribution with meanτ0 + λijk.

The voxel lattice of expected counts is then formed by assuming a geometric form

of attenuation (with parameterΥ), followed by blurring these attenuated values by

a three-dimensional discretised Gaussian point spread function (with neighbourhood

Λijk for voxel (i, j, k) and weights{w} summing to 1). Instrument noise is assumed

to be additive white noise. The user-adjustment is taken to be a linear scaling (such

that a zero count would map to black-leveld).

After some approximation, we model the record at voxelijk as a Gaussian random

variable with meanµijk equal to the attenuated black-level plus the expected Poisson

count for ijk, and with varianceσ2
ijk equal to the scaled sum of the variance of the

instrument noise plus the expected Poisson variation.

µijk = Υk−1







∑

i′j′k′∈Λijk

wi′j′k′(τ0 + λi′j′k′)







+ d (1)

σ2
ijk = φ2

0 + (µijk − d) (2)

whereφ2
0 is the variance of the background area in the top slice. Exploratory analyses

of the data suggested takingd = 20, Υ = 0.945, τ0 = 22 andφ2
0

= 35.5. More details
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of the two-dimensional version of the model are given in Al-Awadhiet al (2004) [2].

A more complicated model for the mean can be used to representthe heterogeneity of

the signals inside the cells (see Al-Awadhi (2001) [1]).

Assuming the recordsYijk are conditionally independent given the object

configurationX = x (and we will discuss in the next section how we will represent

the specimen mathematically), it follows that the likelihood function of the attenuated

blurred recordsY is

L(y|x) =
∏

k

∏

j

∏

i

1
√

2πσ2
ijk

exp{−
(yijk − µijk)

2

2σ2
ijk

}. (3)

2.2 PRIOR IMAGE MODEL

A crucial question is how we intend to represent the objects under study as a

mathematical entity in order to formulate prior beliefs about the system using a

probability model. Since our objective for this study is inference about the number

of cells as well as their characteristics, we require the prior model to handle both the

dimensionality of the problem and the geometric features ofthe list of objects (such as

shapes, locations orientations).

Baddeley and Van Lieshout (1993) [3] suggested using markedpoint processes

as a suitable model for an unknown length list of geometric objects. Here the object

configurationX is written as a list of unknown length,X = {X1, . . . ,XN} where

N is also a random variable. EachXi represents a cell, carrying information about

fluorescence, orientation etc. The model forX is a marked point process, where the

“points” can be thought of as the cells, while the “marks” arethe characteristics needed

to represent each cell. Interactions between cells can be included by specifying an

interaction term in the model which roughly speaking says how likely a configuration

is in comparison to a Poisson point process (one in which, conditional on their number,

the points are uniformly and independently distributed in the observation window). In

this case, we want to prohibit overlap of any of the cells (knowing that the images are

optical sections), and so we use the so-called hard-core model. Details of this process

for the 2D case are given by Al-Awadhiet al (2004) [2].

How to parameterise each cell? The cells have no completely regular shape,
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however a good approximation is as ellipsoids with centrescx, cy, cz (these are the

points of the point process) and with semi-axesa, b, c representing the width, length

and height of the ellipsoids. To allow the cells to lie in different orientations, we

consider rotations of the ellipsoids in 3D through the Euleranglesθ1, θ2, θ3 (Spiegel

(1967) [13]). These latter six parameters, along with the intensity level associated

with the cell, λcell i, are used as the marks of the marked point process and so we

also need to specify prior distributions for them. We shall assume that the lengths of

the axes are bounded by some pre-determined range(minaxis,maxaxis), and are then

independently distributed as truncated Normals on this range with meansµa, µb and

µc and common varianceγ2. These prior parameters are set toµa = 25, µb = 12.5,

µc = 3 andγ = 5. Eachθi, i = 1, 2, 3 is assumed uniformly distributed over[0, π].

For the intensity rateλcell i, we assume it is uniformly distributed over a specified

range(minλ,maxλ).

Finally we can write the prior distribution, at least up to proportionality, as

π(x) ∝ βn

n
∏

i=1

I[no overlap of celli]π(ai, bi, ci)π(λi)π(θ1i, θ2i, θ3i) (4)

whereβ is a positive parameter reflecting the intensity of the process, ie related to how

many cells we might expect.

2.3 THE POSTERIOR IMAGE DISTRIBUTION

Our posterior distributionπ() is constructed using Bayes theorem,

π(x|y) =
L(y|x)π(x)

π(y)
.

Notice however that we have only specified the likelihood component and the prior

component, and so we can only write the posterior distribution up to proportionality as

π(x|y) ∝ L(y|x)π(x) (5)

The constant of proportionality could be found by integrating out over all possible

configurationsx. Or at least it could be found this way if the computations were not

intractable as a result of the dimensionality and complexity of the problem! It is clear
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that in order to draw inferences from this posterior model, we will need to resort to a

computational approach. We describe the approach used in the next section.

3 MARKOV CHAIN MONTE CARLO METHODS

Markov chain Monte Carlo methods are now widely used in statistical applications

where the object of interest is too complex to allow for direct evaluation or calculation

of estimates. The basic idea is to generate a sequence of (dependent) realisations

from the distribution under study by simulating from a Markov chain which has this

distribution as its equilibrium distribution. The fact that a large number of samples

are drawn from this distribution enables interval estimates to be constructed as well as

point estimates. There are now many good references available for these methods, for

example Besaget al (1995) [4], Gilkset al. (1996) [6] and Green (1995) [8], which

deals with the important variable-dimension case.

In implementing MCMC methods for this application, we considered so-called

single-site updating, that is just one element ofX is potentially changed at each

step. This suggests using eight different move types: adding a new cell or deleting an

existing cell, merging two close cells or splitting one cellinto two, shifting a randomly

chosen cell’s location, resizing it, or changing its orientation or intensity level. In each

case, a change is proposed, but the decision whether or not toaccept the change is

made based on a ratio of terms which include the target distributionπ(x|y) at the new

configuration and at the old configuration (notice that this removes the necessity of

knowing the normalising constant of this distribution). More details of this approach

can be found for the two-dimensional case in Al-Awadhiet al (2004) [2].

MCMC samplers are generally computationally expensive, and they can take many

iterations to converge from a poor starting configuration tohigher probability regions

of the state space. To illustrate this point, runs of 50000 iterations were carried out

starting from an empty configuration (ie no cells). Shape andlocation aspects of a

sample from the algorithm are displayed in Figure2. The sampler has managed to

locate most of the cells in the correct places, however, somestill need adjusting to

fit the data better, ie more runs still are required. Intuitively, it would make more
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FIGURE 2: 2D sections orthogonal to thez−axis forz = 3 (top), z = 7 (middle) and

z = 12 (bottom).

sense to begin with the best possible deterministic starting configuration, and to use

the stochastic algorithm to assess the uncertainty around this solution. In the next

subsections we describe two approaches to doing just this, one requiring no user input,

and the other using expert knowledge to refine the method.

3.1 MCMC ALGORITHM USING A GOOD STARTING STATE

Al-Awadhi et al (2004) [2] developed an algorithm for automatically constructing good

starting states in 2D, which we here generalise to 3D:

• Step 1: threshold the data for each optical section using itsmedian record

to obtain a stack of binary images (as a result of attenuation, the median

will be higher in high sections than in deeper sections). Convert the binary

images to sets of connected voxels using a mathematical morphology opening

operator (Glasbey and Horgan (1995) [7]) with a cube of3 × 3 × 3 voxels

used as the structuring element,B. The resulting 3D output after applying the

morphological opening operator is shown in Figure3.

• Step 2: convert the connected voxels into ellipsoids. Each set of connected
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FIGURE 3: 2D sections at depths z=3, 7 and 12 after applying morphological operators.

voxels is viewed as a level set of a 3-D normal density (using the voxel labels

as variables). The centre of the ellipsoid (ie the point of the point process) is

taken as the mean of the normal distribution, and the values of the semi-axes

and the angles of rotation are extracted using maximum variance concepts and

the eigenvalues. The cell intensity is computed from the average record inside

each ellipsoid. The resulting configuration is given by Figure 4.

Using this hopefully improved 3D starting configuration, the algorithm is again run for

50000 iterations. An output sample corresponding to the final iteration of one run is

shown in Figure5. It is clear that new cells have been created and that the positions

of some cells have changed for a better fit to the data during the run. Given that the

initial configuration was closer to a reasonable fit, more of the samples could be used

for the inference stage. However it is clear that the algorithm must still work hard to

reach the modal region of the posterior distribution, particularly where is uncertainty

about some cells because voxels lying around them have high record values so the cells

have no sharply differentiated edges and the background areas cannot be distinguished

easily.
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FIGURE 4: 3D configurations after converting the sets of connected voxels into

ellipsoids (displayed using three optical sections at z=3,7 and 12).

3.2 USER INTERVENTION TO CONSTRUCT A GOOD STARTING STATE

An alternative to the unconstrained model used so far would be to utilise the expertise

of the user, but in a less time consuming way than for completemanual segmentation.

The suggestion is to construct a starting point for the chainas above (ie morphological

operators, conversion to ellipses) followed by some iterations of MCMC. At this stage,

with now a reasonable configuration, the user is prompted to identify a point inside

each cell which they would like to identify in the image. Thispoint does not represent

the point of the station process, it is used as a device for identifying cells which the user

believes really do exist in the specimen (whether or not theyare currently represented

as part ofX). Adjustments are then carried out to the configuration, removing

spurious cells and adding newly identified ones. This can be achieved automatically,

maintaining the condition that cells should not overlap. The MCMC is then restarted,

but under two conditions. First, the number of cells is now held constant, that is we

are restricting ourselves to a fixed value ofn in the modified posterior (which rules

out the birth/death and split/merge move types). Secondly,the cells are constrained to

continue to contain the user-identified points in their interior. This latter constraint is
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FIGURE 5: A sample after 50000 iterations of the MCMC sampler using the

morphological initial state.

imposed by rejecting any proposed configuration which violates the condition.

The unconditional MCMC algorithm output given in Figure5 is used as input for

the user-intervention. The resulting configuration is seenin Figure6, and a sample

after a run with the constrained MCMC is given in Figure7. The idea is that all

of these constrained samples may be taken to contain useful information about the

objects under study. The goal now is to extract suitable representations of the image

content and devise decision making schemes which interpretthe content in terms of

their representations.

4 IMAGE INTERPRETATION

4.1 TYPES OF CARTILAGE CELLS

Cartilage tissue can be categorised into four different zones (Woessneret al (1993)

[15]), the tangential layer, middle layer, deep layer and the calcified cartilage layer.

The middle and the lower layers occupy around80% − 90% of the tissue, and can be

distinguished by the cells they contain. The middle layer contains more rounded cells
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FIGURE 6: The initial configuration after running the MCMC sampler and allowing

user intervention.

known as chondroblats, while the deep layer contains more elliptically shaped cells,

chondrocytes, arranged in columns. Properties related to the types of the cells such as

the ratio of the numbers of the two types, the ratios of shape parameters, their intensity

and their size are informative criteria for the biologists to understand the processes in

the cartilage tissue, providing information on the proliferation and differentiation of

various cellular components of cartilage tissues and elsewhere (Noda (1993) [10]).

4.2 ESTIMATING THE PROPERTIES OF THE CELLS BYMCMC

In order to distinguish cell types, we need to add one furthermark to the marked point

process, namely a cell label; the chondroblasts cells will be labelled type I, and the

others type II. A-priori, the only criterion we have for distinguishing the two types is

shape; although both types can be approximated by ellipsoids, type II cells are more

spherical than type I cells. This is handled in the prior model through the distributions

on their semi-axes. Given the type of the cell, the semi-axesare assumed independent

and given a multivariate normal distribution. The means andvariance of semi-axes of

type I cells are chosen to be(30, 12.5, 4) with equal variances of4.52. For type II cells
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FIGURE 7: 2D optical sections at depthsz =3, 7 and 12 after running the constrained

MCMC algorithm from the user-refined starting point.

the mean vector is(20.5, 17.5, 4), again with common variance4.52. The two cell

types are taken, a-priori, to be equally likely, and the prior distributions for orientation

and fluorescence are taken to be common for the two types.

The Markov chain Monte Carlo algorithm also needs extendingto deal with cell

type; a proposed relabelling move is added which considers changing a cell’s label

while holding other values fixed. Using this additional move, the conditioned sampler

is applied, and after deleting the first10% of the iterations to allow for the sampler to

converge, measurements are made on the samples. The information of interest to be

extracted from the samples relates to the size and shape attributes of the two different

cell types. Notice that it would also be possible to study attributes of a particular

cell, eg the probability it is of Type I, using the conditioned MCMC (such inference

would not be possible under the unconditioned algorithm where a cell may not exist

for the entirity of the run). Point estimates of the quantities of interest can then be

found by taking ergodic averages of the same quantities averaged over the observed

samples. Perhaps more importantly, interval estimates of these quantities can also be

found (particularly useful for comparative purposes). Since the MCMC samples are

13



100 200 300 400 500 600 700

50

100

150

100 200 300 400 500 600 700

50

100

150

100 200 300 400 500 600 700

50

100

150

FIGURE 8: A sample image labelling the cells into two types (type I are labelled with

a single-line border, and type II with double-line borders).

correlated, the variance of the averages is inflated by a factor called the integrated

autocorrelation time,τ , ie, the standard error is
√

τσ2/n rather than
√

σ2/n as would

be the case in the uncorrelated case (hereσ2 is the unknown variance of the attribute,

andn is the sample size). The quantitiesσ2 andτ can be estimated from the samples,

see Green and Han (1992) [9] and Geyer (1991) [5] for details.

Figure 8 shows a sample after 100000 iterations, marking the labelling of each

cell. Figure9 shows histograms of various attributes for the two types of cell based

on subsampling one sample in every100 iterations after neglecting the first10000

iterations. The estimated proportion of type I cells is0.442. The estimated attribute

means, together with estimated standard errors andτ are given in Table1.

5 CONCLUSIONS

In this paper, we have presented a Bayesian approach to imageinterpretation for

images of cartilage growth. We have described a modelling approach and associated

algorithm for drawing inferences from this model. AlthoughMCMC simulation is

computationally intensive, the output allows us to exploremore fully the estimation
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Attribute Type Mean S.E. τ

a/c I 7.845 0.474 4.436

II 5.337 0.688 19.688

a/b I 2.738 0.298 14.635

II 1.658 0.141 11.959

b/c I 3.235 0.299 4.802

II 3.602 0.366 12.405

Volume I 6785.499 529.284 5.818

II 3767.395 286.122 8.806

Intensity I 59.168 11.338 13.239

II 64.711 15.730 43.979

TABLE 1: The estimated attributes, with standard errors and integrated autocorrelation

times for the two types of cell.

variability than would a deterministic approach.
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