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ABSTRACT

An important area of interest in microscopy may be the shape spatial
arrangement of the objects under study, aspects such si#radtion and
orientation. Confocal fluorescence microscopy is a useéviad for imaging
three dimensional specimens because of its non-desteuatid non-invasive
nature which preserves such spatial information. Howeweaging problems
still arise; low signal-to-noise ratio, convolution by urdwn point spread
functions and attenuation of the signal by the object unaelydead to degraded
blurred images. The goal may be not only to enhance the véqmdarance of the
3D images but also to give quantitative summaries of sombaayies parameters.
This article attempts to tackle the complicated 3D decami@h problem in
a statistical framework using a Bayesian approach. Sinoulaechniques are
required to make inference about the true scene given the&®. dinterval
estimates can be made of size and shape attributes fromsteripo distribution.
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1 INTRODUCTION

The use of mathematical and statistical techniques in dicéd imaging is now quite
advanced (Glasbey and Horgan (1995) [7]). This article d@iondescribe some of
the additional benefits resulting from some of the more reeemances in Bayesian
modelling and computational approaches. The paper willlbgtiated by considering
cartilage data obtained by confocal fluorescence micracQ@aytilage degradation is
a hallmark of some major disease groups such as osteoar(hivibessneet al (1993)
[15]), and aspects such as the types of cells, their numbetgteeir condition are
important in determining the progress of disease.

The structure of this paper is as follows: In Sectiyrthe data set is described
along with problems associated with imaging using confaoalroscopy. We then
define a statistical model for how the data arise from a pagicobject configuration
(the likelihood), and describe how we may incorporate polgject information into the
final model using Bayes theorem. Simulation techniquesndlesghe statistical model
are discussed in Sectid}) Sections 3.1 and 3.2 then introduce two approaches to
optimise the computational resources by constructinginédive initial configurations
(the first is fully automated, the second allows user intetiom). The output of
these algorithms is a sequence of realisations from thistitat model, and it is via
these that we make inference about the objects under stoglyaumber of cells or
their shape characteristics. The benefit over some exigicigniques is that we can
construct interval estimates of these attributes, attergpd acknowledge some of the
segmentation uncertainty in the problem, and allowing mmoethodological image-
to-image comparisons. Examples of some extracted prepeofi the cartilage cells

are given in Sectiod. We finish with some brief conclusions.

2 A BAYESIAN MODEL FOR CONFOCAL MICROSCOPY

2.1 THE LIKELIHOOD FUNCTION

The experimental data consist of a stack of two-dimensionages, which we denote
collectively by Y, generated by confocal fluorescence microscopy for an afea o

cartilage growth. Despite ongoing developments in theneldgy, the images do
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FIGURE 1: The 3D data represented as consecutive 2D optical section

suffer from some particular forms of degradation (Wilso®9@) [14], (1996) [11]).
Firstly, the images appear blurred and out-of-focus aswtresscattering of the light
(incoming and outgoing). Shaw and Rawlins (1991) [12] asexthe point spread
function (psf) for different types of microscopes, and daded that in most planes,
it could be described by a central disc surrounded by ringsudsidiary maxima.
Attenuation is another important distortion effect in these dimensional image; due
to diffraction and absorption of photons as they pass thHrdhg specimen, the signals

gets weaker as focal points moves toward deeper opticdbasdisee Figuré).

In order to approach the estimation problem in a Bayesiatingetwe need to




formulate models for how the data arise from any particulgiect configuration (the
likelihood model) and for any prior beliefs we have aboutabgect (the prior model).
We will begin with the likelihood,L(y|x). The microscope measures low numbers of
fluorescence photon counts which in theory come from thel fomiat, but in practice
are affected by specimen-dependent spatially varyingescahd attenuation effects.
There will then also be some instrument measurement noidditidnally, the counts
may be operator adjusted to improve the contrast (so thatacamint maps to the
black-level, and the highest reading is below the maximuelirey level).

Leti, j, k index the voxels, wherg represents depth into the specimen, aadd
J index the pixel grid at any particular depth. The recokds, can be considered
as scaled convolutions of sensor noise with the blurredgnatited values of the
underlying scene. We assume that the background mediunypiasltfluorescence
level 75, and each (cartilage) cell has a typical increase in fluemse level over
and abovery of )\, for voxelsijk lying in the cell (with each cell assumed to
have a constant increase, ahg;, = 0 for voxels in the background). We assume
that emissions from each voxel follow a Poisson distributiith meany + ;.
The voxel lattice of expected counts is then formed by assgrai geometric form
of attenuation (with parametéf), followed by blurring these attenuated values by
a three-dimensional discretised Gaussian point spreadifum(with neighbourhood
A1, for voxel (i, j, k) and weights{w} summing to 1). Instrument noise is assumed
to be additive white noise. The user-adjustment is takereta bnear scaling (such
that a zero count would map to black-levBl

After some approximation, we model the record at vaxélas a Gaussian random
variable with meanu;;;, equal to the attenuated black-level plus the expected Goiss
count forijk, and with variancerfjk equal to the scaled sum of the variance of the
instrument noise plus the expected Poisson variation.

Wijk = Tkil Z wi/j/k/(m + )‘i’j’k’) +d (1)
ohk = 0+ (ijr — d) 2)

whereg? is the variance of the background area in the top slice. Eafoy analyses

of the data suggested takidg= 20, T = 0.945, 7o = 22 and¢? = 35.5. More details
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of the two-dimensional version of the model are given in A¥alhiet al (2004) [2].
A more complicated model for the mean can be used to représehieterogeneity of
the signals inside the cells (see Al-Awadhi (2001) [1]).

Assuming the recordsy;;;, are conditionally independent given the object
configurationX = z (and we will discuss in the next section how we will represent
the specimen mathematically), it follows that the likebldofunction of the attenuated
blurred records” is

. )2
Lile) = [T T~ expf (Yt = Fist)"y @)

E i i 2mo;

2.2 PRIOR IMAGE MODEL

A crucial question is how we intend to represent the objeatdeu study as a
mathematical entity in order to formulate prior beliefs abdhe system using a
probability model. Since our objective for this study isdérdnce about the humber
of cells as well as their characteristics, we require therpriodel to handle both the
dimensionality of the problem and the geometric featurab®fist of objects (such as
shapes, locations orientations).

Baddeley and Van Lieshout (1993) [3] suggested using mapkat processes
as a suitable model for an unknown length list of geometrieab. Here the object
configurationX is written as a list of unknown length' = {X;,..., Xn} where
N is also a random variable. Eachy; represents a cell, carrying information about
fluorescence, orientation etc. The model #oris a marked point process, where the
“points” can be thought of as the cells, while the “marks” thre characteristics needed
to represent each cell. Interactions between cells can deded by specifying an
interaction term in the model which roughly speaking sayw hikely a configuration
is in comparison to a Poisson point process (one in whictglitional on their number,
the points are uniformly and independently distributedhie dbservation window). In
this case, we want to prohibit overlap of any of the cells (kimg that the images are
optical sections), and so we use the so-called hard-coreimDétails of this process
for the 2D case are given by Al-Awadki al (2004) [2].

How to parameterise each cell? The cells have no completgjular shape,



however a good approximation is as ellipsoids with centtgs,, c. (these are the
points of the point process) and with semi-axes, c representing the width, length
and height of the ellipsoids. To allow the cells to lie in diffnt orientations, we
consider rotations of the ellipsoids in 3D through the Ew@leglest, 65, 3 (Spiegel
(1967) [13]). These latter six parameters, along with therisity level associated
with the cell, A..;; ;, are used as the marks of the marked point process and so we
also need to specify prior distributions for them. We shaliiane that the lengths of
the axes are bounded by some pre-determined range, ,;s, max,,;s), and are then
independently distributed as truncated Normals on thigeamith means.,, u, and

e and common variancg?. These prior parameters are seftp = 25, 1, = 12.5,

ue = 3 andy = 5. Eachd;,i = 1,2,3 is assumed uniformly distributed ov, 7.
For the intensity rate\..;; ;, we assume it is uniformly distributed over a specified
range(miny, maxy).

Finally we can write the prior distribution, at least up t@portionality, as

m(x) oc 8" [ [ I[no overlap of celi]r(a;, b, ¢;)m(Ai)m(61s, 02, 05:) (4)
i=1

whereg is a positive parameter reflecting the intensity of the psscé related to how

many cells we might expect.

2.3 THE POSTERIOR IMAGE DISTRIBUTION

Our posterior distributionr() is constructed using Bayes theorem,

L{gla)m(z)

wlaly) = =2

Notice however that we have only specified the likelihood porent and the prior

component, and so we can only write the posterior distridoutip to proportionality as

m(zly) o< L(y|z)m(z) (5)

The constant of proportionality could be found by integrgtiout over all possible
configurationse. Or at least it could be found this way if the computations eveot

intractable as a result of the dimensionality and compjexdtthe problem! It is clear
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that in order to draw inferences from this posterior moded, will need to resort to a

computational approach. We describe the approach used imetkt section.

3 MARKOV CHAIN MONTE CARLO METHODS

Markov chain Monte Carlo methods are now widely used in ®iatil applications
where the object of interest is too complex to allow for diregaluation or calculation
of estimates. The basic idea is to generate a sequence angdiet) realisations
from the distribution under study by simulating from a Markthain which has this
distribution as its equilibrium distribution. The fact tha large number of samples
are drawn from this distribution enables interval estimdtebe constructed as well as
point estimates. There are now many good references alaflaithese methods, for
example Besagt al (1995) [4], Gilkset al. (1996) [6] and Green (1995) [8], which
deals with the important variable-dimension case.

In implementing MCMC methods for this application, we caesed so-called
single-site updating, that is just one elementXfis potentially changed at each
step. This suggests using eight different move types: gdalinew cell or deleting an
existing cell, merging two close cells or splitting one értb two, shifting a randomly
chosen cell’s location, resizing it, or changing its or&iun or intensity level. In each
case, a change is proposed, but the decision whether or ramictpt the change is
made based on a ratio of terms which include the target loligion 7(z|y) at the new
configuration and at the old configuration (notice that tleisioves the necessity of
knowing the normalising constant of this distribution). Maletails of this approach
can be found for the two-dimensional case in Al-Awadhal (2004) [2].

MCMC samplers are generally computationally expensivd,thay can take many
iterations to converge from a poor starting configuratiomigher probability regions
of the state space. To illustrate this point, runs of 5008€attons were carried out
starting from an empty configuration (ie no cells). Shape lagdtion aspects of a
sample from the algorithm are displayed in Fig@re The sampler has managed to
locate most of the cells in the correct places, however, sstileneed adjusting to

fit the data better, ie more runs still are required. Inteiyy it would make more
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FIGURE 2: 2D sections orthogonal to the-axis forz = 3 (top), = = 7 (middle) and

z = 12 (bottom).

sense to begin with the best possible deterministic stadonfiguration, and to use
the stochastic algorithm to assess the uncertainty arduisdsolution. In the next
subsections we describe two approaches to doing just thésremuiring no user input,

and the other using expert knowledge to refine the method.

3.1 MCMCALGORITHM USING A GOOD STARTING STATE

Al-Awadhi et al (2004) [2] developed an algorithm for automatically consting good

starting states in 2D, which we here generalise to 3D:

e Step 1: threshold the data for each optical section usingnisian record
to obtain a stack of binary images (as a result of attenuatiba median
will be higher in high sections than in deeper sections). v@dnthe binary
images to sets of connected voxels using a mathematicalhology opening
operator (Glasbey and Horgan (1995) [7]) with a cube3ot 3 x 3 voxels
used as the structuring elemest, The resulting 3D output after applying the

morphological opening operator is shown in Fig@re
e Step 2: convert the connected voxels into ellipsoids. Eathok connected
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FIGURE 3: 2D sections at depths z=3, 7 and 12 after applying morglicaboperators.

voxels is viewed as a level set of a 3-D normal density (udhegvioxel labels
as variables). The centre of the ellipsoid (ie the point ef ploint process) is
taken as the mean of the normal distribution, and the valfidseosemi-axes
and the angles of rotation are extracted using maximum negizoncepts and
the eigenvalues. The cell intensity is computed from theaerecord inside

each ellipsoid. The resulting configuration is given by eyt

Using this hopefully improved 3D starting configuratione tilgorithm is again run for
50000 iterations. An output sample corresponding to thd fieeation of one run is
shown in Figures. It is clear that new cells have been created and that théiqusi
of some cells have changed for a better fit to the data durieguh. Given that the
initial configuration was closer to a reasonable fit, morehef $amples could be used
for the inference stage. However it is clear that the alparimust still work hard to
reach the modal region of the posterior distribution, paitrly where is uncertainty
about some cells because voxels lying around them have éigind values so the cells

have no sharply differentiated edges and the backgrourad @annot be distinguished

easily.
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FIGURE 4: 3D configurations after converting the sets of connectexkels into

ellipsoids (displayed using three optical sections at zZ=&)d 12).

3.2 USERINTERVENTION TO CONSTRUCT A GOOD STARTING STATE

An alternative to the unconstrained model used so far woeltbhlutilise the expertise
of the user, but in a less time consuming way than for complietaual segmentation.
The suggestion is to construct a starting point for the chaiabove (ie morphological
operators, conversion to ellipses) followed by some iterastof MCMC. At this stage,
with now a reasonable configuration, the user is promptedéatify a point inside
each cell which they would like to identify in the image. Th@nt does not represent
the point of the station process, itis used as a device fatifgeng cells which the user
believes really do exist in the specimen (whether or not treycurrently represented
as part of X). Adjustments are then carried out to the configuration, aéngy
spurious cells and adding newly identified ones. This canchéeeged automatically,
maintaining the condition that cells should not overlape MICMC is then restarted,
but under two conditions. First, the number of cells is nowdlenstant, that is we
are restricting ourselves to a fixed valuerofn the modified posterior (which rules
out the birth/death and split‘merge move types). Secotiudycells are constrained to

continue to contain the user-identified points in theiriiste This latter constraint is
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FIGURE 5. A sample after 50000 iterations of the MCMC sampler usihg t

morphological initial state.

imposed by rejecting any proposed configuration which wé&slahe condition.

The unconditional MCMC algorithm output given in Figurés used as input for
the user-intervention. The resulting configuration is seeRigure 6, and a sample
after a run with the constrained MCMC is given in Figufe The idea is that all
of these constrained samples may be taken to contain usdfuwhiation about the
objects under study. The goal now is to extract suitableesgtations of the image
content and devise decision making schemes which intetipeetontent in terms of

their representations.

4 |IMAGE INTERPRETATION

4.1 TYPES OF CARTILAGE CELLS

Cartilage tissue can be categorised into four differentezofWWoessneet al (1993)
[15]), the tangential layer, middle layer, deep layer arel ¢hlicified cartilage layer.
The middle and the lower layers occupy arowtdc — 90% of the tissue, and can be

distinguished by the cells they contain. The middle layertams more rounded cells
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FIGURE 6: The initial configuration after running the MCMC sampledaallowing

user intervention.

known as chondroblats, while the deep layer contains mdipgieally shaped cells,
chondrocytes, arranged in columns. Properties relateaettypes of the cells such as
the ratio of the numbers of the two types, the ratios of shapameters, their intensity
and their size are informative criteria for the biologistsunderstand the processes in
the cartilage tissue, providing information on the prokifiion and differentiation of

various cellular components of cartilage tissues and délsesv(Noda (1993) [10]).

4.2 ESTIMATING THE PROPERTIES OF THE CELLS BMCMC

In order to distinguish cell types, we need to add one funthark to the marked point
process, namely a cell label; the chondroblasts cells \eillabelled type I, and the
others type Il. A-priori, the only criterion we have for digjuishing the two types is
shape; although both types can be approximated by ellipstjge Il cells are more
spherical than type | cells. This is handled in the prior Makdeugh the distributions
on their semi-axes. Given the type of the cell, the semi-axeassumed independent
and given a multivariate normal distribution. The means\aarhnce of semi-axes of

type | cells are chosen to 1§80, 12.5,4) with equal variances of.52. For type Il cells
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FIGURE 7: 2D optical sections at depths=3, 7 and 12 after running the constrained

MCMC algorithm from the user-refined starting point.

the mean vector i$20.5,17.5,4), again with common variancé5?. The two cell
types are taken, a-priori, to be equally likely, and the ipdistributions for orientation
and fluorescence are taken to be common for the two types.

The Markov chain Monte Carlo algorithm also needs extentlindeal with cell
type; a proposed relabelling move is added which consideasging a cell’'s label
while holding other values fixed. Using this additional maiye conditioned sampler
is applied, and after deleting the firdd% of the iterations to allow for the sampler to
converge, measurements are made on the samples. The ititorro&interest to be
extracted from the samples relates to the size and shajimitat of the two different
cell types. Notice that it would also be possible to studyikaites of a particular
cell, eg the probability it is of Type I, using the conditich®ICMC (such inference
would not be possible under the unconditioned algorithmrevfaecell may not exist
for the entirity of the run). Point estimates of the quaastof interest can then be
found by taking ergodic averages of the same quantitiesageer over the observed
samples. Perhaps more importantly, interval estimatekasfa quantities can also be

found (particularly useful for comparative purposes). cgithe MCMC samples are
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FIGURE 8: A sample image labelling the cells into two types (typed kabelled with

a single-line border, and type Il with double-line borders)

correlated, the variance of the averages is inflated by arfaalled the integrated
autocorrelation timer, ie, the standard error is/7o2 /n rather than,/o2 /n as would
be the case in the uncorrelated case (béres the unknown variance of the attribute,
andn is the sample size). The quantitied andr can be estimated from the samples,
see Green and Han (1992) [9] and Geyer (1991) [5] for detalils.

Figure 8 shows a sample after 100000 iterations, marking the ladgelif each
cell. Figure9 shows histograms of various attributes for the two typesetif mased
on subsampling one sample in eve0 iterations after neglecting the firdd000
iterations. The estimated proportion of type | cell®i¢42. The estimated attribute

means, together with estimated standard errorsragu@ given in Tabld.

5 CONCLUSIONS

In this paper, we have presented a Bayesian approach to imsageretation for
images of cartilage growth. We have described a modelliyagzh and associated
algorithm for drawing inferences from this model. AlthoupfCMC simulation is

computationally intensive, the output allows us to explaorere fully the estimation
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Attribute Type Mean S.E. T
a/c I 7.845 0.474 4.436
I 5.337 0.688 19.688
a/b I 2.738 0.298 14.635
Il 1.658 0.141 11.959
b/c I 3.235 0.299 4.802
I 3.602 0.366 12.405
Volume I 6785.499 529.284 5.818
I 3767.395 286.122 8.806
Intensity I 59.168 11.338 13.239
Il 64.711 15.730 43.979

TABLE 1. The estimated attributes, with standard errors and iated autocorrelation

times for the two types of cell.

variability than would a deterministic approach.
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