
Statistical Image Analysis for a Confocal Microscopy 2D Section

of Cartilage Growth

Fahimah Al-Awadhi� Christopher Jennisony Merrilee Hurnz

March 5, 2003

Abstract

Images are the source of information in many areas of scientific enquiry. A common objective in these

applications is reconstruction of the true scene from a degraded image. When objects in the image

can be described parametrically, reconstruction can proceed by fitting a high level image model. In

this article we consider the analysis ofconfocal fluorescence microscopeimages of cells in an area

of cartilage growth. Biological questions posed by the experimenters concern the nature of the cells

in the image and changes in their properties with time.

Our model of the imaging process is based on a detailed analysis of the data. We treat the true

scene as a realisation of amarked point process, incorporating this as thehigh-levelprior model in a

Bayesian analysis. Inference is by simulation usingreversible jumpversions ofMarkov chain Monte

Carlo (MCMC) algorithms which can handle the varying dimension of the image description arising

from an unknown number of cells, each with its own parameters.

Keywords: Image analysis; Markov chain Monte Carlo; Object recognition; Marked point process;

Confocal fluorescence microscope; Reversible jump MCMC; Stochastic simulation.

1 Introduction

Confocal fluorescence microscopy allows visualisation of a 3D specimen without the need for physical

sectioning. Shaw & Rawlins (1991) describe how a confocal microscope uses a system of lenses and

pinholes to focus a laser beam at a point within a stained sample and records the fluorescence returning
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Figure 1: 2D optical section obtained by confocal fluorescence microscopy of cartilage growth.
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from that point. Since the stain is taken up differentially by different tissue types, this measurement

is an indication of the tissue type at that point. Scanning across a lattice of points creates a 2D section;

repeating this process on a series of sections at different depths in the sample gives a 3D image composed

of a stack of 2D optical sections. Thesignal-to-noiseratio is reduced by various types of degradation (see

Pawley (1996)). Light is scattered as it travels to the point of focus and back again so fluorescence from

what should be a point source is spread over a larger region. The image is also affected by diffraction and

attenuation of the light as it travels through the specimen (see White et al. (1995)). Hence, each record

Yi is a blurred value of the true scene around the point of focus further degraded by sensor noise. In this

article we consider the analysis of a single 2D section, but note that the methods we describe generalise

to 3D analyses (see Al-Awadhi (2001)).

The particular example we focus on concerns the section of cartilage growth shown in Figure 1. In

this case, the fluorescent stain is taken up by the cells while the background remains unstained; cells

appear as elliptical objects on a roughly constant background. This image forms part of a time sequence

showing changes in cell size and shape as growth occurs. The goal of the analysis is to generate interval

estimates of certain size and shape attributes of the population of cells at a certain state of growth; as cells

may move around between consecutive imaging times, changes in population parameters are considered

rather than values for individual cells as this would involve a matching problem. We represent a possible

true sceneX as a list of ellipses and associated intensities. Our statistical model is ahigh-levelimage

model (Hurn & Rue (1997)). We define a prior distribution�X for X on a suitable sample spaceE , to

capture prior information about the true scene. The sceneX determines values for the signal intensity at

individual pixels which appear in the likelihoodL(yjx) of the observed data.

We shall use Bayesian image analysis (Besag (1986), Besag et al. (1995)) to combine the likelihood

of the recorded dataY with the prior model for the underlying true sceneX. Conclusions aboutX are
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based on the posterior distribution�XjY of X given the observed dataY , given by

�XjY (xjy) / L(yjx)�X(x):

In Section 2 we present a model for the recorded dataY and in Section 3 we define a marked point

process prior model for the true imageX. In describing MCMC simulation in Section 4 we derive explicit

formulae, in terms of sub-densities with respect to Lebesgue measure, for the acceptance probabilities of

reversible jump transitions that change the number of cells inX. In Section 5 we discuss the performance

of the MCMC sampler and note problems of poor mixing and difficulties in exploring the whole sample

space: in the remainder of the paper we describe methods which overcome some of these problems. In

Section 6 we modify the mechanism for introducing new cells into the scene, making better use of the

data,Y , in proposing new cells. We also show how to employ a relaxed model in which constraints on

the imageX are weakened in order to move around the sample space more easily. Finally, in Section 7

we demonstrate the advantages of starting the MCMC algorithm in a carefully chosen state rather than

from an empty image. The starting configuration is constructed using morphological operations to create

an initial set of objects, then maximum variance concepts are applied to fit elliptical cells to these objects.

2 Distribution of the recorded data Y

RecordsYj, j = 1; : : : ; S, are observed as the microscope scans the 2D section. Our choice of model for

the records is based on theoretical aspects of confocal microscopy and empirical findings from analysis

of the data. Theoretically one might expect the number of photons counted at the receiver to follow a

Poisson distribution if the point being imaged lies in one of the stained cells, and to be close to zero

otherwise. However, counts are also linearly scaled by the “dark ground” technique to give values in the

range�0 to 255, where�0 > 0. This scaling adds a constant to all values to improve contrast in a grey-

level image, hence the lowest observations are somewhat greater than zero, and at the other extreme, it is

sometimes necessary to scale down high values to 255 to bring them into the permitted range.

We modelYj, j = 1; : : : ; S, as independent givenX and we approximate their distribution using

the normal distribution. Due to scattering, the photon count when the microscope is focussed on pixelj

is made up of contributions from a larger neighbourhood of pixels with labelsfk; k 2 �jg. Each pixel

has an associated intensity either at the background level,�0, which represents the “dark ground” scaling

away from the theoretical value of zero for the background, or at the level for celli if the pixel lies in

cell i. We denote by�j the excess of pixelj’s intensity over the background level, on the scale of the
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recorded data (so�j = 0 if pixel j is a background pixel).

Shaw & Rawlins (1991) approximate thepoint spread functionof a confocal microscope as a disc

with different diameters in its three dimensions. Wilson (1990) reports confocal microscope experiments

which revealed an approximately Gaussian point spread function remaining constant over the image field.

Examination of data at the edges of cells led us to take weights from a Gaussian kernel with variance 0.6

in each axis direction. Defining the associated weightswk, k 2 �j , summing to one, we set

E(Yj jX) =
X
k2�j

wk�k + �0; j = 1; : : : S: (1)

The two main sources of random variability in these data are Poisson variation in counts emitted by

the stained cells, and image-wide instrumentation noise affecting background and cell regions equally.

Exploratory analysis of the relation between the cell means and variances in our data set led us to the

model

V ar(Yj jX) = �20 +E(Yj jX)� �0; j = 1; : : : S: (2)

Here, �0 and �20 represent the mean and variance for data values from areas of background (and

correspond to the scaling away from zero and the instrumentation noise variance). The increase in the

variance of one per unit increase in mean implies that the Poisson counts have been scaled by a factor

close to unity, but it should be noted that this is an overall model accommodating other features of the

data, including intensity variations within cells and across the background region. Estimated values of

�0 = 38 and�20 = 46:5 were obtained for these data.

For a given true imageX = x, the means (1) and variances (2) define the normal distributions of the

recordsYj , j = 1; : : : ; S, which we take to be conditionally independent givenX. Multiplying these

normal densities gives the data likelihoodL(yjx).

3 The Prior Image Model

3.1 Marked point process models

We require the prior distribution for the true imageX to incorporate information about the likely number

of cells and their location, size, shape, orientation and intensity. The fact that the total number of cells is

itself a random variable means that the dimension of the vector defining these cells varies from image to

image. Care is needed in expressing the prior model as a density with respect to a measure on the space

of possible images. We follow the approach of Baddeley and Van Lieshout (1993) and Van Lieshout
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(1995), first defining a “reference measure”,�, that incorporates some features of the cell distribution

but not their mutual interactions, then writing the full model as a density with respect to�. In related

work, Grenander and Miller (1994) construct a pattern theoretic model in which they define templates

regulated by various rules and hypotheses governing the variability in shape of objects under study.

In the marked point process model each object in the scene is represented as a pair(l;m) wherel is

the location and the “mark”m contains all further information required to identify the object. We model

cells as ellipses, each centred on its locationl and with semi-axes of lengtha andb, the semi-axis of

lengtha making an angle� with thex-axis. Adding the signal intensity level� gives the cell’s mark

m = (a; b; �; �). Botha andb lie in the intervalMaxis = (minaxis;maxaxis), � takes values in(0; �)

and� has rangeM� = (min�;max�). Thus, the markm lies in M = M2
axis � (0; �) �M�. The

location l is a pair of Cartesian co-ordinates, lying in the windowL which has areaAL. For cell i we

write Xi = (li;mi) = (li; ai; bi; �i; �i). We denote the class of all possible objects with their locations

byU = L�M .

What is actually seen in the image is determined by the unordered set of objectsfX1; : : : ;XNg,

whereN is the random variable denoting the number of objects present and eachXi 2U, i = 1; : : : ; N .

It is, however, convenient to define a model for the ordered list of objects(X1; : : : ;XN ), which takes

values inE = [nU
n, and then deduce the model for the unordered set ofXis from this. The following

reference model concerns the ordered list of objects and we shall use this to define prior and posterior

distributions for both the ordered and unorderedXis. The model for the recorded data presented in

Section 2 associates a single cell or the background region with each pixel: this is determined by the

value ascribed in the sceneX to the centre of each pixel.

In the reference model, cell locationsl follow a homogeneous Poisson point process with intensity

one (see Diggle (1983)); letting� denote Lebesgue measure, the number of points within a regionA has

a Poisson distribution with mean�(A). For each cell, we assumea, b, � and� to be independent witha

andb following normal distributions with means�a and�b respectively and variance�2, but restricted to

the intervalMaxis, � having a density on(0; �) equal tofjcos(�)j + ��1g=3, i.e., favouring values near

� = 0 and� = �, and� following a uniform distribution over the rangeM�. Thus, the mark’s density is

c

2��2
expf�

1

2�2
[(a� �a)

2 + (b� �b)
2]g

jcos(�)j+ ��1

3

1

max��min�
; m 2M; (3)

where the constantc corrects for the restriction on the distributions ofa andb.

Denote the probability measure for the mark distribution by�. The reference measure can be viewed

as a Poisson process onU = L � M with intensity� = � � �. Equivalently, the total number of
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objectsN in U has a Poisson distribution with mean�(U) = �(L) = AL and, conditional on a total

of N = n objects being present,X1; : : : ;Xn are independent and take values inU with probability

measure�(dxi)=�(U). We define the reference measure�(x; n) to be the measure of this process on

E = [nU
n. Under�, the probability thatX lies in a given setA 2 Un is

P (A) =
exp(��(U)) f�(U)gn

n!

Z
: : :

Z
A

�(dx1)

�(U)
: : :

�(dxn)

�(U)

=
exp(��(U))

n!

Z
: : :

Z
A

�(dx1) : : : �(dxn):

We now define the prior image model as a measure with densitypX(x; n) with respect to the

reference measure� on E . The one feature to be incorporated concerning interaction between

neighbouring cells is that they should not overlap. We specify this by setting

pX(x; n) = k�nI[No overlap between any pair of cellsxi andxj]; (4)

ahard core interaction model. Herek is a normalising constant and the parameter� modifies the overall

density of cells. A consequence of the non-overlapping condition is that marks and locations of cells are

no longer independent and the total number of cells will tend to be smaller than the Poisson distribution

with mean��(L) that would arise otherwise. Under the densitypX(x; n) the probability thatX lies in

the setA 2 Un is now

P (A) =
exp(��(U))

n!

Z
: : :

Z
A

pX(x; n)�(dx1) : : : �(dxn):

In describing the distribution implied for the unordered set of objectsfX1; : : : ;Xng, it is helpful to

specify one representative ordered list of objects from each unordered set. We defineUn to be the subset

ofUn in whicha1 < a2 < : : : < an (ignoring the possibility of ties as this has probability zero). There

is a one-to-one correspondence between unordered sets of objects and points inUn and so it suffices to

define a distribution onE� = [n U
n. Sincen! points inUn map on to each point inUn we define

p�X(x; n) =

8<
: n! pX(x; n) x 2 Un;

0 otherwise

to give the density with respect to� for a representation of the unordered object lists. This simple relation

between models for ordered and unordered lists facilitates switching between the two descriptions, a

useful option since each can be the more convenient choice on different occasions.
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3.2 Expressing the prior and posterior image models as sums of Lebesgue densities

The flexibility offered by marked point processes to describe very general distributions is reflected in their

abstract definition. In using these models, we shall find it helpful to express them as sums of simpler

components, each of which is of fixed dimension and can be written as a sub-density with respect to

Lebesgue measure.

The location and mark of a single celli isxi = (li; ai; bi; �i; �i), whereli comprises two co-ordinates,

and the reference process involves the density

fX(xi) =
1

AL

c

2��2
expf�

1

2�2
[(ai � �a)

2 + (bi � �b)
2]g

jcos(�i)j+ ��1

3

1

max��min�
(5)

for li 2 L and(ai; bi; �i; �i) 2 M , with fX(xi) = 0 for all other values ofxi 2 R
6n . The reference

measure�(x; n) is a collection of sub-measures�n(x), n = 0; 1; : : : , where�n(x) concerns images

containingn cells defined, therefore, by6n parameters. The sub-density of�n(x) with respect to

Lebesgue measure onR6n is

pn�(x) =
e�ALAn

L

n!

nY
i=1

fX(xi) for xi 2 U; i = 1; : : : ; n,

(remembering that�(U) = AL).

Since the prior model has densitypX(x; n) given by (4) with respect to�, it can be written as a sum

of sub-measures�nX(x), n = 0; 1; : : : , where�nX(x) has sub-density with respect to Lebesgue measure

onR6n equal to

pnX(x) = pX(x; n) pn�(x)

= k �n
e�ALAn

L

n!

nY
i=1

fX(xi) I[No overlap between any pair of cells]

for xi 2 U; i = 1; : : : ; n.

The densitypXjY (x; njy) of the posterior image distribution with respect to� is proportional to the

product of the prior densitypX(x; n) and the likelihood of the observed dataL(yjx). Hence, the posterior

distribution is the sum of sub-measures�n
XjY (xjy) with sub-densities

pnXjY (xjy) / pX(x; n) pn�(x)L(yjx); n = 0; 1; : : : ;

with respect to Lebesgue measure onR
6n . Thenth sub-density can be written as

pnXjY (xjy) = K �n
e�ALAn

L

n!

nY
i=1

fX(xi) I[No overlap between any pair of cells]L(yjx) (6)

for xi 2 U; i = 1; : : : ; n, where the normalising constantK doesnot depend onn, so ratios of sub-

densities in different dimensional spaces can be calculated from this formula.
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4 Simulation from the posterior image distribution

4.1 MCMC simulation

The posterior image distribution�XjY is intractable analytically and we shall use Markov chain Monte

Carlo (MCMC) simulation to provide samples from�XjY as a means of statistical inference. Generating

correlated samples from a distribution� by running a Markov chain with ergodic distribution� is now

standard practice. For reviews of popular MCMC methods including theMetropolis-Hastingsalgorithm

(Metropolis et al. (1953) and Hastings (1970)) andGibbs sampler(Geman & Geman (1984)) see Smith

& Roberts (1993), Tierney (1994) and Gilks et al. (1996).

In running a Markov chain on the image spaceE , we use a variety of move types to update the current

state. Some moves operate on the existing set of cells: translating a cell (theshift move), modifying the

semi-axes of a cell (resize), changing a cell’s orientation (rotate) and updating a cell’s intensity level

(change intensity). These transitions follow standard lines and we omit further details.

Other types of move change the number of cells in the imageX: adding a cell (birth), deleting a

cell (death), dividing a cell into two new cells (split) or combining two adjacent cells (merge). Special

methods are needed to define such dimension-changing moves in a way that gives the desired ergodic

distribution for the Markov chain. Geyer and Møller (1994) suggested a Metropolis-Hastings alternative

to spatial birth and death processes for simulating spatial point processes. Their approach is a special

case of reversible jump, or trans-dimensional, Markov chain Monte Carlo introduced by Green (1995)

and more recently overviewed by Green (2003), which provides an elegant solution to the problem.

Tierney (1998) describes the algorithm very generally in measure theoretic terms. We have seen that in

our example�XjY is made up of a collection of sub-distributions, each of which can be expressed as a

sub-density with respect to Lebesgue measure in a fixed dimension. This represents an important special

case for which a relatively simple treatment is possible. We give implementation details in this situation

with the birth and death moves as a specific example.

4.2 Implementing the reversible jump algorithm

We wish to sample from the posterior image distribution�XjY made up of sub-measures�n
XjY with

densitiespn
XjY (xjy) onR6n , n = 0; 1; : : : , given by (6). Suppose� is a type of move which adds a cell,

i.e., a birth or split move, and denote the probability of selecting this move when in statex by j�(x). Let

� 0 be the reverse move, i.e., a death if� is a birth or a merge if� is a split, and denote the probability of
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choosing this move when in statex0 by j�0(x0). Supposex 2 R
6n , representing an image containingn

cells. In carrying out a move of type� from x, a random variableu is generated from a specified density

q(u) onR6 . This determines a proposal statex0 = g(x; u) 2 R
6(n+1) which is accepted with probability

��(x; x
0); otherwise the Markov chain remains in statex. Here, the deterministic functiong is a bijection

between the set of pairs(x; u) wherex 2 R
6n \ E and the set of possible statesx0 2 R

6(n+1) \ E

containingn + 1 cells. Thus, each pair(x; u) leads to a uniquex0 and there is a single statex = x(x0)

from which a givenx0 can be reached. When the Markov chain is in statex0 and move� 0 chosen, a move

to the statex = x(x0) is considered and this proposal is accepted with probability��0(x
0; x). We now

consider the derivation of��0(x0; x) to ensure the correct ergodic properties of the Markov chain.

The Markov chain has the desired ergodic distribution�XjY if each combination of move and reverse

move maintains detailed balance with respect to�XjY . If � and� 0 are such a pair of moves, detailed

balance requires that for all setsA 2 R
6n andB 2 R

6(n+1)

PfX 2 A followed by move type� toX 0 2 Bg = PfX 2 B followed by move type� 0 toX 0 2 Ag;

where in each case the initial eventsX 2 A andX 2 B are under sampling from�XjY . LetCx denote

the set of valuesu such thatg(x; u) 2 B andq(u) > 0. It suffices to consider pairs of setsA andB such

thatCx is non-empty for eachx 2 A andx(x0) 2 A for eachx0 2 B (any other pairsA andB can be

reduced to subsets with these properties). Then, the detailed balance condition is equivalent toZ
A

Z
Cx

pnXjY (xjy) j�(x) q(u)��(x; g(x; u)) du dx =

Z
B

pn+1
XjY

(x0jy) j�0(x
0)��0(x

0; x(x0)) dx0:

The left hand double integral can be converted to an integral overB by the change of variable to

x0 = g(x; u) and, hence, the required condition is met if

j�(x) p
n
XjY (xjy) q(u)��(x; x

0)

���� dx0

d(x; u)

����
�1

= j�0(x
0) pn+1

XjY
(x0jy)��0(x

0; x)

for all x, u andx0 = g(x; u). Herejdx0=d(x; u)j denotes the Jacobian of the transformationx0 = g(x; u).

This equation is satisfied by setting

��(x; x
0) = minf1; R�g

and

��0(x
0; x) = minf1; R�1

� g

where

Rv =
j�0(x

0) pn+1
XjY

(x0jy)

j�(x) p
n
XjY

(xjy) q(u)

���� dx0

d(u; x)

���� : (7)
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4.3 Birth and death moves

We assign equal probabilities to all possible move types available from the current state. Thus,

j�(x) = 1=8 for each of the eight move types whenn � 2, j�(x) = 1=7 for all except the merge

move whenn = 1, and a birth move is selected with probability one whenn = 0. If the current statex

containsn cells and a birth move is chosen, the random variableu is defined asu = (l; a; b; �; �), the

location and mark of a new cell, and a value is generated from the densityq(u) = fX(u) defined in (5),

i.e., the density for a cell’s location and mark in the reference distribution�. The proposed new state is

set asx0 = (x1; : : : ; xn; u), adding a new cellxn+1 = u to the current state. Sinceg(x; u) is basically

the identity function, its Jacobian is equal to one.

If the death move is to provide the reverse of this step, it must always delete the last cell in the list.

This may seem a peculiar requirement but for now we suppose this is the case. Following the derivation

of Section 4.2, the birth move and death move proposals should be accepted with probabilities

�birth(x; x
0) = minf1; R�g

and

�death(x
0; x) = minf1; R�1

� g

where

R� =
jdeath(x

0) pn+1
XjY

(x0jy)

jbirth(x) p
n
XjY

(xjy) q(u)
� 1:

Substituting from (6) and cancelling terms, we obtain

R� =
jdeath(x

0)

jbirth(x)

�AL

n+ 1

L(yjx0)

L(yjx)
I[No overlap between any pair of cells inx0]:

Note that the ratio of likelihoods only involves the intensity�i at pixeli if this has a positive weight,wi,

in the meanE(Yj jX) of a recordYj which also receives a contribution from pixels in the new cellxn+1.

If we wish the death move to delete a randomly chosen cell, we must also re-define the birth move

to provide the appropriate reverse transitions. To do this, the new cell should be inserted at a randomly

chosen point in the list(x1; : : : ; xn). This adds a factor1=(n+1) to the proposal probabilityjbirthq(u),

cancelling the extra factor1=(n + 1) for the choice of cell to delete in the death move probability. So,

the acceptance probabilities�birth(x; x
0) and�death(x

0; x) remain as above.

An alternative route to the same conclusion is to work with the set of cells created by disregarding

the ordering in the list(x1; : : : ; xn). As explained in Section 3.1, the appropriate prior density is now

p�X(x; n) = n! pX(x; n) (on a smaller space) and the factorn! also appears in the posterior density

10



100 200 300 400 500 600 700

50

100

150

100 200 300 400 500 600 700

50

100

150

100 200 300 400 500 600 700

50

100

150

Figure 2:25; 000th sample images starting from an empty scene, using different random number seeds.

function. The termR� contains an extra factor(n + 1) from the ratiop�;n+1
XjY

(x0jy)=p�;n
XjY

(xjy) but this

cancels the1=(n + 1) arising from the probability of choosing the correct cell in the death move, and

�birth(x; x
0) and�death(x

0; x) remain unchanged.

Merge and split moves are implemented in the same general framework as birth and death moves.

In defining two new cells in the split move, we use the random numbers inu to give equal and opposite

perturbations about the location, size, orientation and intensity of the existing cell. Accordingly, the

location and mark variables are averaged when combining two cells in the merge move. Further details

of these moves are given in Al-Awadhi (2001); a similar mechanism is described by Rue & Hurn (1999).

The merge and split moves are crucial in comparing possible true images and reaching suitable inferences

when there is uncertainty about whether part of the scene contains a single large cell or two smaller ones.

5 Sampler performance

To assess how well the MCMC sampler performs, we ran 25,000 iterations using three different seeds

for the random number generator starting each time from an empty scene (n = 0). The model constants

were chosen by visual inspection of the size, intensity and shape of cells in the image. Figure 2 shows

resulting sample images. A comparison of these images with the data in Figure 1 shows that some cells
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Figure 3: Traces of the cumulative total number of accepted moves of each type.

have been identified in roughly the correct places but more iterations are needed to match the data closely.

Figure 3 traces the cumulative number of accepted moves of each type for one of the three simulations

above. Initially birth moves are accepted quite frequently, then they tail off as most of the required cells

appear in the image. The acceptance rates for shift, resize and rotate moves remain fairly high throughout

the simulation; they are most common just after a cell has been created because the proposal distributions

for the location and marks of a new cell do not necessarily guarantee a very good fit to the data. Only two

proposed death moves were accepted during this simulation and these occurred for cells created in split

moves. Since birth moves are usually accepted because the proposed cell lies in an area of high record

values, it is not surprising that the proposed death of such a cell should be rejected. No merge move was

accepted at all in this run. Overall, the proportion of acceptances of all move types is very low.

The mixing of the algorithm cannot be described as anywhere near adequate. It seems quite likely

that equally good, if not better, point estimates could be obtained using simpler deterministic algorithms.

One of the significant benefits of using MCMC ought to be that the posterior distribution is well explored

and parameter uncertainty can be expressed through the construction of credible intervals (particularly

important in this application, where changes over time are of interest). However, if the algorithm is not

mixing adequately, such credible intervals may tell a far from true story about the underlying process.

Paradoxically, the strong signal is a source of difficulty here. The posterior image distribution is
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multi-modal and moving between different representations of the cell pattern can often involve passing

through intermediate states of prohibitively low probability. A simple instance is when an area of the

image may be reasonably interpreted as two thin cells lying side by side or as one wider cell. Transitions

for individual cells will improve their fit to the data but the initial proposals in merge or split moves

are unlikely to fit the data well enough to offer a realistic chance of acceptance. So, which ever pattern

appears first is likely to be retained almost indefinitely. In the next section, we consider two modifications

to the algorithm which can improve its performance given limited computing time.

6 Modifications to the standard algorithm

6.1 Improving the birth move

In the basic implementation, cells are proposed at random locations within the windowL and many

proposals are rejected since they do not fit the data well. Favouring points where the data valueYj is

high when selecting the cell centre improves the acceptance rate. In a modified algorithm we define

probabilitiespi, i = 1; : : : ; S, as

pi /

8>>><
>>>:

1 if Yi < 30;

Yi=3� 9 if 30 � Yi < 90;

21 if 90 � Yi;

then choose a pixel from this distribution oni and draw the cell centre uniformly from this pixel (of unit

area). The probabilitypi appears in place of1=AL in the denominator of the acceptance probability for

the proposed birth. The very high likelihood factor for a well-chosen birth proposal will often lead to an

� value of 1 and automatic acceptance. Since these modified birth proposals now have a higher overall

acceptance rate, the proportion of iterations proposing births can be reduced. Reallocating the total

number of iterations, which in this case is 25,000, between the move types, we increased the probability

of proposals other than births. Some samples from MCMC runs with this modification appear in Figure 4.

Comparison of these samples with Figure 2 show the same numbers of cells are appearing despite the

less frequent use of the birth move. The acceptance rates of the two algorithms are nearly the same.

The extra time for other moves should improve the exploration of the posterior around these modes.

However, there remains substantial variation between different runs of the sampler and there is no really

clear evidence of an overall improvement.
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Figure 4: Sample images after modifying the births and changing the probabilities of choosing the moves.

6.2 A relaxed model sampler

For all the MCMC moves except changing a cell’s intensity and the death move, there is a danger that a

proposal will violate the condition that cells must not overlap, and hence will be automatically rejected.

This is particularly a risk in areas of the image where cells are closely packed. Clearly it is wasting

time generating such proposals, but it is not necessarily easy to see a more efficient direct proposal

mechanism. Introducing intermediate steps into the MCMC in which cells are allowed to overlap could

allow the sampler to bridge the gaps between non-overlapping configurations. Hurn et al. (1999) suggest

such a relaxed method for sampling an Ising model constrained to have a fixed number of connected

components. Because of the constraint, the standard MCMC sampler for the Ising model problem may

be reducible: our difficulties where certain transitions are extremely unlikely to succeed have a similar

cause and it is appropriate to look for a similar solution.

Let E 0 denote the sub-space ofE in which no cells overlap. We wish to sample from the posterior

image distribution�XjY which places all its probability onE 0 . In a relaxed model we define a distribution

~� on the whole ofE , allowing images with overlapping cells and we specify a secondary Markov chain

on E satisfying detailed balance with respect to~�. We now define a modified MCMC algorithm which

still generates a sequence of statesx 2 E0 with ergodic distribution�XjY but uses excursions intoEnE 0
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in generating proposalsx0 2 E0 . Suppose the current state isx 2 E0 . In a separate process from the

main Markov chain, we make transitions inE according to the secondary Markov chain starting atx and

continuing until a statex0 which is inE 0 is reached. We then usex0 as the proposal for the main chain.

The arguments of Hurn et al. (1999) show the acceptance probability needed to ensure detailed balance

of the main Markov chain with respect to�XjY is

�(x; x0) = min

(
1;

pn
0

XjY (x
0jy) ~pn(x)

pn
XjY

(xjy) ~pn0(x0)

)
; (8)

wheren andn0 are the numbers of cells in imagesx andx0 respectively and~pn(x) denotes the sub-

density of~� with respect to Lebesgue measure onR
6n . If the proposal of a move tox0 is rejected, the

chain remains atx. (Apart from generatingx0, the states inEnE 0 visited en route do not contribute to

the path of the main Markov chain.)

The relaxed distribution~� should promote transitions between regions ofE0 which do not

communicate well in the original Markov chain. It should give significant probability to the sub-space

E0 in order not to take too long a time in reaching a statex0 2 E0 . This can be achieved by setting the

density of~� proportional to that of�XjY at statesx 2 E 0 and penalising states inEnE 0 by their degree of

cell overlap. A simple modification to the posterior sub-density (6) gives our choice for the sub-density

of ~� with respect to Lebesgue measure onR
6n :

~pn(x) = ~K �n
e�ALAn

L

n!

(
nY
i=1

fX(xi)

)
expf� v(x)g ~L(yjx);

wherev(x) denotes the number of pixels inx covered by more than one cell. Here~L(yjx) is a modified

version of the likelihood function defined in Section 2 in which the intensity for a pixel covered by more

than one cell is taken to be the mean intensity of the cells covering the pixel. The constant governs

the degree to which instances of overlapping cells are penalised. Higher values of lead to greater

probability on the setE0 of non-overlapping states whereas small values increase the chance of moving

away fromE 0 and exploring the full state spaceE more widely. In defining the secondary Markov chain

on E , we use the same move types as in the original Markov chain onE 0 but with an appropriately

modified acceptance probability for each proposed move.

One can also guard against a run of the secondary chain spending long periods in states far fromE 0

by restricting excursions inE to a maximum length,m say. If E0 is not visited withinm steps,x0 is

formally set to be the state after stepm and when this is not a legitimate state under�XjY , it is rejected

and the main Markov chain remains atx. Use of the relaxed model can be focussed on a part of the
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 Number of successful Mean length of successful

excursions excursions

0 7 160

50 7 154

150 12 247

250 10 360

350 12 449

450 7 26

550 7 21

Table 1: Numbers of successful excursions and their average lengths using the relaxed model method.

image by only allowing updates toX which involve cells with centres in a sub-windowB of the image

domainL: it is easily checked that the acceptance probability (8) still applies. The sub-window itself

can be randomly relocated withinL for each new excursion.

We have experimented with the relaxed model in a rectangular window with bottom left corner

(30,210) and top right corner (110,290), a region containing several tightly packed cells and thus

presenting particular difficulty. We set the maximum excursion length to bem = 2000 and tried a

range of values for the parameter. For each value of, the algorithm was run for 4,000,000 iterations

starting from an empty image (taking an iteration to comprise one proposal whether in the main chain or

within an excursion). Table 1 shows the number of successful excursions, defined as excursions which

leaveE 0 and then return toE 0 providing a legal proposal for the main chain. The average length of these

successful excursions is also shown. With low values of, excursions are able to move far fromE 0 and

many fail to return within the allotted time. The extent of overlapping is kept under closer control as

increases; the highest values of allow little opportunity to move very far at all from the legal images

in E0 and those excursions which are “successful” do not generate the large qualitative changes in the

image which motivated this method. We therefore selected = 150 as an intermediate value for which

excursions explore a significantly large section of image space but still return to provide a legal proposal.

We applied the full method to the whole image using = 150 with each set of relaxed updates

confined to a randomly placed sub-window. Realisations after 5,000, 15,000 and 30,000 iterations,

starting from an empty image, are shown in Figure 5. The results show that the sampler was able to

make some difficult transitions involving merging or splitting cells in the bottom left hand corner of the
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Figure 5: Relaxed model samples taken at iterations (from top to bottom) 5000, 15000, and 30000.

scene. Nevertheless, the final image still does not match the data well in many places. Although this new

technique is able to improve a reasonably good image estimate, it does not solve the more basic problem

of creating an initial estimate with almost all the cells present ready for fine tuning.

7 Constructing good starting states

7.1 A pragmatic approach

The previous sections have demonstrated the difficulties in creating an MCMC algorithm to sample from

our posterior image distribution. It is important to understand the main cause of this problem. The

methods we have developed look to be helpful in refining images in or near to the main areas of support

of the posterior distribution but they still take very long times to reach such areas in the first place.

In principle, an MCMC sampler visits all parts of the sample space repeatedly, returning more

frequently to those parts assigned the greatest probability. In practice, a high dimensional space usually

contains vast areas with such low probability that they are unlikely to be visited in any practicable run

time. The danger in our example is that all the available computation time is eaten up while the Markov

chain works its way through extremely low probability regions towards a plausible section of the image

space. A pragmatic solution to this problem is to start the Markov chain at a point which is already close

17



to the part of the image space we really wish to sample. In doing this, we acknowledge that the MCMC

sampler does not actually visit large, low probability regions of the sample space; although it may not

always be recognised so explicitly, we would argue that the same is true of MCMC samplers in many

other applications to high dimensional problems.

Our construction of a good starting point proceeds in two stages. In the first stage we process data

at the pixel level, using thresholding and morphological operations to produce an initial approximation

to the true image. In the second stage we convert the thresholded image into a set of elliptical objects

forming a legitimate scene in our image spaceE .

7.2 Mathematical morphology

In thresholding, pixels with a recordYj greater than a certain value are categorised as “object” and

the remaining pixels as “background”. Because of signal noise the thresholded image is very rough,

containing irregularly shaped objects and many isolated object pixels in the background region or

background pixels within objects.

Mathematical morphology (Serra (1988), Glasbey & Horgan (1995)) provides tools to tidy up such

a binary image. A variety of morphological operators are available for different purposes. We applied

the openingoperator which consists of two basic operations,erosionanddilation. In the erosion step,

object pixels with only a few neighbours classified as “object” are re-labelled as “background”. This

operation eats away at the edges of connected groups of pixels, removing small objects and narrow

necks, the intention being to remove noise and leave a small number of distinct cells. In the dilation step,

pixels in a small region around each object pixel are re-labelled as “object”, regardless of their previous

categorisation. This expands the existing objects in a smooth way but avoids reconnecting previously

disconnected regions. Thresholding our image data and then applying the opening operator yielded the

upper image in Figure 6.

7.3 Creating elliptical objects

In converting each set of connected pixels into an ellipse, we treat the set of pixel centres as a sample

from a bivariate normal distribution, estimating the parameters of this distribution by standard methods

and taking a contour of the bivariate normal density as the ellipse. If(X;Y ) has a bivariate normal

distribution with mean vector(�x; �y), V ar(X) = �2x, V ar(Y ) = �2y andCov(X;Y ) = � �x�y,
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Figure 6: Images obtained by applying thresholding and morphologic operations (top) and converting

the connected regions into ellipses (middle); a sample after 20,000 iterations (bottom).

density contours are ellipses of the form

(x� �x)
2

�2x
+

(y � �y)
2

�2y
�

2�(x� �x)(y � �y)

�x�y
= C: (9)

Re-parameterising (see Tatsuoka (1971)) in terms ofx0 = (x � �x) cos � + (y � �y) sin � and

y0 = �(x� �x) sin � + (y � �y) cos �, where

� =

8><
>:

1
2
arctanf2��x�y=(�

2
x � �2y)g �x 6= �y;

45Æ �x = �y;

equation (9) becomes
x02

�2
x0

+
y02

�2
y0

= C;

where
1

�2
x0

=
cos2 �

�2x
+

sin2 �

�2y
�

2� cos � sin �

�x�y
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and
1

�2
y0

=
sin2 �

�2x
+

cos2 �

�2y
+

2� cos � sin �

�x�y
:

Since this choice of� has removed the term inx0y0, we see the contour is an ellipse with centre(�x; �y)

and semi-axes of length�x0
p
C and�0Y

p
C inclined at an angle� to the originalx andy axes.

The above formulae with estimates�̂x, �̂y, �̂x, �̂y and �̂ provide a fitted ellipse for each object in

the image produced by morphological operations. A suitable value ofC needs to be used, balancing the

aim that a fitted cell should be large enough to cover the object it is matching with the need to avoid any

overlapping cells. Here we setC to be 1.5.

Fitting ellipses to the objects in the upper panel of Figure 6 produced the image in the middle panel.

We used this as the initial state for the MCMC algorithm incorporating the modifications described in

Section 6, and taking the intensity�i for cell i to be the mean of recorded data values for pixels contained

in cell i. The bottom panel of Figure 6 shows the20; 000th iterations of one MCMC run from this initial

configuration. Comparisons with Figure 1 show we now have a very good fit to the data, far superior to

the sample images in Figures 2, 4 and 5. Most of the cells apparent to the eye in Figure 1 are present in

Figure 6 and the MCMC iterations improve their fit to the data. A notable exception is the pair of cells

around (170, 50) which have low intensity and fail to survive the thresholding process: they appear as

one large cell in Figure 6 as a result of a birth move with no subsequent split.

8 Discussion

A major goal of the biologists who collected these data is an automatic method for identifying cells and

fitting templates, the parameters of which describe cells’ size and shape. The data are too noisy and cells

too tightly packed in places for standard image processing software. However, the human eye is able to

recognise cells and previous analyses were carried out by human interaction, points on the perimeter of

each cell being specified by mouse clicks on a computer image. The algorithm of Section 7 provides an

automatedmethod for cell identification.

One further improvement is possible to correct the few errors that may be present in the starting point

produced from a morphological analysis (e.g., the middle panel of Figure 6). These could be overcome by

a small amount of human interaction in which instructions are entered through a graphical user interface

to provide information about cells that need to be added. Only a rough version of each cell needs to be

provided at this point as the fit will be improved by processing in the MCMC stage. Although a fully
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Figure 7: A second data slice (top); a sample from the posterior after 20,000 iterations (middle);

histogram of the cell attributes eccentricity, size and intensity (bottom).

automatic method would have been ideal, this is a small amount of interaction compared to the previous

approach of outlining the whole perimeter of each cell.

Given a sound initialisation, MCMC sampling provides a straightforward framework for estimating

the parameters of fitted cells and relating these to the phases in cell development. For example, we can

generate interval estimates of typical cell size or other population attributes. Figure 7 shows another

example of a data image, together with a sample image from the posterior distribution and histograms

of three cell attributes: the average eccentricity (ratio of minor to major axis length), average size and

average intensity in the cell population. Here, attribute values were recorded at regular intervals during

the MCMC run of 20,000 iterations.
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The statistical model can be elaborated to answer additional questions. As one example, in

classifying cells by their shape at different stages of development, we added a mixture distribution for the

type of a cell based on its eccentricity. It is of interest to find the posterior probability that a particular cell

belongs to either class. However, this is only meaningful if the cell retains an individual identity as the

Markov chain progresses, whereas ordinarily a cell can come and go during sampling. Such questions

can be addressed in aconditionalanalysis in which the cell population is fixed after a good starting state

has been reached. Then, birth, death, split and merge moves are eliminated from the sampler and an

identifiability constraint is imposed that each cell continues to cover a particular point, e.g., its centre

in the starting configuration. The posterior class probabilities in our example indicate a transition from

long narrow cells to more rounded shapes as one moves from left to right across the image.

An important feature of confocal microscopy is the ability to collect three dimensional data in a

non-invasive manner. The methods we have described generalise readily to 3D: the signal process is

complicated by attenuation of the laser beam to a degree which increases with depth in the sample; the

marked point process prior model has a natural extension but with four more parameters per object. The

increased dimensionality makes it even more difficult to generate successful proposals for birth and split

moves and use of a separate method to provide a good starting state is crucial. Examples of 3D analysis

of a stack of 12 two dimensional slices of the cartilage data are given by Al-Awadhi (2001).
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