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Abstract

We consider seamless Phase II/III clinical trials which compare K

treatments with a common control in Phase II, then test the most
promising treatment against control in Phase III. The final hypothesis
test for the selected treatment can use data from both Phases, subject to
controlling the familywise type I error rate. We show that the choice of
method for conducting the final hypothesis test has a substantial impact
on the power to demonstrate that an effective treatment is superior to
control. To understand these differences in power we derive optimal
decision rules, maximising power for particular configurations of treatment
effects. Rules with optimal frequentist properties are found as solutions to
multivariate Bayes decision problems. Although the optimal rule depends
on the configuration of treatment means considered, we are able to identify
two decision rules with robust efficiency: a rule using a weighted average
of the Phase II and Phase III data on the selected treatment and control,
and a closed testing procedure using an inverse normal combination rule
and a Dunnett test for intersection hypotheses. For the first of these rules,
we find the optimal division of a given total sample size between Phase
II and Phase III. We also assess the value of using Phase II data in the
final analysis and find that for many plausible scenarios, between 50%
and 70% of the Phase II numbers on the selected treatment and control
would need to be added to the Phase III sample size in order to achieve
the same increase in power.
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1 Introduction

In the traditional framework for drug development, a Phase II clinical trial
compares several doses or formulations of a new treatment against a control.
The most promising of these, in terms of efficacy, safety and possibly other
considerations, is taken forward to Phase III where investigators hope to confirm
the benefits of the new treatment in one or two ‘pivotal’ clinical trials.

There has been significant recent interest in combining these two stages of
the development process. If a trial follows a ‘seamless’ design, merging the usual
Phase II and Phase III components, there is opportunity to gain additional value
from the Phase II data by using these together with Phase III data in the final
analysis. Regulators are liable to treat a combined Phase II/III trial as a single
study and require a complete protocol to be specified at the outset. This allows
a monitoring committee to respond to results on all aspects of the treatments
and patient responses at interim points during the trial without further input
from the sponsors, who remain blinded to interim results. Seamless designs can
be complex and substantial effort may be required to plan their smooth conduct
and establish the validity of the proposed analysis. Thus, it is important that
the gains from using Phase II data in the final analysis justify this investment.

A variety of methods is available to combine data from the two stages of a
seamless design with proper protection of the type I error probability. Thall et
al. [1] propose two-stage designs with treatment selection at the interim analysis.
Sampson & Sill [2] derive most powerful procedures within a certain class of tests
combining data from two stages. Bretz et al. [3] and Schmidli et al. [4] present
seamless Phase II/III designs that use closed testing procedures [5] to control
the familywise type I error rate and combination tests [6] to combine data from
the two stages in the final hypothesis test.

It is not obvious how to choose between the various options for combining
data across two phases of a seamless trial. Our aim is to identify efficient ways
of doing this and, hence, quantify the potential benefits of using Phase II data in
a final combined analysis. We shall show how to derive an optimal final decision
rule, maximising the probability of selecting the best treatment and declaring it
efficacious, under a particular configuration of treatment effects. In some cases
the decision rules we derive only control the familywise error rate over part of
the parameter space — but they are still useful as they provide an upper bound
on the attainable power and this can be enough to show that certain decision
rules, which do control the familywise error rate, are very close to optimal.

In view of the high dimensionality of the parameter space, one would not
expect a single data combination rule to be optimal for all parameter vectors.
Nevertheless we have found rules with robust efficiency across a wide range of
scenarios. Having an efficient final decision rule is an important pre-requisite for
investigating other aspects of Phase II/III designs: given such a rule, one can
optimise the division of resources between phases or assess the benefits of other
Phase II options, such as response adaptive allocation of patients to treatments.

In Sections 2 and 3 we formulate the two-stage problem and describe a
selection of final decision rules. We apply these rules to an example in Section 4
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and compare their power functions. In Section 5, we derive optimal decision
rules for particular configurations of treatment effects: the form of the optimal
rules in Section 5.1 helps explain the rather surprising results seen in Section 4
and we solve more general optimisation problems in Sections 5.2 and 5.3.
In Section 6, we compare final decision rules across a range of parameter
configurations and identify rules which are highly efficient across a wide variety
of situations. In Section 7 we focus on one of these robustly efficient rules and
show how to determine the most efficient division of resources between Phases
II and III. In Section 8, we assess the benefits of using Phase II data in the
final decision by computing the number of additional Phase III observations
that would be needed to produce the same improvement in power. We conclude
with a discussion of the implications of our results to extensions of the seamless
Phase II/III design we have considered.

2 Problem formulation

Henceforth, we shall refer to the two parts of a seamless Phase II/III design
as Stage 1 and Stage 2. We consider the format of Thall et al. [1] in which K
experimental treatments are compared to a control in Stage 1 and one of these
is selected to be tested against the control in Stage 2.

We suppose patient responses are normally distributed with known variance
σ2 and means µ0 on the control arm and µi, i = 1, . . . , K, on treatment arms,
with a high mean indicating a successful treatment. We assume the primary
endpoint, the study population and the treatment definitions remain unchanged
throughout the trial, so the response distribution for a given treatment in
Stage 2 is the same as in Stage 1. The treatment effects are θi = µi − µ0,
i = 1, . . . , K, and for now we make no assumptions about the structure of the
vector θ = (θ1, . . . , θK). There are K one-sided null hypotheses H0,1: θ1 ≤ 0,
. . . , H0,K : θK ≤ 0 which may be tested, depending on which treatment is
selected at the end of Stage 1.

Following Thall et al. [1] (hereafter TSE), we proceed as follows:

In Stage 1, randomise m1 patients to each treatment i = 1, . . . , K and the
control arm and calculate maximum likelihood estimates θ̂1,i = µ̂1,i − µ̂1,0,
i = 1, . . . , K, of the K treatment effects. Let i⋆ denote the treatment with
maximum θ̂1,i. If

θ̂1,i⋆ = max
i=1,...,K

{θ̂1,i} < ℓ, (1)

stop the trial for futility, rejecting no null hypotheses. Otherwise, continue to
Stage 2 selecting treatment i⋆ for comparison with the control.

In Stage 2, randomise m2 patients to each of treatment i⋆ and the control.
Denote the estimate of θi⋆ based on Stage 2 data only by θ̂2,i⋆ = µ̂2,i⋆ − µ̂2,0.

In the final analysis, reject H0,i⋆ : θi⋆ ≤ 0 in favour of θi⋆ > 0 if

T (θ̂1,1, . . . , θ̂1,K , θ̂2,i⋆) ≥ CT (K, m1, m2), (2)
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where the function T and critical value CT (K, m1, m2) are pre-specified.

The familywise error rate (FWER) under θ of such a procedure is defined
as pr{Reject any true H0,i; θ}. We shall consider procedures which control the
FWER strongly at level α, that is they have the property

pr{Reject any true H0,i; θ} ≤ α for all parameter vectors θ.

Let imax be the index of the treatment with the highest effect θi. Under
parameter vectors θ for which imax is unique and θimax

> 0, we define the power
of a procedure to be

pr{Select treatment imax and reject H0,imax
; θ}. (3)

Methods of data combination differ in the definition of the function T in (2) and
the associated critical value CT (K, m1, m2). Our aim is to compare the power
of different final decision rules and identify those with close to optimal power
for a variety of vectors θ.

Searching for an optimal decision rule is a complex task since power depends
on the K-dimensional θ. It may be appropriate to focus on achieving high
power under certain forms of θ, particularly if ‘treatments’ are doses of a single
compound. Rules attuned to situations where the treatment effects θ1, . . . , θK

are high or low together may be thought of as ‘borrowing strength’ for inference
about θi⋆ from other Stage 1 estimates θ̂1,i, i 6= i⋆. However, the correlations

between θ̂1,1, . . . , θ̂1,K , due to the common control arm in Stage 1, also affect how

these estimates should be weighted in the overall statistic T (θ̂1,1, . . . , θ̂1,K , θ̂2,i⋆).

3 Methods for data combination

In this section, we outline the decision rules underlying six methods for data
combination used in our numerical investigations of power; a more detailed
description of the methods is given in the Supplementary Material accompanying
this manuscript. In our simulations, we have applied the futility stopping rule
in (1) with ℓ = 0. We calibrated the critical values of all six decision rules so
that tests attain overall type I error rate α when θ = (0, . . . , 0) adjusting for
the possibility of early stopping, arguing for each test that this ensures strong
control of the FWER at level α. Therefore, the higher power achieved by a
decision rule can be attributed to an efficient use of the available data rather
than a higher type I error rate.

Conventional test: In the conventional approach with separate Phase II and
Phase III studies, only Phase III data are used in making the final decision to
accept or reject H0,i⋆ . Let Z2,i⋆ = θ̂2,i⋆/

√
(2σ2/m2) denote the standardised

test statistic based on Stage 2 data. To account for the possibility of stopping
after Stage 1 for futility, we reject H0,i⋆ if

Z2,i⋆ ≥ Φ−1

(

1 − α

pr{maxi{θ̂1,i} ≥ 0; θ = 0}

)

= Φ−1

(

1 − K + 1

K
α

)

,
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where Φ denotes the standard normal cumulative distribution function and 0

denotes the parameter vector (0, . . . , 0). The overall type I error rate under
θ = 0 is exactly α and it follows from the arguments of Jennison & Turnbull [7,
Section 3] that the FWER is controlled strongly at level α.

TSE decision rule: Adapting the procedure of Thall, Simon and Ellenberg
[1] to a normal response, we define

Z1,i⋆ =
θ̂1,i⋆√

(2σ2/m1)
and Z2,i⋆ =

θ̂2,i⋆√
(2σ2/m2)

.

and reject H0,i⋆ if

w1 Z1,i⋆ + w2 Z2,i⋆ > CTSE(K, m1, m2),

where wi =
√{mi/(m1 + m2)}, i = 1, 2, and CTSE(K, m1, m2) is chosen to

give FWER α when θ = 0. Jennison & Turnbull [7] note that this ensures the
FWER is controlled strongly at level α.

Combination tests: Bretz et al. [3] and Schmidli et al. [4] present a variety
of adaptive designs for seamless Phase II/III clinical trials. These proposals
follow the general approach of Bauer and Kieser [8] for making mid-study
data-dependent adaptations while preserving trial integrity. They use closed
testing procedures [5] to control the FWER and combination tests [6] to conduct
hypothesis tests using data from the two stages.

Denote the set of indices i of null hypotheses H0,i by S = {1, . . . , K}. A
closed testing procedure requires an α-level test of the intersection hypothesis
H0,I =

⋂

i∈I H0,i for each subset I of S; this test will reject H0,I with probability
at most α when all H0,i with indices i ∈ I are true. Tests of intersection
hypotheses H0,I combine data from the two stages of the trial. A combination
test of H0,I is defined in terms of one-sided p-values P1,I and P2,I for H0,I based
on Stage 1 and Stage 2 data, respectively. Note that ‘Stage 2 data’ refers to new
data in Stage 2, not the cumulative data at the end of Stage 2. Using the inverse
χ2 rule (originally proposed by Fisher [9] for combining separate experiments)
to combine p-values in the test for each intersection hypothesis in the closed
testing procedure, we obtain an overall decision rule which rejects H0,i⋆ if

min{I⊆S: i⋆∈I}{− log(P1,I) − log(P2,I)} > 0.5 χ2

4,1−α, (4)

where χ2

4,1−α is the value exceeded with probability α by a χ2

4
random variable.

We refer to this as the ‘BK inverse χ2’ decision rule. Alternatively, using the
inverse normal combination rule [10, 11] to combine p-values gives the ‘BK
inverse normal’ decision rule, which rejects H0,i⋆ if

min{I⊆S: i⋆∈I}{w1 Z1,I + w2 Z2,I} > Φ−1(1 − α), (5)

where, as in the TSE method, wi =
√{mi/(m1 + m2)}, i = 1, 2. There are

various choices for defining the p-values for intersection hypotheses in the above
methods. In our simulations we compared the efficiencies of methods when
Simes [12] and Dunnett [13] p-values are used for intersection hypotheses.
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Since the trial may stop for futility after Stage 1, all the above procedures (4)
and (5) have a FWER below α. Additional conservatism arises from using Simes’
method to define p-values for intersection arising from multiple comparisons
with a common control [14]. So as not to disadvantage methods using Simes’
test in our investigations of decision rules, we have adjusted the critical values
on the right hand sides of (4) and (5) so that the FWER is α under θ = 0

proceeding on the assumption this is a sufficient condition to ensure strong
control of the FWER. In fact, it is difficult to give a general proof that the
probability of a type I error is decreased when one treatment effect, θi say, is
increased above zero: since H0,i is now false, rejecting it no longer counts as
a type I error but, against this, a low p-value for treatment i may reduce the
p-value for an intersection hypothesis involving a selected treatment i⋆ 6= i. We
have used simulation to check the implications of these lower critical values in
our examples and in all cases we found the type I error rate to be controlled
at level α with some conservatism: see the Supplementary Material for further
discussion.

We now illustrate the application of the above testing procedures in an
example.

4 Illustrative example

Liu & Pledger [15] discuss a seamless Phase II/III trial comparing five doses of
a treatment for migraine headaches against placebo. We simplify this example
by assuming both stages of the trial measure the same clinical endpoint, the
decrease in monthly headache rate over four months. Responses are assumed to
be normally distributed with standard deviation σ = 5. A reduction of 2 in the
average monthly headache rate, compared to placebo, is taken to be clinically
meaningful and high power is desired to detect a dose with such an effect.

In our notation, K = 5 and for each dose i = 1, . . . , K, we wish to test
H0,i: θi ≤ 0 against θi > 0. While controlling the FWER strongly at α = 0.025,
we desire high power to select and declare efficacious a dose with a treatment
effect θi = 2. Suppose the trial follows a two-stage design with m1 = 28 patients
randomised to each dose and placebo in Stage 1 and a further m2 = 140 allocated
to each of dose i⋆ and placebo when sampling continues to Stage 2. Such unequal
division of resources between phases is common in practice, with larger sample
sizes devoted to confirming efficacy of the selected dose in Phase III. Table 1
lists the critical values needed to implement the six decision rules described in
Section 3 with a familywise type I error probability of 0.025.

Suppose only the highest dose gives an improvement over placebo and the
vector of treatment effects has the form θ = (0, 0, 0, 0, δ). Figure 1 shows the
power of each decision rule, as a function of δ, to select dose 5 and reject
H0,5. Results are based on one million replicates in each scenario considered,
so standard errors of estimated probabilities are at most 0.0005. The TSE
procedure is most powerful at all values of δ, closely followed by the BK inverse
normal combination test using Dunnett p-values for intersection hypotheses.
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Table 1: Critical values for six decision rules testing H0,i⋆ : θi⋆ ≤ 0 against
θi⋆ > 0. These rules control familywise type I error rate at level α = 0.025 for
K = 5, m1 = 28, m2 = 140, ℓ = 0 and σ = 5.
Design Test Statistic Critical Value
Conventional Z2,i⋆ 1.881
TSE w1Z1,i⋆ + w2Z2,i⋆ 2.245
BK inverse χ2 (Simes) min{I⊇i⋆}{− log(P1,IP2,I)} 5.342
BK inverse χ2 (Dunnett) min{I⊇i⋆}{− log(P1,IP2,I)} 5.539
BK inverse normal (Simes) min{I⊇i⋆}{w1 Z1,I + w2 Z2,I} 1.851
BK inverse normal (Dunnett) min{I⊇i⋆}{w1 Z1,I + w2 Z2,I} 1.958
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Figure 1: Power of six decision rules under θ = (0, 0, 0, 0, δ) when m1 = 28,
m2 = 140, ℓ = 0, σ = 5 and FWER is controlled strongly at α = 0.025. All
estimates are based on one million simulations. The legend lists rules in order
of decreasing power.

Surprisingly, the three other combination tests have lower power than the
conventional test which does not use the Phase II data at all. Differences in
power are as high as 0.05 in places: the values of δ at which different rules attain
the same power differ by up to 5% and, supposing the sample size needed to
achieve a given power to be roughly proportional to δ−2, this translates into
differences in sample size of up to 10%. The results in Fig. 1 parallel those of
Jennison & Turnbull [16, Section 5.3] for an example with K = 4, m1 = 100,
m2 = 500 and σ = 5 (although those authors did not consider methods using
Dunnett tests). The failure in both examples of some decision rules to improve
on the conventional test, which ignores Stage 1 data, motivated our investigation
of the underlying decision rules. We shall also investigate whether the same
patterns of relative efficiency occur for other forms of θ and consider what
is the optimal division of resources between Phases II and III when the total
sample size has been fixed. In order to explore these issues, we shall derive
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optimal decision rules for particular forms of θ and study the structure of these
rules.

5 Optimal data combination rules

5.1 Optimising power for a family of configurations of θ

In the framework of Section 2, the function T (θ̂1,1, . . . , θ̂1,K , θ̂2,i⋆) in (2) specifies
a decision rule. We seek to optimise this function while protecting the FWER.
We first consider vectors θ which are permutations of (γ δ, . . . , γ δ, δ), where
0 ≤ γ < 1 and the value δ is equally likely to appear in each of the K positions.
We seek the decision rule with the highest probability, averaged over the K
permutations of θ, of selecting the treatment with effect δ in Stage 1 and
rejecting the associated null hypothesis in Stage 2. This is in keeping with
the definition of power used by TSE which focuses on selecting the treatment
with the highest effect when other treatment effects are lower by a specified
margin. We shall require rules to have type I error rate at most α when θ = 0:
we have seen in Section 3 that this is a sufficient condition for some rules to
provide strong control of the FWER but we shall have to check this property
for the new rules we derive.

We proceed by defining a Bayes decision problem with a prior distribution
for θ and costs for each possible decision. We then search over values of these
costs to find a version of this problem for which the optimal Bayes rule has
type I error rate α under θ = 0 and so solves the problem originally stated in
frequentist terms. The method of re-casting a frequentist problem as a Bayes
decision problem has been used to find optimal group sequential tests; see, for
example, [17, 18, 19, 20, 21]. In our problem, power depends on a vector of
treatment effects and we handle this by dealing with a one-dimensional subset
of vectors θ at a time. This provides a benchmark for each family of θ vectors,
against which other decision rules can be compared. While it is desirable to have
a single rule with robust efficiency in a wide variety of situations, it could be that
quite different rules are needed to achieve high power for different configurations
of θ, in which case the importance of these different scenarios should guide the
overall choice.

For our first problem, with θ a permutation of (γ δ, . . . , γ δ, δ), let ξi denote
the vector with θi = δ and the other K −1 elements equal to γ δ. Define a prior
distribution for θ with discrete mass function π(θ) placing probability 1/(K+1)
on each of the cases θ = 0 and θ = ξi, i = 1, . . . , K. The only hypothesis that
can be rejected when treatment i is selected for Stage 2 is H0,i. Thus, the set of
possible actions is {A0, A1, . . . , AK} where, for i ≥ 1, Ai means that treatment
i is selected after Stage 1 and H0,i is rejected at the end of Stage 2, while A0

indicates stopping for futility at Stage 1 or continuing to Stage 2 but failing to
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reject any H0,i. We define the loss function L(θ, A) as

L(0, Ai) = c1 for i = 1, . . . , K,

L(ξi, Ai) = −c2 for i = 1, . . . , K,

L(θ, A) = 0 otherwise.

The reward for correctly rejecting H0,i appears as the negative cost −c2 and the
penalty for failing to reject H0,i when θ = ξi is the absence of this reward. Our
original criteria concern power to declare efficacy of treatment i when θ = ξi

but do not differentiate between ways of failing to reject H0,i when θ = ξi,
hence we define the same loss, of zero, for actions A0 and Aj , j ≥ 1 and j 6= i,
in this case.

The Bayes rule for the problem we have defined minimises the Bayes risk

c1 π(0)

K
∑

i=1

pr{Ai | θ = 0} − c2

K
∑

i=1

π(ξi) pr{Ai | θ = ξi} =

c1 π(0) pr{Select any treatment i and reject H0,i | θ = 0}

−c2

K
∑

i=1

π(ξi) pr{Select treatment i and reject H0,i | θ = ξi}. (6)

Suppose treatment i⋆ is selected and data at the end of Stage 2 are summarised
as

Di⋆ = (θ̂1,1, . . . , θ̂1,K , θ̂2,i⋆).

Either action A0 or action A⋆
i must be taken. Let π(θ | Di⋆) denote the posterior

distribution of θ given data Di⋆ . If action A⋆
i is chosen, so H0,i⋆ is rejected, the

posterior expected loss is

c1 π(0 | Di⋆) − c2 π(ξi⋆ | Di⋆). (7)

All costs associated with action A0 are zero, so if this action is chosen and H0,i⋆

is not rejected, the loss is exactly zero. Thus, the Bayes rule that minimises (6)
rejects H0,i⋆ if and only if (7) is negative or, equivalently, if

π(ξi⋆ | Di⋆)

π(0 | Di⋆)
>

c1

c2

. (8)

Since the prior probabilities of θ = 0 and θ = ξi⋆ are equal, the left hand side
of (8) is simply the likelihood ratio of the observed data under θ = ξi⋆ and
θ = 0.

Given θ, the Stage 1 estimates θ̂1 = (θ̂1,1, . . . , θ̂1,K) are distributed as

θ̂1 ∼ N(θ, V ), where Vii = (2σ2/m1) for i = 1, . . . , K and Vii′ = (σ2/m1)
for i 6= i′. The inverse of V is

V −1

ii =
K

K + 1

m1

σ2
, i = 1, . . . , K, and V −1

ii′ =
−1

K + 1

m1

σ2
, i 6= i′.
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The log likelihood ratio of θ̂1 under θ = ξi⋆ and θ = 0 is

θ̂T
1

V −1 ξi⋆ − 1

2
ξT

i⋆ V −1 ξi⋆ =

m1 δ

(K + 1)σ2



{K − (K − 1)γ}θ̂1,i⋆ + (2γ − 1)
∑

i6=i⋆

θ̂1,i



− g
δ2

σ2
(9)

for some constant g. The log likelihood ratio for the Stage 2 data θ̂2,i⋆ is

m2

2 σ2
θ̂2,i⋆δ − m2

4 σ2
δ2. (10)

Adding (9) and (10) gives the log likelihood ratio of Di⋆ under θ = ξi⋆ and
θ = 0. It follows that the condition for the Bayes test to reject H0,i⋆ can be
written as

m1

K + 1



{K − (K − 1)γ} θ̂1,i⋆ + (2γ − 1)
∑

i6=i⋆

θ̂1,i



 +
m2

2
θ̂2,i⋆ ≥ c, (11)

where

c =
σ2

δ
log

(

c1

c2

)

+
(

g +
m2

4

)

δ. (12)

The constant c is an increasing function of the ratio c1/c2. Also, c depends on
δ but the expression on the left hand side of (11) does not.

Suppose c is such that the rule given by (11) has type I error rate α when
θ = 0. For any given δ, there are costs c1 and c2 that satisfy (12) with this c.
Hence, the decision rule (11) minimises (6) for this δ and the pair (c1, c2), and
so it maximises

K
∑

i=1

π(ξi) pr{Select treatment i and reject H0,i | θ = ξi}

among all rules with type I error rate less than or equal to α when θ = 0. Thus,
this decision rule solves the problem posed at the start of this section and we
note that, by construction, the same rule is optimal for all values of δ.

We can find this optimal rule by searching for the constant c in (11) which
gives type I error rate α under θ = 0. Since we use simulation to estimate
error rates, we have applied the Robbins-Monro algorithm [22] to search over
log(c) ∈ R for the value of c that satisfies this condition.

Setting γ = 0 gives the example of Section 4 where θ is a permutation
of (0, . . . , 0, δ). In this case estimates θ̂1,i for treatments other than i⋆ have
negative weights in (11). This is a consequence of the correlation between

estimates θ̂1,i and θ̂1,i⋆ for i 6= i⋆ caused by the common control arm: for the
values θ = ξi⋆ and θ = 0 appearing in the likelihood ratio in (8), all θi for i 6= i⋆

are zero and, since positive values of θ̂1,i for i 6= i⋆ may be due to lower than
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average responses on the control arm in Stage 1, this possibility detracts from
the evidence a positive θ̂1,i⋆ provides in support of θi⋆ = δ. If some of the θi

are decreased while others remain equal to zero, the negative weights for θ̂1,i,
i 6= i⋆, are likely to lead to higher values of the left hand side of (11), increasing
the probability of rejecting H0,i⋆ . Thus the decision rule (11) does not control
the FWER strongly at level α. The form of this decision rule is, nevertheless,
instructive. The desirability of negative weights for the θ̂1,i, i 6= i⋆, explains
the poor performance of tests using Simes’ rule, which treats good performance
of other treatments as supporting evidence in favour of treatment i⋆. The
conventional procedure ignores all first stage data, so at least it does not give
weights of the wrong sign to θ̂1,i, i 6= i⋆. Dunnett p-values for intersection
hypotheses are appropriate when only one treatment is efficacious as they focus
on the single treatment with highest estimated effect. If we retain the form of
the test statistic in (11) but modify it so that all weights are non-negative in
order to maintain strong control of the FWER, we obtain a linear combination
of θ̂1,i⋆ and θ̂2,i⋆ . The TSE decision rule has this form: it is the likelihood ratio

test between θ = ξi⋆ and θ = 0 based on θ̂1,i⋆ and θ̂2,i⋆ only and we conjecture
that the TSE procedure is very close to optimal for the case γ = 0.

In (11), the weights for estimates θ̂1,i with i 6= i⋆ are negative if γ < 0.5, zero
for γ = 0.5 and positive if γ > 0.5. We show in the Appendix how these weights
can be obtained by fitting a linear regression model to the Stage 1 data and the
signs of the weights follow from this representation. For γ < 0.5, the negative
weights imply that tests of this form do not control the FWER strongly and, as
for γ = 0, we conjecture that the TSE procedure is close to optimal.

If γ = 0.5 the optimal decision rule has zero weights for θ̂1,i, i 6= i⋆, and is
precisely the TSE rule. Thus, the TSE rule provides the ideal solution in this
case where there is one high treatment and other effects are at an intermediate
level. As noted in Section 3, strong control of the FWER does follow from
controlling the type I error rate at θ = 0 in this case. When γ ≥ 0.5, the weight
of each θ̂1,i is positive and, by the arguments applied for Simes’ rule in Section 3,
we expect that controlling the type I error rate at θ = 0 implies strong control
of the FWER for all possible vectors θ.

Figure 2 compares power curves of optimal decision rules and the six methods
introduced in Section 3 in the example of Section 4, with K = 5 treatments and a
control. Panel (a) of Fig. 2 shows power curves for γ = 0.5, the case in which the
TSE rule is optimal. We see that the two BK inverse normal combination tests
have almost the same power as the TSE rule: for the test using Simes’ rule this
is a significant improvement over the case γ = 0 seen in Fig. 1. However, the two
BK inverse χ2 combination tests still have lower power than the conventional
test using Stage 2 data only. The power curves for γ = 0.75 in panel (b) show
the TSE rule and the two BK inverse normal combination tests to be almost as
powerful as the optimal decision rule for this case, and now the two BK inverse
χ2 combination tests have a small advantage over the conventional test.

The power curves for γ = 0.75 are noticeably lower than for γ = 0.5 due to
the higher probability of a sub-optimal treatment being selected after Stage 1. If
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Figure 2: Power achieved by decision rules in the Example of Section 4 when θ

is a random permutation of (γ, γ, γ, γ, 1) δ with (a) γ = 0.5 and (b) γ = 0.75.
Decision rules are listed in order of decreasing power. Results are based on one
million simulations for each scenario.
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a final decision in favour of a sub-optimal treatment with sufficiently high effect
size is deemed acceptable, the definition of power could be modified to include
this. Such a definition would certainly be reasonable in the limit as γ → 1.

5.2 Optimizing power for general configurations of θ

The approach of Section 5.1 can be extended to obtain decision rules which
maximise power averaged over the K! permutations of (γ1, . . . , γK−1, 1) δ, where
0 ≤ γ1 < . . . < γK−1 < 1, subject to a type I error rate of at most α when θ = 0.
As before, power is defined to be the probability of selecting the treatment imax

with the highest effect and then rejecting H0,imax
. The optimal decision rule

can then be examined to check whether controlling the type I error at θ = 0

implies strong control of the FWER.
Let Q denote the set of K! parameter vectors θ obtained by permuting the

elements of (γ1, . . . , γK−1, 1) δ. In our Bayes decision problem, we define the
prior distribution π(θ) on θ ∈ Q to give probability 1/(K + 1) to θ = 0 and
1/{(K + 1) (K − 1)!} to each element of Q. For i = 1, . . . , K, let Qi be the
subset of Q containing vectors θ with θi = δ. With actions A0, A1, . . . , AK as
defined in Section 5.1, we define the loss function L(θ, A) to be

L(0, Ai) = c1 for i = 1, . . . , K,

L(θ, Ai) = −c2 for all θ ∈ Qi, i = 1, . . . , K,

L(θ, A) = 0 otherwise.

When treatment i⋆ is selected in Stage 1, either action A0 or A⋆
i must be taken

after Stage 2. We seek the Bayes rule which minimises the Bayes risk

c1 π(0)

K
∑

i=1

pr{Ai | θ = 0} − c2

K
∑

i=1

∑

φ∈Qi

π(φ) pr{Ai | θ = φ} =

c1 π(0) pr{Select any treatment i and reject H0,i | θ = 0}

−c2

K
∑

i=1

∑

φ∈Qi

π(φ) pr{Select treatment i and reject H0,i | θ = φ}.

If c1 and c2 are chosen so that the Bayes optimal rule has type I error rate α
when θ = 0, we can deduce that this rule maximises

K
∑

i=1

∑

φ∈Qi

π(φ) pr{Select treatment i and reject H0,i | θ = φ},

and it therefore maximises the average power over the K! permutations of
(γ1, . . . , γK−1, 1) δ, among all decision rules with type I error rate at most α
at θ = 0.
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As before, taking action A0 after Stage 2 has cost zero. The posterior
expected loss for action Ai⋆ given that treatment i⋆ is selected and data Di⋆ are
observed is

c1 π(0 | Di⋆) − c2

∑

φ∈Qi⋆

π(φ | Di⋆).

It follows that the Bayes rule rejects H0,i⋆ if

∑

φ∈Qi⋆

π(φ | Di⋆)

π(0 | Di⋆)
>

c1

c2

or, equivalently, if

1

(K − 1)!

∑

φ∈Qi⋆

LR(Di⋆ ; φ,0) >
c1

c2

(13)

where LR(Di⋆ ; φ,0) denotes the likelihood ratio of data Di⋆ under parameter
vectors θ = φ and θ = 0.

Given θ, the Stage 1 estimates θ̂1 follow a N(θ, V ) distribution. The inverse
of V can be written as

V −1 = {(K + 1)IK − 1K,K} m1

(K + 1)σ2

where IK is the K × K identity matrix and 1K,K the K × K matrix with all
elements equal to 1. Thus, the log likelihood ratio of the Stage 1 data under
θ = φ and 0 is

θ̂T
1 V −1φ − 1

2
φT V −1φ = θ̂T

1 λ(φ) − h
δ2

σ2
, (14)

where
λ(φ) =

m1

(K + 1)σ2
{(K + 1)φ − 1K,Kφ} (15)

and the constant h is the same for all vectors φ ∈ Q.
When φ ∈ Qi⋆ , and so φi⋆ = δ, the log likelihood ratio for the Stage 2 data

under θ = φ and θ = 0 is

m2

2 σ2
θ̂2,i⋆δ − m2

4 σ2
δ2. (16)

Combining (14) and (16), the condition (13) can be written as

∑

φ∈Qi⋆

exp{θ̂T
1
λ(φ)} exp{ m2

2 σ2
θ̂2,i⋆δ} > c (17)

where c depends on δ. The value of c for which the type I error rate is α
under θ = 0 varies with δ. Therefore, no uniformly most powerful decision rule
exists for the θ configuration and we find the appropriate critical value at each
δ value of interest using the Robins-Monro algorithm. Although the left hand
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side of (17) involves a sum of (K − 1)! terms, this poses no real computational
difficulty for typical values of K.

In order for an optimal decision rule to protect the FWER over the whole
parameter space, coefficients of all elements of θ̂1 must be non-negative in each
term θ̂T

1 λ(φ). Since the smallest coefficient is m1/{(K + 1)σ2} times

(K + 1)γ1 − (γ1 + . . . + γK−1 + 1), (18)

we simply require that the expression (18) is greater than or equal to zero.
If the γjs are equally spaced between γ1 and 1, this condition reduces to γ1 ≥
K/(K+2), while a sufficient condition for any pattern of γjs is γ1 ≥ (K−1)/K.
Finally, we appeal to the argument of Section 3 to claim that a rule of the
form (17) also protects the FWER when some of the elements of θ are greater
than zero.

Figure 3 shows power, averaged over permutations of θ, when the methods
of Section 3 are applied to the example of Section 4. In panel (a), the γjs
are equally spaced between 0.3 and 1. As the form of the optimal rule varies
with δ, each point on the power curve evaluates the rule maximising power at
that particular value of δ. As some θ̂1,js have negative weights in (17), these
rules do not provide strong control of the FWER and we label them as ‘pseudo-
optimal’. The curve sets an upper bound for the power that can be attained
and we deduce that the TSE rule and the two BK inverse normal combination
tests have close to the maximum possible power. Indeed the performance of
these three procedures is impressive in view of the fact that they do not have
the flexibility of the ‘pseudo-optimal’ rules to adapt to δ. In panel (b), where
the γjs are equally spaced between 0.75 and 1, γ1 > K/(K + 2) so the rules
given by (17) attach positive weights to all θjs and we take them to be truly
optimal. Again, the TSE rule and the two BK inverse normal combination tests
have close to maximum power. The efficiency of the inverse normal combination
test using Simes’ rule in these examples indicates that the treatment effects of
sub-optimal treatments are now sufficiently high that it is beneficial for the final
decision rule to ‘borrow strength’ from θ̂1,i, i 6= i⋆.

5.3 Optimizing power under dose-response assumptions

We now consider the situation where investigators suspect a particular pattern
of treatment effects may occur but these views are not held strongly enough
to change the form of the study design from that described in Section 2. We
shall consider the case where treatment effect is expected to increase steadily
with dose but side-effects or poorer compliance at higher doses may disrupt this
relationship. It is of interest to know whether using such information about the
likely pattern of treatment effects can lead to a significant increase in power.

We capture this somewhat equivocal view about possible treatment effects
by formulating a Bayes decision problem with a special prior distribution. Let
0 ≤ γ1 < . . . < γK−1 < 1 be specified and suppose the parameter vector θ

is either 0 or a permutation of (γ1, . . . , γK−1, 1) δ. We assign prior probability
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Figure 3: Power achieved by decision rules in the Example of Section 4
when θ is a random permutation (a) of (0.3, 0.475, 0.65, 0.825, 1) δ, and (b) of
(0.75, 0.8125, 0.875, 0.9375, 1) δ. Decision rules are listed in order of decreasing
power. Results are based on one million simulations for each scenario.
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1/(K + 1) to θ = 0 and allocate probability 1/(K + 1) to each of the cases
θi = δ, i = 1, . . . , K. For i = K, the maximum treatment effect is θK = δ and
we assign all the probability 1/(K+1) to the case θ = (γ1, . . . , γK−1, 1) δ = θord,
say, in line with the assumption that treatment effects increase with dose.
For i < K, the maximum effect is not at the maximum dose and, since the
pattern cannot be monotone, we divide the prior probability 1/(K + 1) evenly
across the (K − 1)! permutations of (γ1, . . . , γK−1, 1) δ with θi = δ. Thus, the
difference between this prior and that used in Section 5.2 is that the probabilities
1/{(K+1)(K−1)!} for vectors θ in the subset QK are re-allocated to the single
vector θord, capturing the desired knowledge about the order of treatment effects
in this case.

We define the same loss function as in Section 5.2 and find the Bayes optimal
decision rule. The choice of prior implies that the Bayes rule rejects H0,i⋆ if

LR(Di⋆ ; θord,0) >
c1

c2

for i⋆ = K

and if
1

(K − 1)!

∑

φ∈Qi⋆

LR(Di⋆ ; φ,0) >
c1

c2

for i⋆ 6= K.

As in Section 5.2, the likelihood ratio for data Di⋆ can be written as

LR(Di⋆ ; φ,0) = exp{θ̂T
1 λ(φ)} exp{ m2

2 σ2
θ̂2,i⋆δ} exp{−(h + m2/4)(δ2/σ2)},

where λ(φ) is as defined in (15) and this is used with vectors φ ∈ Qi⋆ for i⋆ 6= K
and with φ = θord for i⋆ = K.

The form of the Bayes rule depends on δ so that no uniformly most powerful
test exists for treatment effect configuration θord. At each positive value of δ the
Robbins-Monro algorithm can be used to find the appropriate choice of c1/c2

that gives an optimal decision rule with type I error rate α at θ = 0. In order for
optimal decision rules to protect the FWER over the whole parameter space,
coefficients of elements of θ̂1 must be non-negative in each term θ̂T

1 λ(φ) for
φ ∈ Qi⋆ or φ = θord, so γ1, . . . , γK must satisfy the same conditions discussed
in Section 5.2.

We have calculated power curves for decision rules of the above form when
θ = θord and the values of γ1, . . . , γK−1 are as in cases (a) and (b) of Fig. 3.
When the correct treatment, i⋆ = K, is selected the decision depends on
LR(Di⋆ ; θord,0) and so takes full advantage of the monotonicity assumption.
We compared power under θ = θord with that of the optimum rules with no
monotonicity assumption, derived in Section 5.2. In case (a), where effect sizes
range from 0.3 δ to δ, the maximum increase in power from use of dose-response
information is 0.005; although the conditions for strong control of the FWER
over the whole parameter space are not met, this is the case for both types
of procedure so comparisons are fair. In case (b), effect sizes are closer, all
tests control the FWER strongly, and the maximum increase in power is much
smaller at 0.0005 (coupling of simulations of the different methods implies that
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this difference is still estimated reliably). The other six methods are unaffected
by assumptions about the possible monotonicity of θ. However, since these
assumptions lead to such small improvements, power curves for the new optimal
rules are barely distinguishable from those shown in Fig. 3 for the pseudo-
optimal rules in (a) and the optimal rules in (b), and the TSE rule and both
inverse normal rules remain very close to optimal.

Bretz et al. [23] propose methods that accommodate uncertain information
about a dose-response curve by assuming this curve belongs to a specified set
of models M. In their ‘MCP-Mod’ procedure, they define a test statistic Tm

appropriate to each model m ∈ M and use maxm Tm as a global statistic to
test for a positive dose-response relationship. The adjusted p-value is calculated
using the joint distribution of the Tm, m ∈ M, when the treatment effect is
zero at all doses, i.e., θ = 0 in our notation. Since the Tm are weighted sums of
mean responses at each dose and some means can have negative coefficients, the
FWER is not controlled strongly for all treatment effect vectors θ. Assuming
that all treatment effects have the same sign resolves this problem: the same
assumption would justify use of the ‘pseudo-optimal’ tests in case (a).

Our results show that robustly efficient methods such as the TSE rule achieve
most of the potential gains from additional dose-response assumptions: the
parallel in the setting of Bretz et al. [23] would be to take the maximum observed
effect over all doses as the global test statistic. Bretz et al. found their method
to have comparable power to a certain likelihood ratio test in many cases. Their
method has a noticeable advantage when the effect size decreases at high doses,
which is to be expected as the likelihood ratio test relies on a monotonicity
assumption: the TSE rule makes no such assumption and should not be mis-led
in such cases.

We acknowledge that our setting differs from that of Bretz et al. [23] in
having two stages and the gains from model information in Stage 1 become
diluted in the overall power. Also, Bretz et al. [23] made further use of their
modelling framework by identifying the model producing the maximum Tm and
using this model to select the minimum dose achieving a certain specified effect
size for further testing. We shall return to discussion of such objectives in
Section 9.

6 Relative efficiencies of data combination rules

We can express the power differences between decision rules in terms of the
sample size needed to achieve a specific power. With the design of Section 2 and
group sizes m1 and m2, we have derived optimal decision rules under particular
assumptions about the vector of treatment effects, θ. Suppose the optimal rule
achieves power 1 − β for a given form of θ with maximum treatment effect δ.
If another rule requires group sizes to be increased to ρ m1 and ρ m2 in order
to achieve the same power, the relative efficiency of this rule, expressed as a
percentage, is 100/ρ.

We have calculated the efficiency of decision rules applied to the example
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Table 2: Efficiencies of six decision rules when the treatment vector is
a permutation of (a) (0, . . . , 0, 2), (b) (0.5, . . . , 0.5, 2), (c) (1, . . . , 1, 2), (d)
(1.5, . . . , 1.5, 2), (e) (0.6, 0.95, 1.3, 1.65, 2), (f) (1.5, 1.625, 1.75, 1.875, 2), (g)
(0.6, 0.95, 1.3, 1.65, 2) and (h) (1.5, 1.625, 1.75, 1.875, 2). In cases (g) and (h),
optimal decision rules use information about the order of the elements of θ.
Group sizes are m1 = 28 and m2 = 140. Results are based on one million
simulations.

Treatment effect vector

Combination Rule a b c d e† f g† h
TSE 100 100 100 99 100 98 99 98
BK inverse normal, Dunnett 100 100 100 99 100 99 99 99
BK inverse normal, Simes 95 98 99 99 99 99 98 99
BK inverse χ2, Dunnett 95 96 96 96 96 95 95 95
BK inverse χ2, Simes 93 95 96 96 95 95 95 95
Conventional Test 97 97 96 93 94 90 94 90

of Section 4 where K = 5, α = 0.025, m1 = 28 and m2 = 140. Table 2 lists
relative efficiencies of the six decision rules of Section 3 for eight configurations
of θ in which the highest treatment effect is δ = 2 (fixing power at a different
value of δ has only a small effect on our conclusions). Cases (a) to (d) are
for θ of the form considered in Section 5.1. The TSE rule is optimal for case
(c) and, in line with the conjecture made in Section 5.1, we also treat it as
being optimal for cases (a) and (b). The form of θ in cases (e) and (f) is that
considered in Section 5.2. In case (e) we calculated efficiency relative to the
‘pseudo-optimal’ decision rule. This rule does not control the FWER strongly
for all θ but it provides an upper bound on the attainable power, and this is
a rather tight upper bound as two rules which do protect FWER have close to
100% efficiency. Cases (g) and (h) concern the situation of Section 5.3 where
there is partial information about the order of treatment effects; in (g) we are
only able to derive a ‘pseudo-optimal’ decision rule and we report efficiency
relative to the upper bound this rule provides.

We have carried out the same efficiency assessments with group sizes m1 = 56
and m2 = 112 and the parallel results are presented in Table 3. Here, the
conventional procedure is less efficient, which is to be expected since more
patients are treated in Stage 1 and there is greater potential benefit in using
their data in the final analysis. The inverse χ2 tests, which give equal weight
to Stage 1 and Stage 2 data summaries, fare better with these values of m1 and
m2, but they still lag behind the TSE and inverse normal rules.

Results in Tables 2 and 3 show that use of Stage 1 data in the final
analysis can lead to worthwhile gains in efficiency over the conventional test
based on Stage 2 data alone. The methods of choice are the TSE procedure and
the BK inverse normal combination test using Dunnett tests for intersection
hypotheses: these decision rules attain close to the maximum possible power in
all scenarios, with relative efficiency of at least 97% in all cases and 99% or more
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Table 3: Efficiencies of six decision rules when the treatment vector is
a permutation of (a) (0, . . . , 0, 2), (b) (0.5, . . . , 0.5, 2), (c) (1, . . . , 1, 2), (d)
(1.5, . . . , 1.5, 2), (e) (0.6, 0.95, 1.3, 1.65, 2), (f) (1.5, 1.625, 1.75, 1.875, 2), (g)
(0.6, 0.95, 1.3, 1.65, 2) and (h) (1.5, 1.625, 1.75, 1.875, 2). In cases (g) and (h),
optimal decision rules use information about the order of the elements of θ.
Group sizes are m1 = 56 and m2 = 112. Results are based on one million
simulations.

Treatment effect vector

Combination Rule a b c d e† f g† h
TSE 100 100 100 99 99 98 98 97
BK inverse normal, Dunnett 99 99 100 99 99 98 98 98
BK inverse normal, Simes 91 95 98 99 98 99 97 98
BK inverse χ2, Dunnett 96 97 97 97 97 96 95 96
BK inverse χ2, Simes 93 95 97 97 96 96 95 96
Conventional Test 89 89 89 85 86 82 85 82

in the majority of cases. The BK inverse normal method using Simes’ tests for
intersection hypotheses performs poorly when there is a single treatment with
a high effect size, but this rule can be close to optimal in other situations. We
do not recommend decision rules based on inverse χ2 combination tests: these
are dominated by the rules using inverse normal combination tests and, in some
situations, gain no advantage at all from the use of Stage 1 data.

7 Optimal division of sample size between

Phases II and III

Suppose that in the previous example K = 5 and α = 0.025 are fixed but the
group sizes m1 and m2 can be chosen freely subject to an upper bound on the
total sample size (K + 1)m1 + 2m2. We shall restrict attention here to the
robustly efficient TSE procedure. For this decision rule, we have calculated
values of m1 and m2 that optimise power when the total sample size is fixed
at 448, as in the example of Section 4. Figure 4 plots the value of m1 that
maximises power, as defined in (3), for a variety of treatment means θ. Optimal
values of m1 were found by a direct search over the integers between 1 and 74; the
accuracy of comparisons was enhanced by using the same sequence of pseudo-
random numbers to simulate the power of each design. Thall, Simon and
Ellenberg [1] report design settings which minimise the expected sample size of
the TSE procedure when θ has the form (γ1, . . . , γ1, 1)δ. In Figure 4 we present
results for a wider variety of configurations for θ. Given the robust efficiency of
the TSE procedure, we expect these values of m1 will also be close to optimal
for the optimal tests of Section 5 and for the inverse normal combination rule
with Dunnett p-values.

The optimum m1 varies with both the shape of the vector θ and the
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Figure 4: (a) Stage 1 group sizes maximising the power of the TSE procedure
when the total sample size is fixed at 448 and θ is a random permutation (1) of
(0, 0, 0, 0, 1) δ, (2) of (0.5, 0.5, 0.5, 0.5, 1) δ, (3) of (0.75, 0.75, 0.75, 0.75, 1) δ, (4) of
(0.3, 0.475, 0.65, 0.825, 1) δ and (5) of (0.75, 0.8125, 0.875, 0.9375, 1) δ. (b) Power
achieved by the optimised TSE procedures. Decision rules are listed in order
of decreasing power. Designs are specified with K = 5, ℓ = 0, σ = 5.0 and
α = 0.025. Results are based on 1 million simulations for each scenario.
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scale factor δ. When selecting m1, we trade accuracy in selecting the best
treatment, imax, in Stage 1 with sample size for comparing this treatment
against control in Stage 2. Figure 5 illustrates the consequences of this trade-off
when θ = (0.5, . . . , 0.5, 1)δ with δ = 0.5 and δ = 2.0. Initially, power increases
with m1 due to the increased selection accuracy. However, increasing m1 also
reduces the total number of observations on treatment imax when this treatment
is selected, and this eventually results in a loss of overall power to reject H0,imax

.
The same considerations help explain why the optimum m1 increases with δ:
when δ is large, modest values of m2 still give a high conditional probability
of rejecting H0,imax

when treatment imax is selected, thus we can take a larger
value of m1 to improve the probability of selecting treatment imax in Stage 1.
In the example, the optimum m1 for δ = 0.5 is 14 while that for δ = 2.0 is 49.

Since optimum values of m1 range from below 10 to above 60, we conclude
that no single choice is close to ideal in all scenarios. Rather, investigators should
consider the most likely scenarios for their trial and choose group sizes that will
give the best average power across these cases. With a given decision rule, it is
straightforward to run simulations to compare different choices of m1 and choose
a value that will provide good power under an anticipated set of treatment
effects. Note that our definition of power gives no reward for selecting a good
second-best treatment and rejecting its null hypothesis although, in practice,
this might be considered a successful outcome. This is not a major issue for
most of the configurations of θ described in Figure 4, where treatment imax is
superior to its nearest competitor by some margin. However, when considering
cases where several treatments are competitive, it may be appropriate to use an
alternative definition of power and, for example, choose group sizes to maximise
the probability of selecting any treatment i with a treatment effect within 10%
of the largest treatment effect and then rejecting H0,i.

8 Value of Phase II data in the final analysis

The relative efficiencies in Tables 2 and 3 are based on comparing trial designs
where both Stage 1 and Stage 2 group sizes, m1 and m2, are multiplied by a
common factor. Another way to assess the benefits of a seamless Phase II/III
design is to determine how many additional Phase III observations would be
needed to achieve the increase in power gained by using Phase II data in the
final analysis. We shall make this assessment when the TSE decision rule is
used.

For a given vector of treatment effects θ, we can calculate the Stage 2 sample
size m̃2 such that selecting a treatment based on m1 Stage 1 observations
and then applying a conventional test with m̃2 Stage 2 observations on the
selected treatment and control gives the same overall power as the TSE rule
with group sizes m1 and m2. Thus, the 2 m1 Stage 1 observations on treatment
i⋆ and control in the TSE decision rule have the same benefit as an additional
2 (m̃2 − m2) Stage 2 observations for the conventional test. We express the
percentage value of the Stage 1 observations on treatment i⋆ and control relative
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Figure 5: Operating characteristics of the TSE procedure with fixed total
sample size N = 448 when θ = (0.5, . . . , 0.5, 1)δ with (a) δ = 0.5 and
(b) δ = 2.0. Plotted probabilities are: (1) pr{Select treatment K; θ}, (2)
pr{Reject H0,K |Treatment K selected; θ}, and (3) the product of these, namely
pr{Select treatment K and reject H0,K ; θ}. Designs have K = 5, ℓ = 0,
σ = 5.0 and α = 0.025. Results are based on one million simulations for each
scenario.
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Figure 6: Percentage value, r⋆, of Stage 1 data used in the TSE rule, relative
to additional Stage 2 observations for θ = (γ, . . . , γ, 1) δ with (1) γ = 0, (2)
γ = 0.5, (3) γ = 0.75 and (4) γ = 0.95. Designs are as specified in Section 2
with K = 5, fixed total sample size N = 448, (m1, m2) chosen to maximise the
power of the TSE procedure, ℓ = 0, σ = 5.0 and α = 0.025. Results are based
on one million simulations for each scenario.

to extra Stage 2 observations in a conventional design as

r⋆ = 100 (m̃2 − m2)/(m1).

Figure 6 shows plots of r⋆ against δ for the example of Section 4 when θ is
of the form (γ, . . . , γ, 1) δ and, for each value of δ, m1 and m2 are chosen to
maximise the power of the TSE procedure subject to a fixed total sample size
N = 448. Results vary with the form of θ and values of r⋆ at δ = 1 rise from
22 when γ = 0 to almost 100 when γ = 0.95. The critical value in the TSE
decision rule, calculated under θ = (0, . . . , 0), adjusts for multiple testing and
so avoids any bias from selecting the treatment with the best Stage 1 results.
When γ = 0, the treatment with effect size δ is very likely to be chosen and the
adjustment for multiple testing reduces power, leading to a low r⋆. For higher
values of γ, the treatment with effect size δ must out-perform its rivals in order
to be selected after Stage 1: it is then likely to have an above average estimate,
θ̂1,i, and this balances the effect of the multiplicity adjustment. As γ → 1,
r⋆ can exceed 100, indicating that information from all K treatments, not just
treatment i⋆ and the control, contributes to the final decision.

In a trial involving multiple treatments or several doses of a single treatment,
one might expect the treatment effects to be spread out between zero and the
highest value. Thus, of the scenarios in Fig. 6, case (2), with γ = 0.5, represents
the most plausible situation. In this case, the Stage 1 responses on treatment i⋆

have an equivalent value to around 60% of their number of Stage 2 observations.
Recognising the usual uncertainty about likely treatment effects, we suggest that
Stage 1 data on treatment i⋆ should typically be viewed as offering around 50%
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to 70% of their face value as Stage 2 observations in many situations. Since the
TSE rule is close to optimal under general configurations of θ, the results of this
Section should also provide an accurate reflection of the value of using Stage 1
data in other efficient decision rules.

9 Discussion

We have sought optimal data combination rules for seamless two-stage designs,
making the problem tractable by focusing on one configuration of θ at a time. In
many situations the optimal rules we have derived control the FWER strongly;
in other cases our results provide upper bounds on the attainable power that
serve as benchmarks for other procedures. We have identified two decision
rules which are highly efficient in a variety of situations. Since these rules
can be expressed as closed testing procedures they can be used flexibly, still
controlling the FWER when additional criteria are used to select a treatment for
Stage 2. We have also demonstrated how observations can be divided between
the two stages to maximise power in a given scenario. Comparisons with the
conventional practice of using Phase III data alone in a final hypothesis test
confirm that combining data across phases can improve power: for typical
vectors of treatment effects, the increase in power is comparable to that achieved
by adding 50% to 70% of the subjects on two Stage 1 treatments to the Stage 2
sample size and performing a conventional analysis. We have reached similar
conclusions in simulations with different numbers of treatments and different
sample sizes. In some situations, the benefits of data combination may be
deemed insufficient to compensate for the planning and logistical effort involved
in a seamless Phase II/III trial; in others, particularly clinical trials for rare
diseases, the power gained from Stage 1 data may be deemed very worthwhile.

Sampson & Sill [2] derived a conditionally unbiased most powerful test for
this problem. Their conditioning event is rather complex, as is the resulting
test, and their procedure does not include stopping for futility after Stage 1. If
adapted to our problem, this method could not do better than our optimal rules
for particular θ vectors. Bretz et al. [24] asked whether the approach of Sampson
& Sill [2] could be extended to find an unconditionally unbiased most powerful
test: our results show that different tests are optimal for different configurations
of treatment effects, so this is not the case.

Extensions of the problem described in Section 2 have been proposed and
studied. Optimising procedures in more complex settings may not be feasible
but, to the extent that these new problems retain core elements of the basic
problem, we expect our conclusions to remain relevant. As an example, Bischoff
& Miller [25] consider the case of two treatments and a control with normal
responses of unknown variance, and they tailor the design to minimise total
expected sample size. Their test statistic combines estimates of the effect of the
selected treatment from Stages 1 and 2 in the same way as the TSE rule, so our
results suggest that using this estimate in a t-statistic will give good power.

Stallard & Todd [26] consider testing multiple treatments against a control
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in a sequential design in which the most promising treatment is selected at the
first analysis and subsequent interim analyses allow early stopping for a final
decision. Calculations follow similar lines to those of standard group sequential
tests; see, for example, [27, Ch. 19]. With just two analyses, this method reduces
to the TSE procedure and we conclude that it combines data before and after
treatment selection in an efficient way. The approach can be extended in various
directions: these include allowing treatments to be dropped over several analyses
[28, 29] or basing the treatment selection on a short term endpoint [30].

Magirr et al. [31] propose a new type of trial design for comparing multiple
treatments with a control at multiple analyses. As in the TSE procedure,
decision rules are defined in terms of the means of cumulative data on each
treatment and the control. An innovative approach to computation makes
it feasible to create designs comparing many treatments with several interim
analyses. Wason & Jaki [32] use numerical search methods to optimise features
of these designs, including the allocation ratio between active treatments and
the control.

DiScala & Glimm [33] consider an adaptive trial design with a survival
endpoint, in which treatment selection is based on a more rapidly observed
event. When analysing follow-up data on subjects who have already contributed
to a decision about treatment choice, there is a danger of type I error inflation
(see [34]) but the methods of Jenkins et al. [35] and Irle & Schäfer [36] can be
used to avoid this problem.

In Section 5.3 we considered the case where ‘treatments’ represent dose levels
and a dose-response model may be used. The smaller risk of safety problems
at lower dose levels motivates the decision in the MCP-mod procedure of Bretz
et al. [23] to select the lowest dose that produces a specified treatment effect,
even when safety responses are not considered directly. Some authors have
considered treatment selection and testing based on both efficacy and safety
data: Liu & Pledger [15] refer to safety outcomes when deciding on the treatment
to take forward from the first stage of a seamless Phase II/III design; König et
al. [37] and Kimani et al. [38] propose further procedures for this case. If a model
for efficacy, and possibly safety, is specified and the benefits of demonstrating a
new treatment to be effective are quantified, the question of how best to design
two (or more) phases of a drug development programme can be clearly stated.
The problem is challenging, even without the combination of data across stages
of a seamless design. This is an area of considerable current activity which is
starting to produce important insights; see, for example, [39, 40].

The first author received financial support from U.K. Engineering and
Physical Sciences Research Council, Pfizer U.K. and the Medical Research
Council (MR/J014079/1) while undertaking this research.
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Appendix

Connection between optimal data combination rules and

parameter estimates for a linear model

We consider the case of Section 5.1 where θ is a permutation of (γ, . . . , γ, 1) δ for
known γ ∈ [0, 1). Let µ̂1,i, i = 0, 1, . . . , K, denote the first stage sample means
on the control and K experimental treatments, so the estimated treatment
effects in Stage 1 are θ̂1,i = µ̂1,i − µ̂1,0, i = 1, . . . , K. For simplicity, suppose

θ̂1,K is the largest Stage 1 estimate and treatment i⋆ = K is compared against
control in Stage 2.

The optimal decision rule (8) in Section 5.1 is based on the likelihood ratio
of the combined Stage 1 and Stage 2 data under θ = ξi⋆ = (γ, . . . , γ, 1) δ and
θ = 0, and this can be written as the product of separate terms for Stage 1 and
Stage 2 data. The Stage 1 estimates θ̂1,1, . . . , θ̂1,K follow a normal linear model
with a single unknown parameter δ; also, given i⋆ = K, the Stage 2 estimate
θ̂1,K is normally distributed with mean δ. Let δ̂1 and δ̂2 be the maximum
likelihood estimates of δ based on Stage 1 and Stage 2 data, respectively, with
variances var(δ̂1) and var(δ̂2). Standard algebra shows the log likelihood ratio

between θ = ξi⋆ and θ = 0 for Stage 1 data is a constant plus δ δ̂1/var(δ̂1) and

for Stage 2 data it is a constant plus δ δ̂2 / var(δ̂2). Combining these terms, we
find the log likelihood ratio based on the Stage 1 and Stage 2 data together is
an increasing function of

δ

(

δ̂1

var(δ̂1)
+

δ̂2

var(δ̂2)

)

,

a multiple of the maximum likelihood estimate of δ for the pooled Stage 1 and
Stage 2 data. It follows that the first stage estimates θ̂1,1 . . . , θ̂1,K contribute to

the optimal decision rule with weights proportional to their weights in δ̂1, the
estimate of δ obtained by fitting a normal linear model to θ̂1,1, . . . , θ̂1,K .

At this point, it helps to represent the Stage 1 data as the sample means µ̂1,i,
i = 0, 1, . . . , K, on the control and K experimental treatments. In the case we
are considering, θ = (γ, . . . , γ, 1) δ and µ̂1,0, . . . , µ̂1,K follow a linear regression
model with E(µ̂1,i) = α+ δ xi, where x0 = 0, x1 = . . . = xK−1 = γ and xK = 1.

The estimate δ̂1 is a linear combination of µ̂1,0, . . . , µ̂1,K with weights summing
to zero, so

δ̂1 = w0 µ̂1,0 + w1 µ̂1,1 + . . . + wK µ̂1,K

= w1 θ̂1,1 + . . . + wK θ̂1,K

and we see θ̂1,1, . . . , θ̂1,K , contribute to δ̂1 with the same weights as
µ̂1,1, . . . , µ̂1,K . If γ = 0, so θ = (0, . . . , 0, 1) δ, it is straightforward to show

δ̂1 = µ̂1,K − 1

K

K−1
∑

i=0

µ̂1,i = θ̂1,K − 1

K

K−1
∑

i=1

θ̂1,i,
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in agreement with the contributions of θ̂1,0, . . . , θ̂1,K in the decision rule (11),
which can be regarded as a test of H0: δ = 0. If γ = 0.5, µ̂1,1, . . . , µ̂1,K−1

make no contribution to the estimate of the slope δ in the linear regression
E(µ̂1,i) = α + δ xi and so have zero weight in δ̂1, in keeping with their absence
from the TSE decision rule which is optimal in this case. For other values of γ,
inspection of the linear regression model shows that µ̂1,1, . . . , µ̂1,K−1 contribute

to δ̂1 with negative weights if γ < 0.5 and with positive weights if γ > 0.5, which
agrees with the pattern of weights for unselected first stage treatments in the
data combination rule (11).
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