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ABSTRACT

Recent articles have commented on the difficulty of proposing efficient reversible

jump moves within MCMC. We suggest a new way to make proposals more

acceptable using a secondary Markov chain to modify proposed moves — at

little extra programming cost.
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1 INTRODUCTION

Since 1970, when Hastings introduced Markov chain Monte Carlo algorithms into

the statistics literature, the use of Markov chain simulation has grown enormously

and become an almost routine tool in some application areas (Hastings, 1970, Gilks

et al, 1995). The appeal and applicability of these methods received another boost

with the extension to distributions defined over variable dimensions, reversible jump

MCMC (Green, 1995). Implementations of this RJMCMC methodology generally

use a selection of move types, some of which explore the sample space within a

fixed dimension while others make changes in dimensionality. Both types of move
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should be as efficient as possible in moving around the sample space. The first sign of

inefficiency is an unacceptably high rejection rate for the proposed changes.

In fixed dimensions, small changes usually have higher acceptance rates than large

changes and proposal mechanisms can be scaled to achieve a desired acceptance rate.

Brooks, Giudici and Roberts (2001) point out that this option is not always available

for moves between dimensions as there is often no natural distance measure between

states of different dimensions, for example, these may correspond to competing non-

nested models with different sets of parameters.

In this article we consider highly structured problems where jumps must be

made between multi-modal distributions in different dimensional spaces. We focus

on some of the severe problems that occur in sampling high-level posterior image

distributions. We suggest an approach which makes use of a secondary Markov chain

to modify an initial proposal before taking the acceptance decision. This allows the

proposal to move from a low-probability region of the new space towards a mode

before a comparison is made with the starting state. The approach has the benefit

that existing code may often be used to run the secondary chain. In Section 2,

we describe the reversible jump framework, the problem of slow movement across

different dimensions, and approaches suggested to alleviate this problem. In Section 3,

we describe our new approach and the circumstances in which it is likely to be

particularly beneficial. We present a simple example to illustrate the method’s potential

in Section 4 and an object recognition example in Section 5.

2 THE REVERSIBLE JUMP FRAMEWORK

Suppose we wish to sample from a distribution�(x) in which the vectorx is of

variable dimension. Let�n(x) denote the sub-density with respect to Lebesgue

measure onRn for values ofx with dimensionn. Supposeqmn(x;x
0) is a proposal

density onRn, or a subspace ofRn, for moves fromRm toRn and the reverse proposal

for moving fromRn to Rm has densityqnm(x0;x). (Form < n, transitions from

x 2 Rm to x0 2 Rn are often defined such thatx determinesm elements ofx0 and

qmn(x;x
0) is a density on the remainingn �m dimensional subspace ofRn; in this
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case, the reverse step is deterministic and the kernelqnm(x;
0 x) degenerate.) Green

(1995) gives the formula

�mn(x;x
0
) = min

�
1;
�n(x

0)qnm(x
0;x)

�m(x)qmn(x;x0)

�
; (1)

for the acceptance probability needed to maintain detailed balance with respect to�.

In any MCMC sampler, the acceptance rate of proposals should be reasonably

high. In fixed dimension problems, a proposal of the formx0 = x + �, where�

is a zero-mean random variable, can be calibrated by adjusting the variance of� to

achieve a suitable acceptance rate. Unfortunately, there is often no simple parallel to

this approach whenx andx0 have different dimensions.

Suggestions have been made for improving acceptance rates in RJMCMC. Green

and Mira (2001) introduce a second stage to the proposal mechanism in their “delayed

rejection sampler”. Following rejection of a proposed move, a second proposal is made

bearing in mind the first rejection and possibly making use of the rejected proposal

value; the overall acceptance probability takes into account this more complicated

structure. The method offers the option of proposing a large change in dimension and

switching to a smaller change in dimension if this is rejected.

Brooks, Giudici and Roberts (2001) return to the scaling idea by looking for

canonical jump functions which play the role of� = 0 in terms of tuning the

acceptance rate, but now acting across dimensions. For example, with nested models

such as AR processes of unknown order, a canonical jump would be to increase

the order by one, with the newly introduced coefficient equal to zero and all other

coefficients unchanged. Once suitable correspondences have been identified, proposals

can be constructed as scaled perturbations around these central moves. A second

idea suggested by Brooks et al (2001) is that of using auxiliary variables to “pad-out”

the problem to be of the same dimension for all models under consideration. These

auxiliary variables retain information about a model even when that model is not the

current one. This means that when a move back to that model is proposed, the auxiliary

variables may be able to guide the proposal to somewhere close to where it last left.

In another approach, Green (2002) tries to regain some of the simplicity of

the random walk Metropolis sampler with a view to automating implementation of

RJMCMC methods. A trial run is used to approximate the mean and variance ofx
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in each dimension. These values are then used in constructing appropriate dimension

Gaussian proposals both within and between dimensions.

Stephens (2000) suggests an alternative to RJMCMC sampling of mixture

distributions based on spatial birth and death processes. Here, the mixture components

correspond to individual marked points in the point process and dimensionality

changes are made using birth and death processes to simulate the point process.

Although this approach can be generalised to other applications, it does not necessarily

offer a solution to mixing problems: Cappe, Robert and Ryden (2001) note the close

relationship between RJMCMC and spatial birth and death processes, and warn that

problems affecting the former are liable to arise in the latter.

3 ALTERNATIVE PROPOSAL MECHANISM

When a target distribution is highly modal within each dimension, proposals which

land away from the modal region have virtually no chance of acceptance. If the

locations of modes are not initially known, designing a matched pair of dimension-

changing proposals to produce jumps from mode to mode requires much ingenuity, if

indeed it is possible at all. Our approach is to modify the value of a simpler RJMCMC

proposal, moving it closer to a mode before the accept-reject decision is taken.

Suppose the Markov chain sampler is currently in statex 2 Rm and we have

chosen to consider a jump toRn. We first generate a proposalx0 inRn from the density

qmn(x;x
0), just as before. But we now follow this byk fixed-dimension MCMC steps

through statesx1; : : : ;xk = x�, each step satisfying detailed balance with respect to

a new distribution��n(x). The final statex� 2 Rn is either accepted as the next state

of the Markov chain or rejected, in which case the Markov chain remains atx. In

the reverse form of this move, a jump fromx� 2 Rn to Rm is proposed by takingk

fixed dimension steps withinRn, each of which satisfies detailed balance with respect

to ��n(x), ending atx0 say, then sampling from the densityqnm(x0;x) to give the

proposalx for possible acceptance.

The acceptance probability must be calculated to ensure detailed balance with

respect to the overall target distribution�. LetP denote the transition kernel for the full
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sequence ofk moves inRn from x0 to x�. Assuming equal probabilities of choosing

the two types of move fromRm toRn and fromRn toRm, we require

Z
(x;x0;x�)2A�B�C

�m(x)qmn(x;x
0
)P (x0;x�)�mn(x;x

�
)dx dx0 dx� =

Z
(x;x0;x�)2A�B�C

�n(x
�)P (x�;x0)qnm(x

0;x)�nm(x
�;x)dx dx0 dx�; (2)

for all Borel setsA 2 Rm, B 2 Rn andC 2 Rn (or suitably defined setsB(x) when

qmn andqnm are defined on subspaces ofRn andRm). Then, the probability under

� of being in statex, moving tox0 and on tox� and accepting this proposal exactly

balances the probability under� of being inx�, making the reverse transitions tox0

and on tox and accepting this proposal.

One way to make the integrals equal is to make the integrands in (2) equal by

taking

�mn(x;x
�
) = min

�
1;
�n(x

�)P (x�;x0)qnm(x
0;x)

�m(x)qmn(x;x0)P (x0;x�)

�
(3)

and

�nm(x
�;x) = min

�
1;
�m(x)qmn(x;x

0)P (x0;x�)

�n(x�)P (x�;x0)qnm(x0;x)

�
:

Since each of thek individual transitions which compriseP satisfies detailed balance

with respect to��n, so doesP . Hence,��n(x
�)P (x�;x0) = ��n(x

0)P (x0;x�) and (3)

simplifies to

�mn(x;x
�
) = min

�
1;
�n(x

�)��n(x
0)qnm(x

0;x)

�m(x)��n(x
�)qmn(x;x0)

�
: (4)

There is an asymmetry in transitions in the two directions: in moves fromRm to

Rn the jump across dimensions occurs first, then the MCMC steps under��n; moves

in the other direction start by taking steps withinRn under��n and then jump to the

proposal inRm. Withm < n, this may be appropriate if there is only a need to improve

initial proposals in the higher dimensional space. If it is also desirable to modify the

value reached on jumping toRm a spell of MCMC sampling under suitably modified

target distributions could be included in bothRm andRn, either side of the reversible

jump step, with a consequent change in the acceptance probability formula.
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It is instructive to compare likely values of�mn(x;x
0) given by (1) for the original

method and of�mn(x;x
�) in (4) for the new method. Since the current statex

has arisen in a Markov chain with equilibrium distribution�, we can expectx to

take a typical value for the sub-distribution�m. Assuming it is relatively easy to

define a suitable transition to a lower dimension, we supposeqnm(x
0;x) will be

comparable with�m(x). Difficulty arises in generating the additional elements in

x0 in such a way thatqmn(x;x
0) places weight on important parts of�n(x0): if

this is not achieved andx0 is a typical sample fromqmn(x;x
0) but not from�n, we

have�n(x0) � qmn(x;x
0) and the acceptance probability�mn(x;x

0) in (1) will be

extremely small. The difference in our new method is that the ratio�n(x
0)

qmn(x;x0)
in the

old acceptance probability (1) is replaced by

�n(x
�)

��n(x
�)

�
��n(x

0)

qmn(x;x0)
(5)

in the new�mn(x;x
�) given by (4). The two factors in (5) are still liable to be less

than 1 but a good choice of��n, intermediate in some sense betweenqmn and�n, can

ensure that (4) is substantially larger than (1).

4 A SIMPLE ILLUSTRATIVE EXAMPLE

The following example demonstrates the scale of improvement our proposed method

offers. Suppose� is defined onR1 andR2 with �1 equal to0:5 times aN(0; 1) density

onR1 and�2 equal to0:5 times a bivariate normal density onR2 in whichX1 andX2

are independent withX1 � N(0; 1) andX2 � N(0; �2). In proposing transitions

fromx 2 R1 tox0 2 R2 we setx01 = x1 and generatex02 from aN(0; �2) distribution

where�2 � �2; thus, this is an example of a proposal kernelq12 which is poorly

matched to�2. For transitions fromx0 2 R2 to x 2 R1 we simply takex1 = x01.

Consider first the standard reversible jump method when the typical valuex02 = � is

proposed. (A more thorough treatment would integrate over theN(0; �2) distribution

of x02 but this simple case provides a simple, and compelling, illustration.) The factor

in �2(x
0) associated withx01 is �1(x01) and the remaining factor is aN(0; �2) density

evaluated atx02 = �. By definition, q21(x0;x) = 1. In the denominator of (1)

�1(x) = �1(x
0

1) andq12(x0;x) is aN(0; �2) density evaluated at�. Writing fv(w) to
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denote aN(0; v) density evaluated atw, the acceptance probability ofx0 is

�12(x;x
0
) = min

�
1;
�2(x

0)q21(x
0;x)

�1(x)q12(x;x0)

�
=
f1(x1)f�2(x

0

2)

f1(x1)f�2(x
0

2)

=
f�2(�)

f�2(�)
=

�

�
expf�

1

2
(
�2

�2
� 1)g (6)

and for�2 � �2 this probability can be very small.

Now consider our new method with��2 defined as a bivariate normal density

in which X1 andX2 are independent,X1 � N(0; 1) andX2 � N(0; �2) where

�2 < �2 < �2. After an initial move tox0 wherex01 = x1 andx02 takes the typical

value�, thek MCMC steps will lead to a new valuex�1 of x1 and a valuex�2 sampled

from ��2 . Using the typical value� for x�2, we obtain

�12(x;x
�
) = min

�
1;
�2(x

�)��2(x
0)q21(x

0;x)

�1(x)�
�

2(x
�)q12(x;x0)

�
=
f1(x

�

1)f�2(x
�

2)f1(x1)f�2(x
0

2)

f1(x1)f1(x
�

1)f�2(x
�

2)f�2(x
0

2)

=
f�2(�)f�2(�)

f�2(�)f�2(�)
=

�

�
expf�

1

2
(
�2

�2
+
�2

�2
� 2)g: (7)

Maximising (7) over�2 gives the choice�2 = �� which we shall assume to be used.

In this case

�12(x;x
�
) =

�

�
expf�(

�

�
� 1)g: (8)

Since only the square root of the ratio�2=�2 now appears in the exponential term, this

acceptance probability decreases much more slowly than (6) as�2=�2 increases. A

few numerical values of (6) and (8) are tabulated below.

�2=�2 �12(x;x
0) �12(x;x

�)

10 0.035 0.364

25 0.00003 0.092

50 1:6 � 10�10 0.016

100 3:2 � 10�21 0.0012

The clear conclusion is that our method can lead to a practically useful acceptance rate

in situations where the original method is hopelessly slow. Further analysis of this

example shows there can be additional gains from introducing a succession of target
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distributions intermediate betweenq12 and�2: with r�1 suitably chosen intermediate

distributions, therth root of�2=�2 appears in the exponential in�12(x;x
0).

In this example,�� is a “tempered” version of the target distribution�, at least

as far asX2 is concerned. Tempering is a natural way to create a flatter version of

� for the transition process to pass through and we use this in our object recognition

example in the next section, tempering the conditional distribution of the components

of interest. Sampling from a tempered version of� can be based on the same fixed-

dimensional transitions used in sampling from�, hence little additional programming

is needed beyond that required to implement the original reversible jump method. (For

more discussion of tempering see Neal, 1996.)

5 AN EXAMPLE IN OBJECT RECOGNITION

We consider an object recognition example which first motivated our search for an

improved proposal mechanism. The dataY displayed in Figure 1 were obtained by

confocal microscopy. Our aim is to identify the number of the cells,N , in the scene

and approximate their shapes by a set of ellipsesX. Using a Bayesian approach,

inference is based on the posterior distribution ofN andX given the dataY = y.

In line with our previous notation, we denote this posterior distribution�(x) and let

�n(x) denote the sub-density of the set of parameters for scenes withn cells — now

with respect to Lebesgue measure onR6n since each cell has 6 parameters. Thus,

�n(x) / L(yjn;x) pn(x) (9)

whereL(yjn;x) is the likelihood of the observed data givenN andX , andpn is

the density assigned to this scene in the prior model. Following the marked pointed

process approach of Baddeley and van Lieshout (1993), we take the prior model to be

a hard core interaction point process which prevents cells overlapping. The dataY are

assumed to be Gaussian with different means and variances assigned to observations

from different cells and from the background region; for more details see, for example,

Rue and Hurn (1999) or Al-Awadhi (2001).

In MCMC sampling from�, several types of proposal are defined, including fixed

dimensional moves which alter the size, shape or location of a single cell, as well as
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FIGURE 1: The image data.

reversible jump moves which alter the dimension ofx by adding or removing a cell.

Other very useful proposals are to split one cell into two or, conversely, to merge two

cells into one. Such merge and split transitions are essential when there is uncertainty

whether a feature in the data is one large cell or two smaller ones because moving

between these two configurations by birth and death moves would require the chain

to pass through intermediate states of very low probability. It is difficult to create

rules for splitting or merging cells expressed in terms of the various shape, orientation

and location parameters which are both efficient and inexpensive to compute. Crude

proposals are generally available, but these tend to suffer high rejection rates since the

current configuration has had ample opportunity to match the data well while an initial

proposal of merged or split cells has not. Incorporating a fit to the data into the proposal

itself is hard because of the computational cost of evaluating the posterior over a range

of values for the proposal and of evaluating the reverse step to compute the acceptance

probability. Rue and Hurn (1999) demonstrate one approach for such “data-matching”

suitable for work with deformable polygonal templates, but the restriction to ellipses

prevents us from using their approach here.

Figure 2 displays some possible split and merge type proposals for elliptical

templates. These proposals are easily generated and use the common RJMCMC idea

of averaging pairs of parameters when reducing dimension, and perturbing a parameter

by a random amount in opposite directions to increase dimension. It is only sensible

to attempt to merge cells which are close together and we control the distance between

cells for which merging is considered by a parameter�. To illustrate how poorly

the Markov chain can mix, we note results from runs of 20,000 steps of the sampler

incorporating all move types: using a range of values for the separation parameter�,

these runs produced between 1 and 7 accepted splits and no merges.
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FIGURE 2: Some possible proposed split and merge moves

Our suggestion is to improve the data matching of a proposal before making the

accept/reject decision. We apply tempering to the contribution to� from the likelihood

term to define the modified distribution

��n(x) / L


(yjn;x) pn(x): (10)

Here 
 2 (0; 1) and a good choice of
 should give sufficient weight to the data

to improve the data-fit of the final proposalx� while limiting the effect of the low

probability under� of the initial proposalx0 on the final acceptance probability (4). In

modifying x0 we use the usual fixed dimensional proposal types but with acceptance

probabilities appropriate to the target distribution��. Note too that only the cells

affected by the RJ proposal are changed, all others are held fixed.

In this example,� and�� have the same support. In consequence, any proposalx0

with zero probability under� (as a result of cell overlaps, for example) can be rejected

straight away as we knowP (x�;x0) will be equal to zero in the hypothetical return

route from a legalx�. It may sometimes be beneficial to extend the support of��,

thereby allowing initial jumps to an illegalx0 to revert to legitimacy before reaching

the final proposalx�. In order to encouragex0 to be in the state space of�, relatively

little probability should be assigned to the extension of the state space. Similar ideas

have been explored in a different context by Hurn, Rue and Sheehan (1999).

We have repeated experiments running 20,000 iterations of reversible jump
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Markov chains using various combinations of the tempering parameter
 and the

number of steps,k, from x0 to x�. Results, averaged over 3 replicates in each case,

are listed in Table 1. The separation parameter� was set equal to 500 and results

should be compared with the 0 merges and 5 splits previously obtained for this case

using unmodified proposals. Table 1 shows an increase in the number of successful

splits and merges across parameter combinations. Similar improvements were also

seen in runs for other values of the parameter�. There is no significance evidence

of improvement whenk is increased from50 to 300, suggesting that adequate data-

matching occurs quite quickly and a low value ofk is sufficient. There is welcome

robustness to the choice of the tempering parameter
: values between 0.1 and 0.001

seem effective here. The success at very small values of
 is perhaps surprising but

can be attributed to the strong signal in this problem which leads to a highly modal

target distribution�. Some pairs of image configurations during the RJMCMC runs

are shown in Figure3 to illustrate the scale of the changes. In each pair, the arrow

indicates the area about to be affected.

The modified method has virtually no extra programming cost but it does require

slightly greater computation due to thek extra steps fromx0 to x� in modifying

proposals. Since only split and merge proposals are affected, and the fixed dimensional

moves within these types are not as costly as the moves between dimensions, the

run time does not increase anywhere near a factor ofk. Nevertheless, the modified

method has succeeded in making merge moves and has improved a sampler which was

really not mixing at all. Although the acceptance rates remain painfully low, we now

have greater confidence that the sampler is capable of moving from one dimension to

another through these essential routes. For this extremely hard sampling problem, this

is significant progress.

In conclusion, the approach suggested in this article is one way in which low

acceptance rates for RJMCMC samplers could be improved. It is particularly suitable

for problems where it is hard to design very efficient proposals directly, but where

the modality of the target distribution gives clues as to why many proposals are

rejected. As another application, consider mixture modelling where observations are

allocated to an unknown number of components; proposing to split a component
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k = 50 k = 100 k = 300


 mergessplits mergessplits mergessplits

0:5 2 4 1 1 2 4

0:1 6 14 5 9 5 7

0:01 3 3 10 5 10 4

0:001 2 3 8 6 10 4

0:0001 1 2 4 5 4 7

0:000001 2 2 0 2 3 6

TABLE 1: The average number of accepted merges and splits for different values of


andk, averaged over 3 runs.

may only be acceptable if the observations are reasonably well allocated to the two

new components. Although some extra running costs are incurred in the modified

proposals, there is little additional programming outlay, as existing code may be used.
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