SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK

TECHNICAL REPORT NO. 463
(Preliminary Report)

June 1980

ASYMPTOTICALLY OPTIMAL PROCEDURES FOR SEQUENTIAL
ADAPTIVE SELECTION OF THE BEST OF SEVERAL
NORMAL MEANS

by
Chris Jennison, Iain M. Johnstone

and
Bruce W. Turnbull

This research supported in part by HEW PHS Grant No. R23 ES01714.

Presented at 173rd Meeting of the Institute of Mathematical Statistics, Davis,
California, June 16-18, 1980.






§ 1  INTRODUCTION = Suppose we have k (> 2) normal populations with
common known variance and unknown means. Without loss éf generality we
can take the common variance to be 1. We wish to select thé population
with the highest mean, call éhis the best population. We want to guaran- .
tee the probability of correct selection (PCS) to be at iéast P (%i< P < 1)
whenever the mean of the best population exceeds that of the secbndlbest
by at least §. This is an exémple of the indifference zone apprbach to
selection problems, where the expédrimenter gives a small difference in
population means, &, which it is not worthwhile trying to Hetéct}

The problem was ‘first formulated and solved by Bechhofer (1954).
He gave a fixed sample size procedure in which an equql‘number of obser-
vations is taken from each population. Just as in one popuiation problems,
a reduction in average sample size can be achieved by using a sequential
procedure. It also seems feasible to reduce sample size by sampling
unequally from the k populations. Such sampling is called data dependent
or adaptive sampling and the reductions it can achieve in sample size will
become apparent.

Paulson (1964) gave a sequential procedure which has the feature
of elimination. During the course of an experiment populations are
successively eliminated from consideration and observations are allocated
equally among the remaining populations. Fabian (1974),using a likelihood ratio
method employed in Lawing and David (1966),gave a better lower bound for
the guaranteed PCS than that proposed by Paulson. Swanepoel and Geertsema
(1976) use a result of Robbins (1970) to give a modified version of

Paulson's procedure with a smaller average sample size.



Bechhofer, Kiefer and Sobel (1568, chapter 3) suggested another
sequential procedure based on an identification problem. In the identi-
fication problem the values of the population means are assumed known,
but the correspondence between_means and populations is unknown. The
problem is to ide;tify the population asscciated with the highest mean.
As long as observations are taken equally from all k populations the
identification problem approach leads to a solution of our selection
problem. We call such sampling "vector at a time sampling' (VT). If
adaptive sampling is used it is difficult to determine the PCS guaranteed
since the least favorable configuration may not be the usual one, and may
depend on the sampling rule employed.

Turnbull, Kaspi and Smith (1977) investigated various sampling rules
for the identification problem. However, their procedures do not give
a solution to our problem for anything other than vector at a time
sampling since they do not satisfy the PCS requirements. As in the case
of Bechhofer, Kiefer and Sobel's procedure it is difficult to de%er&ine
the least favorable configuration when adaptive sampling is used.

The procedures we consider are similar to Paulson's procedure,
which latter we now describe. The populations are compared in pairs.
When the observations on one population are sufficiently smaller than
those on another the first one is eliminated. Uneliminated populations
are sampled equally. Paulson noted that to guarantee a PCS of P* it is
sufficient to ensure that P{A fixed inferior population eliminates the
best population} < (1 -pP*)/(k - 1), and this is a relatively simple
requirement as it involves observations on only two populations. Denote

observations on two populations X and Y by {Xi} and {Yi}, (i=1,2,...).



While neither population has been eliminated there will be an equal
number of observations from each. When this number is n, define the

statistic ‘

n n '
S = ) X, - )} Y.. (1.1)

If (Sn,n) lies outside a triangular continuatiop region we eliminate the
population with the smaller sum of observations. Fabian proposed the
following method of calculating an approximation to the error probability.
Let GXY = mean of population X - mean of population Y. The jdint dis-
tribution of the {Sn} is the same as that of a Brownian motion with

drift %_GXY per unit time, observed at times {2nl}. ﬁenée the behaviour
of Sn can be approximated by a Brownian motion with continudous time
parameter and error probabilities may be calculated accordingly.

OQur first generalization of Paulson's procedure is to allow an
arbitrary continuation region, as long as the procedure terminates with
probability one for any configuration of the population means. The square
root region of Schwarz (1962) and a region proposed by Swanepoel and
Geertsema (1976) are both asymptotically optimal in the sense of minimizing
total expected sample size (ASN) as P* + 1, This remains true for the
procedures with adaptive sampling which we develop.

In order to deal with adaptive sampling we need a statistic to
replace Sn' At a particular point in the experiment denote the number

of X and Y observations by m and n respectively. Set

ey
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X(m)

Y(n)

"
S

A natural statistic to consider ig
_m = =
Z{(m,n) = — (X(m) ~ Y(n)) . (1.2)

Robbins and Siegmund (1974) show that for the two population problem with
certain sampling rules the random sequences {Z(m,n)} have the same joint
distribution as a Brownian motion with drift GXY observed at times {E%HJ
The restriction on the sampling rules is that at each stage the choice

of which population to sample next must depend only on the differences
between observations, X5 - yj. Equivalently the choice must be independent

of

In view of the translation invariant structure, this is a reasonable
restriction for the two population problem and there are plenty of adaptive
procedures allowed. However, roughly speaking, in the k population

problem (k > 2) a sampling rule which satisfies the condition for all

pairs of populations must be independent of the -sample mean for each
population. Since the motivation for adaptive sampling rules is to reduce
sample size by estimating the population means and sampling accordingly

this is an unacceptable restriction. With a general adaptive procedure



the joint distribution of the sequence of statistics {Z(m,n)} correspond-
ing to a comparison of a given pair of the populations is not simple,

nor is Z(m,n) a sufficient statistic for GX For any observation,

v
Xi say, future values of its coefficient in the expression for Z(m,n),
(1.1), depend on the sampling process, which in turn depends on Xi' For

explicit examples of the difficulties that can' arise ‘in the k-population

case, see Appendices 1 and 2.

; 3
i

In view ofkthe;difficulty in rigorously applying a Brownian approxi-
mation to statistics of the form Z(myn), two approaches ;re adopted in
this report. The first, described in Sections 2 to 5, prbpodes a class
of statistics for which the Brownian approximation is much easier to
justify, although the degree of "adaptiveness" permitted for the sampling
‘rules is restricted somewhat. A more satisfactory mathematical asymptotic
theory is then possible, but only preliminary simulation results are
available at this stage. The second approach, discussed in Sections 6
and 7, uses the "natural statistics' of the form Z(m,n) suggested by
analogy with the two population case. In the absence of a convincing
Brownian approximation, PCS guarantees are not available, Fully adaptive
sampling rules are allowed however, and heuristic mean path approximations
can be used to compare the efficiencies of various appealing sampling
rules for any given stopping region. Simulation results bear out the
conclusions of these calculations and in view of the attained PCS values,
suggest that the Brownian approximation may in fact be reasonable for the
sampling rules used in practice.

The procedures defined in Section 2 may be briefly described as
follows. We divide the experiment into stages, the sampling mechanism

and overall length of each stage is determined at the end of the previous



stage. Statistics of the same form as the {Z(m}n)} are calculated
separately from observations in each stage. Summing these over all the
stages so far gives a sequence of statistics whose joint distribution

is approximately that of a Brownian motion with drift GXY observed at
appropriate times, The coefficient of any observation in this new
statistic is determined before the observation is taken and it is there-
fore independent of the value of the observation.

We consider the class of tests based on this multistage statistic
with arbitrary stopping region and stége-wise adaptive sampling, as long
as the test terminates with probability one for all configurations of
the population means. Included as special cases are procedures with
deterministic (i.e. specified in advance) sampling rules, in which case
there is only one stage and our statistics are the original {Z(m,n)}.
Within this sub-class are procedures using vector at a time sampling
such as Paulson's procedure or Swanepoel and Geertsema's procedure.

Another interesting sub-class consists of two stage procedures.
Typicaliy, one might run a preliminary experiment with, say, vector at
a time sampling and then use the sample means thus obtained to decide on
the proportions in which to sample during the main part of the experiment.
These two stage experiments have the advantage of being simple to apply,
and some preliminary simulation results are presented in Section 5. A
point on which some work remains to be done is the choice of initial
sample size. There is a loose analogy between these two stage procedures
and the more classical two stage procedures proposed for estimation and
testing of normal means when the variance is unknown (e.g., Stein (1945).,
Dudewicz and Dalal (1975), Rinott (1978), Mukhopadhyay (1979).

Indeed it is Jikely that our approach could be extended to give adaptive



sampling rules for selecting the bestinormal mean in the dase’ of ' unknown
variances,

In Section 3 we obtain an asymptotic lower bound for the efficacy
([Average Sample Number] + [-log(error probability)]) of any stopping
region and stagewise adaptive sampling rule as P* -+ 1. This is based on

a corresponding result for the exit time of a Brownian motion from an

1-p:
k-1

arbitrary region (with prescribed érroﬁ probability ) symmetric about
the horizontal axis. |

In Section 4 it is shown that this lower bound is sharp: it may
be attained asymptotically by appropriate two-stage sampling riules in
combination with the stopping region proposed by Schwarsz (1962), which
is well known to be optimal in various seqﬁential Bayesian settings. For
this argument, we modify a result of Berk (1978) on asymptotic error
probabilities for random walks to the Brownian motion case. Section 5
contains discussion of some other aspects of multistage procedures and
some simulation results.

In Section 6, a fully adaptive sampling rule is proposed for use with
the "natural statistics" Zij(mi’mj)’ 1 E_i f_j <k, which is simple to use and
has good efficiency properties. Essentially, it tries to ensure for any
epoch N at which kN populations are uneliminated, that the numbers of
observations so far on each of the surviving populations are in the
ratio /?;:i} 1 ... :1, with the largest number of observations belonging
to the population currently estimated as best. This rule is motivated
by optimal allocation results for comparison of k normal treatments with

a control (Dunnctt (1955), Bechhofer (1969)). It is shown for any given

region that this suampling rule is asymptotically optimal in slippage



configurations of the population means, and that for any configuration
in the preference zone it domiﬁates the corresponding procedure based on
vector at a time sampling. An asymptotic lower bound is derived for the
efficacy of various sampling rules for a given stopping.region, and

preliminary computations'indicate that the /F;tf‘rule‘achieves greater

than 90% efficiency relative to this lower bound for reasonéble configura-
tions of means. It is also of interest to consider (and to:try to minimise)
the total number of observations on the 'inferior' populations (i.e. all
except the one selected as ‘best;) -- this is referred to as thé inferior
treatment number (ITMN). We show that the above "ASN" results héve'
analogues for the ITN problem. Finally, Section 7 reports on the encourag-

ing simulation results obtained using the VkN—l rule and the 'matural

statistics.



§ 2 GENERAL FORM OF THE MULTISTAGE 'PROCEDURES Observations xip
(1 <i<k,p>1) are available from each of k (k_i_Q) populations

T s If k = 2 the extra structure necessary to accommodate

10 Moo wees Mo
adaptive sampling is’ not required (for the purpose of minimising ASN)

and the procedures can be simplified. The observations {xip} are inde-
pendently distributed normal random variables .with unknown means ui and
common known variance which we take to be 1. When a total of N observa-
tions have been taken we sdy we ate at epoch N. The experiment is divided
into stages and we denote the current stage by s(¥), or for simplicity just

[

by s. We relabel the observations as Xi (1<i<k,r>1,1<pc< Mir)

rp - = - —
where r denotes the stage in which an observation is taken and p its
order in that stage. Let mis(N) be the number of observations taken on
population ﬂi‘in the current stage s, at epoch N. For r < s iet’Mirvbe

the total number of observations taken from T, in a previous stage r.

If T and ﬂj have not been eliminated at epoch N define

~ ) m, ()
X, (N)= N R
is miSENi p=1 isp ,
M,
- 1§
X = = e ' (r < s)
ir Mir p=1 irp
s~1 Mir Mjr
zZ,.N) = § —— (X, -X.
by el M r+djr ir jr

mis(N)lnjs(N) _ _
+rﬂ-sj_r——‘(—5‘N+ij N (XiS(N)_ij(N)) s

s=1 M., M, m,.(M)m. (N)
ir Jjr 1] 3s

o = - = + _ .
ij pe1 HiptHyy mij(N)-han(N)
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Elimination Rule At epoch N-1 let Teol = {i: T, not yet eliminated}.

At epoch N eliminate all populations nj,fj € IN 1 for which there is an

ie IN—l with

';.L‘ > .o 3 ! . ! = .
Zy;(N) > glt, (0}, | (2.1)
where g is a non-negative function depending on P%. We say m. eliminates
Wj. This leaves a new set of uneliminatéd populations IN S-IN 1 Once a

population has been eliminated no more observations are taken on it. When

only one population remains, select it as the best population,

Stopping Region  Plotting Zij(N) against tij(N) we see that (2.1) holds

!
if Z,.(N) lies above g{t..(N)}. If Z,.(N) < —g{t..(N)} then (2.1) holds
1] 1] 1] = 1]
with i and j interchanged, which corresponds to eliminatign of m. by ﬂj.
We refer to the region inside Z = g(t), Z2 = -g(t), t > 0 as the continua-
tion region and its complement as the stopping region. Denote the con-

tinuation region by C.

Sampling Rule The sampling mechanism is determined by stages. The

number of observations to be taken on each population during the first
stage and the order in which they are to be taken must be determined
before the first stage is started. If a population is eliminated the
remaining observations due on it are not taken but observations on the
other populations are taken as originally planned. At the end of a stage
the sampling for the next stage is determined. The only restrictions

we 1mpose on the sampling rule and stopping region are that they should
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give the required PCS by the method described below and the experiment
should terminate mlmost surely for any configuration of the population

means.

Guaranteeing Probability of Correct Selection Let

Moy S¥Wpo3 S ors ¥y S ¥k

denote the ordered means. We consider only the case where u[k—lj f_u[k]—d

as only then do we have to guarantee a PCS. Now

P{Incorrect selection} = P{ﬂ[k] is eliminated at some point}

= P{ u (7. eliminates T )}
170k ] L]
f—i#[k]'P{ngk](N) exits C upwards}. (2.2)

Here ﬂ[k] = ﬂj, Zi[k] = Zij’ ti[k] = tij,where uj = u[k]' By exiting

C upwards we mean that the first point at which (Zi (N), t (N)) 1lies

(k1] ifk]
. . > _ . .

outside C is in the upper half plane {Zi[k](N) __O} Since T, or “[k]

may be eliminated by a third population there is a positive probability

that Zi[k](N) remains in C throughout the experiment.

Fix i and j and let 6ij = ui—uj. It follows, as in Robbins and

Siegmund (1974), that {Zij(N); N=1,2,...} have the same joint distribution
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as a Brownian motion with drift Gij (per unit time),Bij(t) say, observed
at times {tij(N)}. We say that Zij can be embedded in Bij and we can
regard the Zij(N) as being generated by observing Bij at the random
times {tij(N)}.

To obtain an approximate upper bound on the error probability we
consider the exit probabilities of a continuous time Brownian motion.
Suppose B_A(t) is a Brownian motion with drift -A (A > 0) and {Z—A(ta)}
are the values of a Brownian motion with drift -A observed at the sequence
of times {td; a = 1,2,...}. If the increments {ta - ta—l} are small,

then
P{Z—A(ta) exits C upwards} = P{B_A(t) exits C upwards}. (2.3)

Since the exit time of the discrete process is stochastically larger than
that of the continuous process and the drift is negative, it is reasonable

that
P{Z-A(ta) exits C upwards} = P{B_A(t) exits C upwards}, (2.4)

This was noted by Anderson (1960) and we give a proof in Appendix 3 for
certain types of random sequence {ta} . In our context the proof does

not apply, and we use the approximation (2.3). Let -A = then

Gi[k]’
A > &8. Since Z.
il

k] may not exit C at all, (2.3) implies

P{Zi[k](n) exits C upwards} < P{B_A(t) exits C upwards}

i_P{B_G(t) exits C upwards}. (2.5)
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From (2.2) and (2.5) it follows that PCS z_P* is guaranteed approximately

if

P{B G(t) exits C upwards} < Ll (2.8)

- k-1

where B 6(t) is a Brdwnian motion with drift -8.

Since the smallest value tij can take is %—We need only consider
the behaviour of B G(t) on [%3w) and (2.6) becomes
1-pi

P{B_g(1) > g(1)} < =, v(2.7)

where T ={inf t > B G(t) ¢ C} and TA is assumed finite é.s. for

N[ =

§

all A ¢ R. We shall make use of this fact later to avoid difficulties
near t = 0. | |

This criterion is a property of the continuation region only and
so, approximate PCS is guaranteed independently of the sampling mechanism.
This leads to considerable simplifications in the search for optimal
procedures,

In the next three sections we shall consider multi-stage procedures
of the form described in this section. Such procedures are defined by
a sampling rule and a non-negative function g(t) for which (2.7) holds.
Let the class of all such procedures be C and let C(§,P*) be the sub-

class of procedures guaranteeing PCS > P* for indifference parameter §.



1t
§ 3 AN ASYMPTOTIC LOWER BOUND FOR EFFICACY For a fixed § > 0 we investi-
gate the minimum expected sample sizes as P% + 1. Let BA(t) be a standard

Brownian motion with drift A and let P denote the probability measure

A
on the space of paths B(t), generated by BA(t). Set £ = %E;i-. For

each P* we have a non-negative function ge(t), t > 0, and the region
bounded by B = ge(t), -B = —ge(t) and t = 0 is the continuation region Ce'
. . 1
= > > -
Setting T_ infit B o lBA(t), __ge(t)}, g. Must be such that PA{TE co}
= 0 for all A ¢ R and PS{B(TE) < -gli< €. The first lemma refers to a

general property concerning Brownian motion.

Lemma 3.1 Let BA(t), ge(t), CE and T, be as above, A ¢ R. Then given

any T > 0,

T < T) =0 €~ 0.
PA( " ) as

Proof Case 1, A = 8. For any u > 0

P {'I‘E < T} = P(S(Ql) + Pa(%’ + PG(QB),

$
where
Q, = {B(t): T < T, B(T)) > g, B(T.) > u},
@y = {B(t): t_ < T, B(r)) > g, B(r) <'u},
and 93 = {B(t): T, < T, B(Te) f_-g}-

Now ,
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Pg(S2)) j_PG(sup{B(t): t < Tk >u),

dp
P(Q) = [ apg = | 7 P
2, Q, -8

= f exp{QGB(TE)} dp_

< exp(28u)P {B(T ), > g}
i =6 g —
92

S

=§exp(26h)P6{B(T€)i< -g} EFexp(QSu) , and ‘
PG(Q3) < P6{B(T€) < -gl <e.
Hence,

PG{TE < T} j-Pé(sup{B(t): t E.T} z_u) +(1 + exp(28u)) e .

o
, then choose £ such that

Choose u = u® such that the first term < g

o e}
the second term < g-for u=u and € < € . Then

]
< <7 <e .
PG{Te T} <n fore<e

Case 2, A # §, For any u > 0

PA{T€ < T} = PA(Qu) + PA(Qs) y
where

q, = {B(t): T, < Ty [Br)| >u},
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9, = {B(t): T_<T, |B(t )| < u}.
Now

PA(Qq) f_PA(sup{B(t): t < T} > u)

ap
P () = [ dp = [ == ap,
Q Q S
5 5
2 .2
é exp{(A-d)B(TE) - > TE} dP
5

| A

exp{|A-8] u + %1A2—62| T} PG(TQ < T).

n -

Choose u = uO such that PA(QH) < 5 The result for case 1 allows us

to choose €° such that PA(QS) < g—for u = uo, € < €°. Then

PA{T€ < T} <n for ¢ _<_€O. B

We now derive an asymptotic property of the stopping time, Te» 85 € > 0.

Theorem 3.2  Let BA(t), ge(t), Ce and T, be as above, A ¢ R. Then

T

E < 2

P, { -v}*+0ase+0
A -loge _-(]A|+5)2

(3.1)

k]

where v > 0 is as small as we please,

Proof Case 1, A > 0. LetQ, = {B(t): B(TE) > g}, then

dP—G

= [ =— dr,.

@) =[ ar
L AR TS 1 0 A

1 1

€ > P

0
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Hence
-B(T ) 2 .2 T
€ (A™-67) € 1.
é expll—eo—  (A+8) + = s [ogeitf-logel P, < e. (3.2)
€
1
Suppose there is a sequence {ei}, €; * Oandn > 0 sugh.that
T
€5
—_— < A} > i
PA{—logei A; n for all i . (3.3)
Given A > 0, £ > 0 EtO(A,E) such that
B(t) £ o
PA{ = < AtA} > 1 - Z for t >t
By Lemma 3.1, EEO(A,E) such ‘that
P, {7 >t°}>1-é for g < ¢°
At e = — 2 . 2
hence
B(TE) O
PA{ = <AMA} > 1 - fore<e . (3.4)
>

Since A > 0 it follows from the lemma that PA{B(TE) >gl+1lase > 0.

Take El(n) such that
P{B(1 )>g}>1-1 for € < et (3.5)
A (SR - 3 = ) :

Putting £ =

w|3

» (3.3), (3.4) and (3.5) imply
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T B(Te )

i
PA{B(t). :_6—-;'< A,-fF———— < AtA, B(T€ )

€. i
1

g} >

| v
wiz

for €; iimin(eo,el).
With (3.2) this implies

2 2
1 (A7-67)

- o 1
for e, < min(e~,e™),

and letting e, > 0 we see that

A > 2 . »

= (A+8)2420(A+6)

But A was arbitrary, so

2 2
A > =
)’ ([a]+8)?

and (3.1) follows.

0 the result

Case 2, A < 0. Since the regions CE are symmetric about B

follows from Case 1.

Case 3, A = 0. As before

-B(t )¢ 62 T

€
e e T

2 Je[-logel} dP < ¢ .
g€ 0 —
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Under Po the distribution of B(t) is symmetric with respect to reflections

in the axis B = 0.. So ‘

Tei Tei )
e a g > = P ———— < > > 4,
PA{-loge:. Ay > PA{B(t) -loge, As B(Tt-:.) — g} 2
1 1 AR
-B(t_)
For v > 0, P{——?e——-> -v} + 1 as £ » 0, and arguing as in case 1 gives
€ .
the result. o i

We now fix a vaiue for §, the indifference parameter and use
Theorem 3.2 to derive an asymptbtic lower bound for the average sample
number (ASN) of the multistage procedures described in éecinn 2. In
the asymptotic setting we consider sequences of procedures 'indexed by
€ = (1-P%)/(k-1), each procedure guaranteeing PCS equal to the corres-
ponding P*, TFor a procedure in the class C of section 2, index the
outcome of an experiment by w and let § be the spaée of all éossible
outcomes. Define hi(w) to be the total number of observations taken on
population ™., over the whole experiment, and let H(w) be the overall
total. - (Note that H < ® a.s. for all parameter configurations.) We
shall frequently suppress the relation of random variables to w. If
“i is eliminated or selected as best at epoch Ni’ let s(i) = S(Ni) be
the stage during which this occurs (i=1,2,...,k). Then

s(i)-1

h; (w) = rzl Mt mi,s(i)(Ni) (i=1,2,...,k)

and

k
H(w) = ) h(w).
i=1



Let Y denote the vector of population means (ul,u2,..,,uk), with Gij =
ui—uj as before. The average sample number of a procedure is defined
to be Eu(H). Indexing a sequence of procedures by g, Eu;e(H) is the
ASN for the procedure guaranteeing a PCS of P*, where ¢ = (1-P*)/(k-1).

Let [k] be the integer such that Mk is the largest mean (or one of the

largest if there is a tié) and define

. 2
(6[k]i+6)

fG(u) = inf {
di>0 i

, i#[k1}.

N~ X
[a¥
Qa!}-'
+
=

1 dl (k] ™

Theorem 3.3  With the above notation, let the indifference parameter,
§, and the vector of population means, U, be fixed. Then for any sequence

of procedures indexed by €
L 2 5w (5.0

Before proving the theorem we note this is true for all p, not just for

those outside of the indifference region.

Proof  Throughout the proof a subscript € refers to the procedure which

gives a PCS of P*, where € = (1-P*)/(k-1). For instance, Qe is the
space of all possible outcomes of an experiment when the procedure
indexed by € is used. Recall that we say T, eliminates Wj if 7. is
eliminated at epoch N and Zij(N) 2~g{tij(N)}° If this does not uniquely
identify an eliminating population then select one of the candidates

arbitrarily. For a fixed value of n > 0, let Qle'be the set of all
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outcomes W ¢ QE such that

(1) 1f ﬂj eliminates uf} then uj > My

(ii) 1If ﬂj eliminatesani then the time T.,. at which
, g

(Z,. (N),t.. (N)) exits C satisfies
ii,e iie e

Toa, 2 . ‘
-lOgE 2

Note that condition (i) implies a correct selection is made.

Now, if y, < p.
3 1

P{Z.. y 0 0 L
{Zjl E(II) >0} + 0 as tjl,ﬁ(N) + o,

L]

and with Lemma 3.1 this implies P{(i) holds} = 1l.as g »i0. °

i

For a fixed pair (i,j) we follow the discussion of section 2 and

embed {Zji e} in a Brownian motion with dprift §... We are interested in
: s Ja

the distribution of the exit time

. 1
. = infit > =:B
le,g 1 { .3

(t) £ ¢ ).
Gji €

Since the exit time of the discrete process is stochastically larger than

that of the continuous process, it follows from Theorem 3.2 that

2
8. . |+&)%+2n
15

ji,e <

} >0 as € »o.
~loge —-(|

P{ﬂj eliminates ﬂi and
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Summing over pairs (i,j) we get P{(ii) holds} + 1 as € + 0. Hence
P{Qle} + 1 as g » 0.
Choose €° such that P{Qle} > 1-n for € < €°. We have
E _(H) > H(w) P (dw) 3.7
H,€ —gz H,€ ' ( )

le

and we shall bound H(w) below on Qlé’ Suppose at epoch N we have a total
of Qi(N) observations on ™ (i=1,2,...,k), then
Ri(N) ﬂj(N)

t.. (N) <
ILE = (4R (D)
1 3

(i#3) (3.8)

Hence, if ﬂj eliminates ..

h. (w) h.(w)
T,, () < et
I8 =y (w)th, (w)

1 ]

or equivalently

and on Q. we have
le

Il—'

L (o, [+6)?
< (-loge) {-——J%?————— + nl}.
i 3

o
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i

But on Qle is selected as best (or one of the other populations with

* k]

mean p, 4 is selected if there are several): Also, condition (i) implies

§.. > 0 if m, eliminates m,, so [6..| = 8., and we can use the result of
j1 — ] 1 J1 Ji. ‘ ‘ '

Appendix 4 to conclude

E _
h,
3. i k (8
2L sinf () a2 1 Lk J:
i 2

+ <
-loge -"ai>o i=1

+8)°2
e +n, i#[k]}

di d[k] -
e

= fd(u;n), say, forw e , _, € < ¢

With (3.7) this gives

Eu E(H) o
e > (1-n) fd(u;n) for e < e,

-loge -
but n was arbitrary and fé(u;n) is a continuous function of n so the

result follows. O

We note that we have proved a stronger result than that stated
in the theorem, namely that for any v > 0, lim Pe[{ASN/(—logE)} >
fé(u)—v] = 1. The proof of the theorem suggests how we should try to
achieve the lower bound asymptotically. The {di} corresponding to the
infimum for fa(u) give optimal ratios in which to sample from the k
populations. So, if we knew the means {ui} we would know how to minimise
the ASN (although of course there would be no need to run an experiment).
By estimating the means early in an experiment and sampling so as to mimic
the procedure which would be optimal if these were the true means we can

achicve asymptotic optimality.
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§ 4 ASYMPTOTICALLY OPTIMAL TWO STAGE PROCEDURES We first derive an
asymptotic lower bound for the probability of a Browﬁian motion exiting
Schwarz's region through the lower boundary. The method of proof works
for more general regions. The theorem is a continuous time version of
a theorem by Berk (197B). When the igdifference parameter is &§ there

is a family of Schwarz regions indexed by a,

v2at - &8t 0<t<3€i.
g (1) = ‘ :
a 2a
0 t>—2—
§

In this section we retain the notation of sections 2 and 3, although we
shall usually index by a instead of €. Let B—G(t) be a Brownian motion
with drift -§ and defire

i 1 |
t_ = inflt > 5 [B_ ()] > g_(©)}.

Let e€(a)

P{B-G(Ta) z_ga(Ta)}. To satisfy (2.7) we choose a such that

e{a) = ¢ (1-P%)/(k-1). We note for later reference that loge(a) ~

log(1-P*) as a + o,

Theorem 4.1  For Schwarz's region, as described above, e£(a) satisfies

E(a) exp{—a+o(a)} as a > o .

Proof e(a) P{B_S(Ta) z_ga(Ta)}

P{B_G(t) i_g(t) for some t € [%3 i%ﬂ}

| A



=, 2293,

= P{B, (t) > y2at for some t ¢ [ >
S

where B (t) is a Brownian motion with zero drift. For 0 < Y < 1 we cover

[%3 %) 227 with intervals of the form [Yq 2a -1 2a] Q=1,2,...,Q, such
6°
that [y 2a/<S i YQ l2a/5 ] contains %—. Hence

Q< log a _ 108(6 f4) .
— -log Yﬁ -log vy

Now,
qQ2a .9-1 2a
P{Bo(t) > y2at for some t ¢ [¥ =Y ]}
: - 8
< P{Bo(t) >/ 2a ¥4 2%- for some t e[ .0, Yq_l2a/62]}
il o 5 ‘
5_21’{80(‘Yq_l gg) > g% f;a} (by the reflection principle)
2 =
< 2P{W > /7&Y} (W ~ N(0,1))
< 22778
—w2/2 u2/2
since f dw :_e_ for u 2_0. Summing over the Q intervals
u
log a log(62/4) -ya
e(a) < ( . + 1) 2e

-log -log Y

so for a fixed value of y, log (e(a)) < -ya + o(a). But y ¢ (0,1)

was arbitrary and hence
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‘log(e(a) < -a + o(a).
For the reverse inequality, we note simply that

e(a),> P{B_(3) > /a - 6/2} ~ e"2*0(3),

Berk proved this result for random walk (i.e. when the Brownlan
motion is only observed at integral values bf t). This 5greément between
the continuous and discrete time results supports our approximation
(2.3). To achieve the asymptotic lower bound of Theorem 3.3 we propose
the following two-stage procedures.

Procedures are in the.class C of section 2 and the stopping regions
are given by Schwarz's region with a value of a chosen to give the
required PCS. The sampling rule is as follows: sample equally from
all k populations during the first stage (unless, of course, a population
is eliminated), then calculate optimal sampling ratios based on the
sample means at the end of the first stage and use these during the
second stage. Indexing procedures by a we have Mil f_n?.With
equality unless m. is eliminated during the first stage. Here n?
denotes the common first stage sample size. If ﬂi and ﬂj are uneliminated

then tij(N) = no/2 at the end of stage one. Since n° depends ‘on a,

o
set Al(a) S %— for use in Theorem 4.2. Let
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and let J be the set {i: T not eliminated during stage one}. Unless

the experiment terminates during stage one, let ﬁ(k) = max(ﬁi, ied),

A

and set G(k)i = u(k) - ui. Define

£s(30) = inf { ] d;: ‘_Ja“-—ir L, ted\k}}  (n.0)

d;>0 eI i (x) —

Remark 4.1. It might seem more efficient to take the length of the first

stage into account in defining:fa(ﬁ,J) and hénce the "opti%alﬁ sampling

ratios for the second stage. One would replace

s ‘2
(G(k)i + 8)"
2
by
e S W N
(G(k)i + 6)

in the definition of fG(G;J), but the proof is correct and simpler in the

present formulation. (Note that the above expression is positive for popula-
tions 1 € I).

Suppose {a;; ied} are di's which achieve the infimum, then during
stage two we sample from the populations {ﬂi} proportionally. If I(N)
is the set of uneliminated populations and i ¢ I(N), then the proportion

of future observations to be given to me is
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d,
1

4,
jer(n) J
Of course these proportions cannot be achieved exactly since the numbers
of observations are integral., Asymptotically this effect is negligible
so we shall simplify the notation by proceeding as if the numbers of

observations are continuous.

Theorem 4.2  Let the indifference parameter, §, and the vector of
population means, u, be fixed, and suppose that there is a unique best popu-
lation. Consider a sequence of two-stage procedures of the above form with
lengths of stage one given by {Al(a)}. If Xl(a) + o and Al(a)/a + 0 as
a - «, then

(H) .

E
Iim {22 — }<£,00),
e*0 -log €

Proof. We note that by Theorem 4,1 it is sufficient to prove

E _(H)
Hm {222 — 1} < £.a0).
a—»oo a

Denote the outcome of an experiment by w and let Qa be the space of all
i N .
possible outcomes for the procedure indexed by a. For'.a fixed value

of £ > 0 let Qla be the set of all outcomes w ¢ Qa such that
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\

(i) No eliminations take placé in stage one.

\

(ii) W[k] has the largest sample mean at the end of stage

one, SO ﬂ(k) N W[k] and u(k) = u[k].

(iii) All populations are eliminated by T

[k]1°
(iv) £ < (LE)ES(W).
(v) gf L is eliminated by T when t[k]i,a(N) = T[k]i,a’
then
toL. < = (1+E)
[kli,a — 2 2
(é[k]i,a+6)
A (a)

Using an argument similar to that of Theorem 4.1, the condition
implies P{(i) holds} + 1 as a + », Since Al(a) + ®©as a >

P{(ii) holds} -+ 1. is selected with probability at least P%,

'S

the sampling rules are such that the largest number of observations is

allocated to LR unless it is eliminated, and hence P{(iii) holds} - 1.

A

The function f6(u) is continuous in yp, My > u in probability asrAl(a) +
A (a) ’
1

and + 0 and therefore P{(iv) holds} + 1. When
2a il
t .. (N) = (1 +<&)
[k]1i,a o2 2
(5[k]i,a+6)
we have
P{Z[k]i,a(N) > /Eat[k]i’a(Nj - Gt[k]i’a(N)}

=P{w_>_/2_a—(l-\/l+%-£)},

Stk3i,a * Spxgs 17
probability as Al(a) + « and hence P{(v) holds} + 1. Thus

where W ~ N(0,1), and this probability -+ 1 as a - ,



30
P{Q, } +1 as a + ».
la

On Qla the total number of observations in stage one is at most

QkAl(a) = o(a). _ ' (4.1)
Since
MiQM[kJQ e 2a(1+E)
M, +M “[kli,a — % 2 ?
i2 [k]J2 (aﬂk]i,a+6)

the number of observations in stage two is no greater than

A 2
k €or= = EX5p) A
inf {) d, : %-.+ dl < Lkdi 3} =(1+£)a fa(u)
d4.>0 i-1 i k1T 2a(1+E)
< wfa £, by Gv). (4.2)

. R A A A 2
. = 3 .t
This is so because on Qla’ Gfk]l G(k)l and the terms (6[k]1 §)7/2a(1+&)
are proportional to the terms (S(k)i+6)2/2 used to find the {H}},
from which the sampling ratios were determined.
Let QQa = Qé\ﬂla' Recall that when the set of uneliminated popula-

tions is I and for i ¢ I

R, & = (4.3)

where the {a;} minimise } d; subject to
led
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~ 2 _
(8, (.+8) i
= L " 1 e (K}

(4.4)

J is the set -of populations not eliminated during stage one. Hence

5

T, >l 1 A{0O]. (4.5)
=5, 182
(k)i

4 . . o ‘s 4k

Now d. = — , i ¢ J, satisfies the conditions .(4.4), and then Z d, < —
i 2 ; . i—

8 ied S

Therefore

~ 4k
L4

o
m
—
(e}
[og]

and together with (4.3) and (4.5) this implies

2
R, > —
2k(62k)

. 2
i+6)

For w e QQa the total number of observations on any population is at

most

28 ; 2{min R.}"l < g%-a max{(é(k)i+6)2}
s ied ¥ T8 ied
f_gﬁ-a ' (§.i+6)2.
S i,5ed;ifg

So denoting the probability distribution on Qa by P_,
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2)x.(a)
8k 1

[ Har W) <2 a2 T [ [ —c X.
2, Rt LR S ZN ) pgl ip

2a
2Al(a) ,
- pzl Xi1p) 1617 ap_ (W),

where the first summation is over all pairs (i,3); i, ¢ {1,2,...,k},

i #j. For the pair (i,j) the integrand has the same distribution as

2 ! . :
~ - + .

W~ where W N(uj My 6, ~XZTEUJ Since Al(a) + o and Pa(nza) + 0

as a =+ o, ,the integrals 4+ 0, So

[ H(w) dP_(w) = o(a). v (1.6)
0 a
2a
From (4.1) and (4.2)
[ Hw) aP (@) < (1+B)%a £,(u) + ofa) . (4.7)
Qla
But Qa = Qla U QQa and £ was arbitrary. Letting £ + 0, (4.6) and (4.7)
imply
Eu a(H)
1im {——%;—~4 f_fd(u)
a0
and as we remarked earlier this establishes the result. ]

Combining the results of Theorems 3.3 and 4.2 we obtain
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for the two-stage procedures. This demonstrates that the bound of

Theorem 3.3 is sharp. The procedures considered in Theorem 4.2 are

not the only ones to attain this bound. Clearly, there are asymptotically
optimal multi-stage procedures and for these the choice of how long to
make the first stage is not so crucial, Continuation regions other

than those of Schwarz are also possible. In fact 'asymptotic shape'

is the relevant property for a sequence of regions. This is discussed,
for example, in Schwarz (1962) and Berk (1978). Swanepoel and Geertsema

(1976) use regions given by
g (t) = /2(atlog Ot - 8t, t < tz,

where tZ solves 2(a+log t) = 62t. These regions have the same asymp-
totic shape as the Schwarz regions and hence they can give asymptotically
optimal procedures. A difficulty arises when Schwarz regions are.used,
namely the calculation of error probabilities, although asymptotic
approximations (Woodroofe (1976)) afe available. The Swanepoel and

Geertsema regions have advantage in this respect as good bounds on the

error probabilities are given by a result of Robbins (1970).
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§ 5 FURTHER COMMENTS ON MULTI-STAGE PROCEDURES

In practical use of the procedures proposed in Section 2, the first
question to arise is: how many stages? Naturally, two stage procedures
are simplest, but the choice of first-stage sample size is then of con-
siderable importance (see below). Multi-stage procedures are less
arbitrary and more flexible--as the number of stages increases, they
approximate the flexibility of the fully adaptive procedures of Section 6.
Of course, the calculation of the optimal sampling proportions at the
end of each stage may prove burdensome without a computer., In such
cases a reasonable approach would seem to be to allocate in the proportions

ka—l': 1l : ... : 1 amongst the kN remaining populations, with the
4

currently 'best' population receiving the higher number of observations.
This approximate mathod of allocation coincides with the optimal one in
slippage configurations (see Section 6), and appears to perform well in
other cases also,

For the simdlations reported in Section 7, two two-stage procedures
based on the §chw§rz region»wene used--one using the 'optimal' allocation
(denoted T&OP) and the other the Vr_t—'allocatlon (TNOA) described above
at the beglnnlng Ef the second stage. In order to decide on the length n°
of the first stage, a sensitivity study was conducted, and the results
are presented in Table I. The first number in each cell is the mean total
number (ASN) of observations on all k = 10 populations in both stages.
The figure in parentheses is the standard error of these estimates,

(For further details concerning the simulations and the parameter values

used, see Section 7). The values for n° tested are fractions of 56, which
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is one quarter of the length required for the fixed sample size procedure
of Bechhofer (1954) to achieve a PCS of .90. The number 56 was chosen
because savings of up to 75% in ASN are obtained by passing from fixed
sample size to fully sequential procedures in hypothesis testing (Wald, 1974,
§3.6, Woodroofe, 1976, §8). Table I indicates that in general, one quarter of
the fixed sample size might be a good choice for first stage length. This is
reasonable because an incorrect selection at the first stage increases the
length of the experiment dramatically, and this is less likely to occur
if the first stage is longer. Recall also that populations are being
eliminated throughout the first stage (especially in the equally spaced
configuration), so a long first stage need not be overly inefficient.

The question of first stage sample size clearly requires further
study. One interesting possibility is to make the length of the first
stage data dependent-~stop sogner if there is a clear candidate for
best sample mean. Since the sampling is VT until the end of the first
stage, the Brownian approximation remains valid. Another interesting
question is whether James-Stein-type shrinkage of the sample mean
estimates at the end of the first stage will lead to appreciable
improvements in ASN.

A proﬁlem seems to arise with the 'optimal allocation' of Section 4
when three or more opoulations are simultaneously "best". The current
allocation scheme (in this situation unjustly) emphasises the population
with the largest sample mean at the conclusion of the first stage. If
this population were to be elimihated by one of the other 'equal best!
populations, an unnecessarily long experiment would result.

It would be interesting to derive expressions for the asymptotic

relative efficieney of the optimal procedures of Section 4 te VT (or
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vk-1 : 1 :

: 1) sampling for various configuration of means. This
could perhaps be done by extending the mean path approximation method

of Section 6.
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Table I
Slippage configuration Equally spaced configuration
= = - 0.2, . - .4 = 0, <1i<g,
Mr11 7 Mo ¥ Mraog - 002 Mriend ~Wppp 702 boi s
n° TWOP TWOA THOP TWOA
56 1283% 1193 3g8L% 376 %
(2u) (20) (7) (7)
42 1336 1171 381 375
(53) (46) (17) (17)
28 1561 1246 383 372
c(78) (49) (17) (18)
14 1851 11985 u5g% YO0 &
b (97) (43) - |° (12) (1)

I N
Based on 100 replications, k = 10, P* = 0.9, 8% = 0,2, 02 = 1 except
where indicated

] S S
* Based on 500 replications.
**Based on 200 replications.



38

§ 6 HEURISTIC RESULTS FOR FULLY ADAPTIVE SEQUENTIAL PROCEDURES

General form of the procedures. As in Section 2, observations now labelled

Xij (1 < i<k, j>1) are available sequentially from each of k(> 2)

populations 7 L The observations {xij} are independently dis-

100
tributed normal random variables with unknown means ui‘and common
known variance 02 (taken equal to i).

If a total of N observations have beén takeh from all the'populations,

we shall say that we are at epoch N, and denote the number of observa-

tions taken so far on ™, by mi(N). Let

m, (N)
- 1 l
LM =y L Yy
i =1
X Xeoq < een <X .
and let [1] f-X[2J < f-x[k] be the ordered sample means
Elimination rule. After epoch N, let IN = {i: ™. not yet eliminated},

and eliminate from all further consideration all populations Mo ie IN

for which 33 ¢ IN with

Zji(N)

tji(N)(E%(N) - Y}(N) 3_g(tji(N)), (6.1)

where

m, (N) m,(N)
t, . (N) = = J
i mi(N5+ijN5

and g(t), t > 0 is a non-negative function depending on the PCS desired.

The elimination leaves the set of populations I The experiment

na S Ty

terminates when a single population remains, and it is selected as best.
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Sampling rule. Begin by taking one observation on each population. For

epochs k+1, k+2, ... the sampling rule gives the next population to
observe as a function of the observed values already taken. For a given
function g we allow any sampling rule for which the procedure terminates
in finite time with probability one.

Comparing thesé procedures with the multistage ones proposed in
Section 2, we note firstly that here the sampling rule may be fully
adaptive. The population to be sampled at epoch N need not be decided
until after epoch N-1. The multistage procedures have the restriction
that the sampling rule for an‘entiré'stage must be specified at the
beginning of that stage.

Secondly, the statistics Zji(N) are simpler than their multistage
analogues. Zji(N) is the statistic that would be used in the two
population problem obtained by restricting attention to ﬂi ahd ﬂj' In
the two population problem, Zji(N) enjoys many appealing properties
(Robbins and Siegmund (1974)). It is the invariant likelihood ratio test
statistic; and after a reduction by invariance it is sufficient for
aji B Uj = Hi if the sampling is not adaptive. Even if the sampling is
adaptive (and invariant under translations), its distribution coincides
with that of a Brownian motion with drift dji’ observed at times tji(N).
Furthermore, it is a martingale with respect to the 0-fields generated
by previous Zji's. As mentioned in the introduction, these properties
do not persist in the k-population case: in particular the embedding
of Zji(N) into Brownian motion is not always justifiable, and the martin-

gale property fails in general (Appendices 1 and 2).
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The situation is not hopeless, however. For translatién inva?iant
sampling rules there do exist martingales of a relatively simple form
for k populations which appear to be the appropriate analogues of the
two population case. These martingales (discussed in Appendix 5) are
linear combinations of the pairwise statistics{zji(N)E%-_l’ and thus
may be regarded as linear contrasts of the sample meané?— Although it
is not clear how to exploit these martingales, they do suggest thatl
invariant sampling rules in the k-population problem have some stability
.properties, and lend extra;credibility to the mean path approximations

[y

which are the main tool of this section.

Some Notation. For convenience, we shall suppose that ul <u

< ..
2 = — By
< i = - H,3° §, for & ..
uk’ and write 6ji uj PR and ; for K,i
In doing the asymptotics it will be convenient to use families of
regions with an "asymptotic shape'. Following Berk (1978), the family
will be described by functions {ga(t)}aelR which are related to the

elimination rule (6.1) as follows: ﬂj eliminates ﬂi at time t = tji(N) if
. > - .
Zjl(N) > a ga(tjl(N)/a)
Let Ra(t) = ga(t)/t. We assume also that as a + «, the functions g,

(equivalently Ra) converge pointwise to Lmits g(t) (resp. R(t)), which

correspond to the "asymptotic shape'.



41

Examples:

1) Paulson (1964). Now (6.1) has the form '"reject ﬂi at t if

z (t) >a-Xi A >0."
J1 - -

Thus g(t) ga(t) =1 - At and R(t) = 1/t - A.

2) Schwarz (1962). g(t) =g_(t) = /2t - 6t.

1
3) Swanepoel and Geertsema (1976). ga(t) = // 2t(1 + —ngEJ - &t. Thus
g(t) = v2t - 8t so this family is asymptotically equivalent to that of

Schwarz.

The mean path approximation involves replacing the statistic Zji(N)
by Eji(N) = tji(N)Gji. The asymptotic validity (as a =+ «) of the approxi-
mation is guaranfeed by the strong law of large numbers as long as mi(N)
A &

For a given region g(t) = a ga(t/a), the exit time Tji of the mean

path can be determined by solving the equation

T -
= ]t
CTRTIRE -
which yields
T, =aRL6..). (6.2)
ji a ji

To simplify the analysis, we shall make the assumption that at all

times (actually only at times of elimination of various populations)
mk(N) > mi(N), 1 <i <k-1. (6.3)

This is again reasonable asymptotically, as one would certainly wish to
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use sampling rules which.gave the most observations to the best popula-
tion. In addition, one would ekpect asymptotically that all eliminations
would be done by the best pop;lation (see the proof of Theorem 4.2 in
this regards, and theltheory of multiple comparisons with a control
(Dunnett, Bechhofer and others) then suggests favouring the best popula-
tion.

The assumption (6.3) implies in the mean path approximation that
all eliminations are in faect performed by M.+ We shall therefore write
m, for the number of observations on ™. at the time of its elimination,
and m_ . for the number of observations on m at that time.

k,i k

Let m be the number of observations on m at the end of the experi-

k

ment and note that mk = We are interested in the

M, k-1"
variation with stopping region and sampling rule

of the average total sample size ("ASN", for average sample number),

which in the mean path approximation may be represented by
k
ASN = ¥ m,. (6.4)

For a given region the Tji values are fixed by (6.2), so the m,

)

values are subject to the constraints (writing T for Thi

i_.+ 1 R — . (6.5)

M M™,i Yioa R;l(éi)

In order to study, for a given stopping region, the effects on ASN of
various sampling rules, it is useful to separate the two factors by

means of the following combination of (6.4) and (6.5),
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(6.6)

Here the ratios mi/m are specified by the sampling rule; whilst the

k,i
T depend only on the region gnd the configuration U of population means.
In comparing the ASN performance of two families of regions {Ra}

and {Ri}, some method of matching their error probabilities must be
employed. In the selection problem, the natural criterion is the
probability of incorrect selection in the sléppage configuration at the
vertex of the preference zone PG = {u: Pk 4 uif:_é i= l,;..3k—l}

(called the least favourable configuration in VT%saﬁpling). This will

be denoted by e(a) = e(a,Ra). Thus we shall use

lim é§§ﬂil__

a+o =loge(a)

in comparing two regions.

If the regions {Ra} satisfy the conditions of Berk (1978) (essentially
that Ra decrease from « to 0 on [0,»] and Ra + R), then it is natural
to conjecture that Berk's result would extend to give

= ~ %— as a »+ o, (6.7)

-loge(a) R

where Kp 7 i:f g(R(x) + 6)2. This conjecture may be verified using
méthods sim?lgr to those of Theorem 4.1 if the Brownian approximation
is assumed to hold for the statistics Zij(N). Even in the absence of
this approximation, (6.7) is still plausible, since it is an asymptotic

relation, and one would expect the sampling rule to stabilise as informa-

Lion about the population means increases.
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Combining (6.2)*and (6.7) with (6.6) we then obtain

k-1 m
N [] @+ R6.) + (14 X
~loge(a) R i=1 M ,i * k-1

ASN i )R-l(G

)1 (6.8)

H
KIH

k-1

Proceeding analogously to Section 3, we may write down a lower bound

for the ASN attainable:with a given region by various sampling rules.

Indeed,
: 1 1 1
ASN > min{} meiI—t =S = =], ,k-1}
1 i k,1 i
K 1 1 1 ’
=min{} m,: =—+ =— < =— i=1,...,k-1} = (1), (6.9)
i 1 mi m.k-—-'l-'- ~
1

since me s < M for all i. It is easily checked that the minimum is
sl —

uniquely attained for any given T, and that f(t) is increasing in each

of its co-ordinates. Further, f is homogeneous of order l: for any

positive scalar ¢, f(ct) = ¢ f(1). It is easy to compute values of f

numerically.

A glance at (6.8) then yields for arbitrary regions {Ra},

1lim ASN

a7 _loge(a) ~ R K

To minimise the right side, we need a region R which minimises

RIS . 2RI

R inf x(R(x)+8)
x>0

5 for all 6 > 0. (6.10)
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For simplicity only, let us restrict to continuous R. Then (6.10) is

clearly bounded below by 2/(6+5)2. On the other hand, solving
2 _
x(R(x) +8)” = ¢ leads to R(x) = - -4,

which is seen to attain the lower bound for all §. This i just the
Schwarz region described above (with c¢=1) and in Section 4!

It is now evident how to compute the efficdiency of a sampling rule
given a particular region R and configuration of means H. Simply cal-
culate the ratio of the ASN in (6.6) (with T replaced by R—l(éi)) to
f(R_l(dl),...,R (Gk_l)). Of course the relative efficiencies of two

sampling rules may be easily compared using (6.65 alone,

Results for slippage configurations. Some more explicit results are

available when the means are in a '"slippage configuration':

61 = ... = sk—l = §. In this case all mk,i =m and m. = m, say.

Letting 8 = mk/m, (6.8) becomes

.
ASN _ _ R(8) [, k-1

~loge(a) Kp B

+ B] (6.11)

which is minimised by taking B

vk-1. Hence f(T%) = 1(V/k-1 + 1)2.

From (6.11) we get

-1
ASN_ R (0) (AT + 1)2 (6.12)
-loge KR

Henee in slippapge configurations, the optimal sampling rule allocates



46

in the ratio vk=I: 1 : ... : 1. This is also the asymptotically optimal
allocation rule in multiple comparisons of k-1 normal treatments with a
control (Dunnett (1955), Bechhofer (1969)).

When using VT sampling, B = 1 in (6.11), so that the relative

efficiency of VT to the optimal sampling rule is

- ASNVT 2k

X ASNV‘k—l i (vk-1 + l)2

e

For k = 2, VT is the optimal rule; whilst ey = 1,029, = 1.25 and

€10
e, = 2. It is important to note that these efficiencies are independent
of the stopping region.

It is also easy to compare stopping regions in slippage configura-

tions. For example, from (6.8) (using P for Paulson, S for Schwarz),

-1.%. -1.%
ASN y / (ASN y = RP (6) / RS (8)
-loge p -loge s Kp KS
(5+8)° N
> 1 ¥v6,8, and 0 < A < &,

TN

which was to be expected in view of the optimality of Schwarz's region.

In summary, it can be seen from (6.11) that in slippage configurations
the relative efficiency of two procedures is the product of two inde-
pendent components - the relative efficiencies of stopping rules and of

sampling rules. Thus

= 2
ASN (AN _ 2k (8+8)

s > 1,
“logE s AT IO g ur (AT + 1)2 u(6-A)(3+A)
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Arbitrary configurations of means. The sampling ratios which minimise

f(z) naturally depend on the unknown vector § = (Gl,...,ék_l). An obvious
sampling rule (whose asymptotic optimality is strongly indicated by the
results of Section 4) is to calculate the optimql allocation in (6.9)
using the current sample means after each observation and to allocate

the next observation by picking a population at random according to

the resulting probabilities. This rule would be complicated to use in

practice, so we shall study instead a much simpler rule, motivated by

the slippage configuration resiults above.

. Definition of the "compensating #kﬂul " sampling rule: (CVEN—l)

Take one observation from each population initially. Let IN =

{populations not eliminated after epoch N}, and let ky = (1 Let

ul
i& (N) = max Yi(N) and let iN be the index of the population sampled at

max iEIN . . )
epoch N. Beginning with iN+l (mod k), search for the next j ¢ IN \{lmax} with

mj(N) <m, (N)//kN-l. If such a j is found, take the next observation
max
from ﬂj’ otherwise sample from ™.
max
In summary, the rule tries to ensure that the number of observations

on the population currently regarded as best bears the ratio /kN-l : 1

to the sample size on each of the other non-eliminated populations. We

shall now show analytically using the mean path approximation that for
any stopping region this rule dominates VT sampling. Simulation results
are presented in Section 7.

In the mean path approximation, the C/F;:T-rate satisfies assumption
(6.3). 1If PR P is small, it may happen, however, that there is

insufficient time between the elimination of m. and T for the sampling

-1
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rule to adjust the sampling ratio from Yik-1+1 :: 1l:to #/k-1 : 1. - We shall

therefore introduce constants o, > 1 (which will depend on the yu,) defined
- i

by

LTI a.vk-1. (6.13)

Notice that

1 §_¢§i3 a. < vk-i+l STy (6.14)
From (6.6),
{
k-1 1
ASN = ) 1+ —)T. + (Lo T, 1,
CVkN—l 1 aivi—i
while
k-1
ASNy. = ] 2T, + 2T ..
1
k-1 1
Hence A = ASN__ - ASN =V 1.1l - ——)+1 (L-a ). (6.15)
L = =
T kT 1Y eI K e
That A > 0 is obvious if Oqey = 1. So suppose O 1 > 1 and let ko be
the smallest integer such that ak-ko = 1. Then mk,k—ko = ... = mk,k—l =mo

and substituting (6.13) into (6.5) it follows that

and hence that
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k-1 1 ai/k—l -1
A>T, [(a + 1) ( ) + (1 - a )]

k-1 k-1 k'ko ui T o+ 1 ai AT k-1

k-1 1
> T (o —l)[Z - 1] > 0.
k-1""k-1 Kok o /KT
o i
The second inequalitﬁ follows from (6.14) and the third because q =1

k-k
o

and k_/Vk_ > 1.

oo

In slippage configurations, the mean path &pproximation to CVkN—l
yields the vk-1 allocation discussed earlier, so all the optimality
conclusions apply. Another configuration of means in which it is of
interest to do more explicit comparisons of the CVkN-l and VT rules

is the '"equally spaced means' (ES) case in which My T + 6, so

Hio1
that Gi = (k-1)§. To carry out the computations, we need to assume that
the ai's corresponding to the ES configuration equal one. A simple
sufficient condition on a region R which ensures this is that R_l(jd)
can be put in the form

R(368) = h(§)g(s) ; (6.16)

1+ Y5

where g is arbitrary and h is decreasing in j. It is easily checked that

Paulson's and Schwarz's regions satisfy this condition. When (6.16) obtains,

ASN
cvk, -1 k-1
N B _
——— = ] 1+ RN + k7S
j=1 i
and
k-1
BN yr = 2 5 R7Y56) + 2R7Hs).

a 1



-1 21 2 )
- t 4 3 = =
Using Schwarz's region R “(j6) [ 75 6] , and for k = 10

ASN

vk -1
N _Z3.09
ASN U

VT

; T 1
For Paulson's region R "(j8) = 5T and for A = 0.256,‘k = 10,

Finally, we shall briefly discuss some of the similar results which
hold when one considers the total number of observations on all populations
except the onez selected as best, called the inferior treatment number

(ITN). Notice firstly that

m, \
i st mk,l _
i—m.+tm . i
1 k,1

k]

3

for any sampling rule, whilst for VT sampling, T, = 5&-. Hence the obser-

vation of Robbins and Siegmund (1974) extends to the k-population case:

for any parameter configuration ITN > Ezg.VT. Thus it is
: any rule — 2

impossible to achieve a saving of greater than 50% over VT sampling.

By analogy with the ASN discussion,

k

ITN 1 il m K

(1 + =

TS, -
-loge(a) -loge(a) 1 *

o,
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It follows as before that the Schwarz region is asymptotically optimal.
Appropriate analogues of the results for slippage and ES configurations
may easily be derived. Since the last term drops out of (6.15) it is
trivial that C/?Eti'dominates VT; but it is likely that much better
rules for purposes of minimising ITN' could be developed. We have not
pursued this topic because it has been argued that minimisation of ASN
is a mére relevant probiem in contexts such as that of clinical trials

(Byar et al. (1976)).
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§ 7 SIMULATION RESULTS
A Monte Carlo study was performed in order to compare performances

with regard to ASN, ITN and PCS of the procedures described in Sections

2 and 6. The values P* = 0.9, &% = 0.2, 02 = 1 and k = 10 were chosen
‘along with two configurations of populations, namely the §%*-slippage

and equally spaced (ES) configurations deécribgd in Section 6. The
results are displayed in Tables II, III. Thesé values and configurations
are chosen so that our results would be dirgctly cbmpérab?e with those
contained in the tables in Chapter 18 of Bechhofer, Kiefer and Sobel
(BKS) (1968) and in Turnbull, Kaspi and Smith (TKS) (1978). Nine com-
binations of stopping and elimination rules were considered, namély’

(A) FIXED sample size (Bechhofer (1954)); (B) the BKS likelihood based
stopping rule with vector at a time (VT) sampling; (C) the BKS rule
together with the adaptive RAND Q sampling rule described in TKS;

(D),(E) Paulson's procedure with the Fabian (1874) modification with

A/8* =.0.25 and the VT and C/F;:T'sampling rules (Section 6), respectively;
(F),(G) the Schwarz stopping region together with the VT and C/F;jf :
sampling rules; and (H),(I) Schwarz's region with two two-stage sampling
rules. The first allocates in the ratio /F;:I': l: ... :1 at the end
of the first stage, with the most observations going to the population
currently estimated as best, and kI equal to the number of non-eliminated
populations at the end of the first stage. The second allocates in the
optimal ratios corresponding to the unique ai's which achieve the infimum in
expression (4.0). (Whilst the modification suggested in Remark 4.1 would
be more correct in theory, in practice it produced large increases in the
mean (ASN) and standard deviation of the total sample size over those

presented in Tables II and III. The modification seems therefore to be
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more sensitive to inaccuracies in estimates of the sample means at the
end of the first stage.)

For procedures (H), (I), the length of the first
stage was chosen to be 56--approximately one quarter of the number of
observations required in the FIXED procedure. This point was discussed in
greater detail in Section 5.

In all cases involving the use of Schwarz's region, the asymptotic
error probability approximation given in Woodroofe (1976, Formulas (5.1)
and (5.3) with r = 0) were used to determine the value of the parameter a

(see Section 4) corresponding to P* = 0.9 with k = 10 populations is a = 5,31.

Remark: Woodroofe's asymptotic approximation might be circumvented in
the following ways: (1) calculgté the error probabilities numerically
either by finite difference methods or by simulation or (2) substitute
the (asymptotically equivalent) Swanepoel-Geertsema (1976) region, for which

good bounds are available (Robbins, 1970).

In the tables, the FIXED sample sizes of the nonsequential single
stage procedure were taken from.Table I of Bechhofer (1954). The results
for procedures (B), (C), and (D) are taken from Tables I and III of TKS.
The TKS RAND Q rule is included only in the slippage configuration case,
and then purely for the sake of comparison. Although it is more efficient
in slippage configurations than our rules based on pairwise comparisons,
TKS found that it did not guarantee PCS > .9 throughout the preference
zone. Hence it cannot be regarded as a legitimate solution to the selec-

tion problem, and it is not presenteéd in Table III.
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|

The tables display {Ni; 1<i f_k} wherelNi is the mean number of
observations taken' from the population ssociated with u[i]. Also displayed
is the average total sample size ASN (NTOT in the tables) and the observed
proportion of correct selections. The second entry in any cell is the
standard error of the estimated mean above it: The results are based on
500 replications of each procedure.

Thg following points are ciear from the tabies. The C/F;:I'rule
achieveé sabvings of 10-12% in ASN over the VT rule ig all cases except
the Schwarz region in the ES configuration, where they are comparable.

The Schwarz region achieves savings between lé% and 25% over Paulson-Fabian
in the ES case, whilst the two are roughly equivalent in the slippage
configuration. Both two-stage procedures are dominated in both configura-
tions by the non-adaptive VT Schwarz rule--the problem seems to be that

NlO is inflated by the huge number of observations required to terminate

the experiment in the cases when the wrong population is selected as

best at the end of the first stage.
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Table II
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Simulation Results
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(First four columns are from Turnbull et al. (1978)

column entries are based on 500 replications.)

- &%

Table II, remaining

.l.

Stop. and FIXED BKS TKS  PF(.25) PF(.25) Schwarz Schwarz Schwarz Schwarz
Elim. rule 2-stage+2-stage
Sampling rule VT VT /kN—l /kN—l VT k;-1 vopt"
Nig 223 145.3 179.9 175.9 200.6 207.4 193.7 247.3  335.5
(4.1) (3.9) (3.8) (5.8) (10.9)
Ny 223 145, 62.9 107.3 96.0 97.4 110.3 110.5 107.1
(4.1) (3.8) (3.8) (u4.u) (4.3)
Ny 223 145, 59.8 112.4 95.3 96.2 105.7 100.6  109.7
(4.0) (3.8) (3.7) (4.0) (5.3)
N, 223 145, 55.7 104.1 93.0 91.0 106.4 101.8 106.0
(3.7) (3.4) (3.6) (3.8) (5.0)
Ng 223 145.3 * 61.5 107.3 95.0 94.9  106.0 .109.0 96.0
(4.0)  (3.4)  (3.8) (4.3) (3.7)
Ne 223 145. 63.1 114,0 96.5 91.0 103.2 104,8 113.8)
(4.0)  (3.5) (3.7) (4.0) (5.1)
N, 223 145, 63.2 106.3 93.9 97.5 107.8 104.0 112.u4
(3.6) (3.6) (3.8) (3.9) (5.0)
N, 223 145, 59.7 110.4 94,8 90.7  103.3 98.5 100.3
(3.9)  (3.4) (3.5) (3.7) (u.5)
N, 223 145, 65.9 105.9 86.3 91.8 106.9 108.1 103.1
(3.5) (3.4) (3.7) (u.8) (4.1)
N, 223 145, 60.1 111.0 85.3 93.7 105.6 108.5 99.3
(4.1) (3.5) (3.8) (u.0) (3.8)
Neor 2230  1453.3 731.9 1154.7 1046.7 1051.7 1148.8 1193.3 1283.2
(28.3) (32.5) (24.0) (21.4) (18.2) (19.2) (19.7) (2u4.0)
Proportion of - 0.911 0,910 0.925 0.956 0.912 0.918 0,922 0.918
Correct (.010) (.020) (.019) (.013) (.013) (.012) (.012) (.012)
Selections

First stage sample size is 56 *

~

223 + 4
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Table III

Simulation Results
k = 10, P* = 0,9, 6% = 0.2, 0 = 1
Equally spaced configuration u[i+l] - u[i] = 8% (1 <1< 9)

\

(First three columns** are from Turnbull et al. (1978) Table III, remaining

column entries are based on 500 replications.)

Stop. and FIXED BKS PF(.25) PF(.25) Schwarz Schwarz Schwarz Schwarz
* Elim. Rule ‘ ' 2—stage+ 2-stage+
Sampling Rule VT VT /EETI' VE;TT' VT v?;ii' Mopt!
N 223 64.8 121.6 122.9 126.0 118.1 126.3 130.0
(2.6) (3.3) . (3.2) (3.4)  (3.6)
Ng 223 64.8 120.1 116.2 117.3 115.2 114,2 119.2
(2.8) (3.6) (3.3) (3.3) (3.2)
Ng 223 64.8 65.6 56.0 45.9 50.3 50.4 49.0
(1.0) (1.4) (1.5) (1.4) (1.4)
N, 223 64.8 44,8 35.5 24,9 27.4 29.5 28.5
(0.5) (0.8) (0.9) (0.8) (0.8)
Ne 223 64.8 34.9 26.2 15.3 17.7 18.2 18.0
(0.3) (o.u) (0.5) (0.5) (0.5)
Ng 223 64.8 28.3 20.2 9.9 12.1 13.0 12.1
(0.2) (0.3) (0.3) (0.4) (0.3)
N, 223 64.8 23.1 16.9 7.4 8.3 9.7 9.7
(0.2) (0.2) (0.3) (0.3) (0.3)
N, 223 64,8 19.8 14,2 5.4 6.7 7.0 6.9
(0.1) (0.1) (0.2) (0.2) (0.2)
N, 223 64.8 17.6 12.3 4.y 5.4 5.4 5.8
(0.1) (0.1) (0.1) (0.1) (0.2)
N 223 64.8 15.8 10.8 3. 5 4.0 4,5 4.6
(0.1) (0.1) (0.1) (0.1) (0.1)
Neor 2230 648.2 491.5 431.4 360.2 365.3 378.3 383.7
(27.5) (9.3) (6.2) (7.7) (7.5) (7.5) (7.5)
Proportion of - 0.950 0,975 0.992 0.988 0.978 0.990 0.992
Correct

Selections (.015) (.011) (.004) (.005) (.007) (.oou) (.o0u)

alaale
TKS RAND Q is not relevant here as it only guarantees the PCS-requirement in
slippage configurations--see Turnbull et al, (1978).

First stage sample size was chosen to be 56 ® 223 + 4
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Appendix 1. INVALIDITY OF BROWNIAN APPROXIMATION TO THE "NATURAL
STATISTIC"
We begin with the two population case, so as to exhibit more

clearly where the extension to three populations breaks down.

Let observations on the populations T and ﬂy be denoted RysXgsrers

i I i

yl,y2,....|

Suppose that x, and y, have been oBserved and that we wish to
determine from which population to take the third observation. Intro-

L
\

duce indicator variables

L 1 if next dbservation is on T (1)
8,8, % { y
y 0 otherwise,
Thus éy =1 - GX. The natural statistic, after taking the third obser-

vation, zxy(S),may be written as. follows

. (3) - (l+6x)(l+6y) [xl+éxx2 ) yl+6yy23
Xy 1+6x+l+5y 1+6x l+6y
= }-(x -y,) - ff:fz—( +y.) + E{5 x,=8 v.} (A.1.1)
27T 5 1TV T M0y e
Thus the increment
Gy-éx 1
Axy(Z) = zxy(s) - zxy(2) = = (x,ty) + g{éxe-nyQ}.

(A.1.2)
In order to embed the zxy(N) process in Brownian motion, the crucial
property required is that the increments Axy be normally distributed

with appropriate means and variances,
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In the two population case, invariance considerations imply that
one should use sampling rules which depend only on the differences
{xi—xl,yj—xl} (c.f. Robbins-Siegmund‘(1974)). In our case, this forces
Gx € F(xl-yl). Consider the distribution of Axy(2)|6x,6y. All terms
X1tV X, and y, are uncorrelated with X,17Yy and hence independent of

it. Hence the conditional distribution of qhe increment is normal with

parameters
2
§ -6 (8§ -8.)
y "X 1 _ y "X 1 2 2
N{(- 3 (ux+uy) + §(Gxux 6yuy), e t 3 (Gx + Gy)),
that is, i

1 1
N('G—(]Jx-'uy) ’ g‘) .

Thus the increment corresponds to the increment W(3/2) - W(1l) of a
B.M. with dri M.

with drift ux,uy

In the three population case, let observations on the third popu-

lation , be denoted z Suppose that x and zy have been

1922""‘ ls yl

observed and introduce indicators Sx, Gy and Gz as above to describe
which population receives the next observation. Notice now that

6 +8 =1-6_ may be either 0 or 1. The natural statistic z (3)
X y z Xy

is now

: 8§ -6
o1 X 'y 1
) =7 o) -y G m oy

which is in fact equivalent to the form (A.1.1).
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-Again, invariance considerations reguire that sampling Yules depend

only on pairwise differences, so Fhat {Gx,dy,dz} € F(gl—yl,x ).

-z
11
However, it is no longer true that the distribution of the increment

A (2)'6 ,0 is normal. Indeed it is clear that x.+y. is correlated
Xy X"y 1°1

with x Suppose we used a rule which set 6x=l if (xl-zl) + (ylizl)

174
> 0 and Sz = 1 otherwise. The correlation between xl+yl-—22l and
x ty, 1is 1/V¥2 , so in this case L(Axyléx,éy) is certainly not normal,

and no Brownian approximation can apply. For similar reasons it follows

also that z_ (1),z_ (2),... need not be a martingale.
Xy xy
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Appendix 2. A SECOND EXAMPLE CONCERNING THE BROWNIAN APPROXIMATION
‘This example further illustrates how we can underestimate error
probabilities if we use the "natural" statistic discussed in sections
6 and 7. At the moment the conclusion is not complete: a more exact
statement should be possible if we use Woodroofe's (1976) methods.
We consider two-stage procedures in the class C of section 2.

The procedures use Schwarz's region and are indexed by a

V2at - &t OitiQ—;-,
ga(t) = { L 2a’ J
0 't>-—-2-
8

We conceﬁtrate our attention on two populations, T and Wy, say. Suppose
ﬂy is the best population so that egiting Ca through the 'upper boundary
constitutes an error. During the first stage sampling is vector at a
time on uneliminated populations. The length of stage one 1s such

that if T and “y are uneliminated they will both have 2¢(a) observa-
tions at the end of it. In the second stage there are two possible

values for the sampling ratio

ny = Number of observations on nx: Number of observations on ﬂy.

At the end of stage one we set ny = por %-, p > 1, and we sample

in this ratio until one of ﬂx and ﬂy is eliminated. Define

ul,...,u2¢ : observations on T in stage I

v observations on "y in stage I.

l,...,v2¢ :
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If we choose ny = P, then at a typical point in stage II we have

Xl""’xpn observations on T in stage II
Yl"'°’Yn : observations on ﬂy in stage II.
- 0 & L
Let u,, = = ) u,, etc. The so-called natural statistic is
20 2¢ 5oy 4
— + . 2 — 3
Z('t) i (2¢+pn)(2¢+ﬂ) 2¢u2¢ pnxpn _ ¢v2¢+nYn }
4p+(p+l)n 2¢+pn 2¢+n
where
¢ = (2¢+pn)(2¢+n)
4o+ (p+l)n

ans%der a procedure for which ny = p always. Then the process Z(t)
corresponds to a deterministic sampling rule and can therefore be
embedded in a Brownian motion. Also, P{'n‘x eliminates ﬂy} :_e(a). The
same holds if ny = %;always. In a sense the choice of sampling ratio

allows us to choose one of two Brownian motions. This is seen by re-

expressing Z(t). For the general procedure suppose we choose R v = p,
X
then
i
7 (P-1)n.2¢ _
z(t) = - Fot(prin {(u2¢-Ux) + (V2¢-uy)}
(2¢+pn)(2¢+n) pn(xpn'ux) n(Yn_uY) }o+

Gg+(ptl)n 2¢+pn " T2¢+n
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+

(26 + Hp+Lin)2g N
T ey {(u2¢;ux) —‘(v2¢—uy)}

(2¢+pn)(24+n)
T Tugrtorn - (k)

We can write

- ']2_‘ (p-1)n u v .
Tl(t) - m {WZ (2¢) + W (2(1))},
e W(n
Tz(t) - {2¢+pn* ~ 2¢+n by
(2¢ + %—(p+l)n) . .
T,(t) = TR {w-(20) - w (20},
Tu(t) = t(ux—uy).

(A.2.1)

Cout v . 3 . .
where Wu, W, Wx, and W are independent, zero drift Brownian motions.

The choice of ny depends only on WY and W, By comparing the correspond-

ing formulae when Rky = %-we see that the joint distributions of Tg(t)-

and Ts(t) are the same in both cases. Tl(t), which is determined at

the start of stage II, is independent of T2(t) and Ts(t), and for a

given value of w“(2¢) + wv(2¢) the choice of ny is equivalent to a

choice-of sign for Tl(t). For ny = p, write

z(t) = Tl(t) + (T2(t) + Ta(t)) + Tu(t)a
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- p-1 2
where Tl(‘t) N(O, Cb[m] )

~ N(O, ¢62(n)), say, and
T2(t) + Ts(t) ~ N(O, t—¢82(n)). ; . (A.2.2)

To generaté Z(t) with the correct disfribution we,cén proceed as follows.

Observe a Brownian méotion with drift px-uy at appropriéte.timés in [0,¢].

Take a value for Wu(2¢) + Wv(2¢) from a normal distribution N(O,4¢),

indepeﬁdeﬁt of the Brownian motion. Choose kxy!= 5 or:% , wi;h feg%rd

to breéent knowledge. - From two independent Brownian motions, W and Wy.

constrPct,values of Z(t) in stage II using Z(t) = Tl + T2-+ T3 + Tl+ for
1

R . = p or the corresponding formula if R = =,
Xy Xy P

The above formulation yields two results concerning the error
probability P{ﬂx eliminates Wy}.

A

If we regard the choice of R ) as a choice between two possible
x.

paths, each of which is a Brownian motion with the correct drift, an
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error can only occur if one of the paths exits Ca upwards so
P{nx eliminates ﬂy} < 2¢e(a).

The method of generating Z(t) just described allows a correspondence

between pairs of paths. The two paths for Rx = p, % coincide during

Yy
stage I and differ by 2Tl(t) during stage II. If we can show that
P{both paths give eﬁrovs} << E(a); then by choosing ny appropriately

we can have
P{‘rr‘x eliminates Wy} = 2¢e(a).
Consider P{‘JTx eliminates ﬂy | Wu(2¢) + Wv(2¢) = 0}. If this is of a
smaller order of magnitude than e(a) then clearly P{both paths give errors}
<< g(a). By Berk's method we can check this criterion. For ¢(a) =
v
oa”), v > 0 we get

P{'rrX eliminates ﬂy} ~ 2¢(a)

but for ¢(a) ~ log a this method is inconclusive. Maybe we can get

a result using Woodroofe's techniques.
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Appendix 3. DISCRETE AND CONTINUOUS ERRORS

We.have a continuation region C of the usual form, given by the
non-negative function g(t), t > 0. The symmetry of C is essential.
BA(t) denotes a Brownian motion with drift A. We consider two processes,
The continuous process is a Brownian motion B-G(t)’ t >0 with § > 0.
Let To = inf{ﬁ > 0: B-G(t) ¢ C}. The discrete procesé is obtained by
observing B—G(t) at a random, incfeaéing sequence of times {ti; i=1,2,...}
taking values in a given countable set. The value of/ti depends on

B—G(t) only through its values in the period [O;ti_ ]J. We define

1
T, = inf{ti: B—G(ti) ¢ C} and assume that T; < » a:s. Note that

D D

s z-TC' The error probabilities are
€ = P{B_G(TC) > 'g(-'rc-)} = P{B_S(TC) > 0},
ey = PIB_s(1) > gl1)} = P{B_((1) > 0},

We wish to show €_ < €

5 Suppose the sequence {ti} depends on B-d(t)

c
in the following symmetric way. Consider an outcome {(b(t); t 2_0); {ti}}
where b(t) is the path of a Brownian motion. The conditional distri-
bution of {ti} given B G(t) = b(t), t > 0 is the same as that given

B—é(t) = -b(t), t > 0. Under these conditions éD < €a

Proof. Let PA(w) denote the probability distribution on the space with

elements w = {(b(t); 0 < t :_T

< D)’ {ti; t, f_TD}}, where b(t) is the

realisation of a Brownian motion BA(t). Then
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dap -

ap—‘fg () = exp{26b(1))}.

(The derivative is taken relative to the o-field OIb(t); 0 <t< TD}).

Let ) = {w: b(t,) > 0, b(rD) < 0} and Q, = {w: b(t,) <o, b(t,) > 0}.

Then

£, -€_ = f dp  (w) - f ar _(w).
C D Ql -8 Qé -8

We noté that 92 can be obtained;féom hl By replacing b(t), t > 0 by

-b(t), t > 0. By the symmetry property of the ti's

€ - &y = [ P )+ dp(w).

C D
Ql Ql
dp
= f (1 = P (w)) dP_G(w).
Ql -6
On @, b(TD) < 0 so
dPG
aﬁts(w) = exp{26b(TD)} < 1'
and hence €, - € > 0, as required.

c D
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Appendix 4., A COMBINATORIAL RESULT
We use the following combinatorial result in proving Theorem 3.3.

Suppose we are given pairs {(ui,hi): hi >0, i=1,...,k} and My > u,

for i = 1,...,k-1. There is a function 6: {1,2,...,k-2} + {1,2,...,k}

with the property

(1) 6(i) # i Mo (i) > uy and for each i # k there exists n such

n -
that e(i) = k.

Let G(x), x > 0 be an increasing function of x such that

1 1 t
(2) + =—  G(U,, .\ - M.
he(i) h, o(i) "i
Then
g : 1 1
(3) ¥ h, > inf {] d,: 3=+ =< Gy, - u)}
321 =450 1 3 di dk — k b

Remarks. In the context of Theorem 3.3, 8(i) is the index of the popula-

tion that eliminates e and G is given by

. 2
)—l {(x+6) N

6(x) = (-log ¢ - n}

and we note that for these purposes it is sufficient to take [k] = k.

k

Proof, The symmetric function Z hi is unchanged by permutations {Hi} of
1

the numbers {hi}' Hence conclusion (3) will follow if we can find a
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permutation which satisfies

(4) +i—-_<__c(uk—u.).

i N

D“!I—-’

This in turn becomes obvious if we can find a permutation {hi} and a
modification 6 of © such that properties (1) and (2) are preserved and
in addition

(5) h. > h..
(i) — *

Indeed, suppose that (1), (2), and (5) obtain, and that k = Gn(i). It
follows that hk 3-he(i) and M ijue(i); and we recover (4) from (2) by
recalling that G is increasing. |

To dbtain (5) we argue as follows. For any set of 8(i)'s we can
construct a tree with nodes labeled i = 1,2,...,k. The parent of node i
is 8(1) and the root is node k. The tree satisfies the following (see

Figure A.4.1):

(i) The root is node k.

(ii) The parent of node i is 6(i), i = 1,2,...,k-1.
(iii) Associated with node i is the pair (ui,hi).

. S )
(V) Haes) Z W

(v)

1

Consider the following transformation of the tree. For an i such that

ho(i) < hi N
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. . . s
(a) Interchange the values hG(l) and hl, SO now he(l) hi’

(b) If 6(3) =1 for any 3 € {1,2,...,k-1}, set O(j) = 6(i).

This transformation preserves properties (i) to (v). By repeated appli-

cations we arrive at a tree with the additional property (5), as desired.
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Figure A.4.1. Examples of trees.

(5,40)

(4,50) (3,30)

“(2,60) : (1,20) (6,10)

(5,40)

I

swap observations . (4,60) . (3,30)
on populations 2 € 4 )
(2,50) (1,20) (6,10)
(5,60)
swap observations (3,30)

on ”4 and WS

(4,40

(2,50) l (1,20) (6,10)
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Appendix 5. EXTENSION OF THE MARTINGALE PROPERTY TO k > 3 POPULATIONS

Consider first the two population case, Let the observations on

Wx and T _ be deﬁoted xl,x2,...;xm,... and YysYgsere respectively.
k-l - _1 - 2 .
Write x = = .Z X:es Y T o 'Z Y5 § = M, uy and define
i=1 i=1
z =T (y ¥ ).

To see that for translation invariant sampling rules, Z - —— § is
s : m,n m+n

a martingale with respec¢t to o-fields F . O{Zij, 1<i<m,1<3<n},

consider the decomposition (Robbins and Siegmund (1974)):

) n+k m+j
(mt3) I y; - (ntk) Y X
n+l m+l
Z .- =2 +
mt3,ntk m,n m+n+j+k

RRS)
(nj-mk)() y. + ) x.)
;174774

+
(m+n) (m+n+j+k)

It is then apparent that the second term on the right side is indepen-

dent of Fm n since it consists of ""future observations' and the third
1y

term is independent becaduse it is orthogonal to the differences
e = < i< < 3 < i ;
{xl X 5¥57%y 5 1<i<m,1<7 < n} which generate Fm,n

A similar argument is possible to exhibit martingales in the k

population case. This will be done here for k = 3, but the argument is

completely general. Denote observations on nz by zl,z2,...,zp,...
and let the mean of m_be W_ and z_ = . z. . Define
- z - Z P P k

k=1
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1 — < =
VA E = - -
m,n,p mﬂHp[hHmmﬂl Yy T@ﬁﬂ

! = = D
= D [mn(xm-yn) + mp(xm~2p)] .

The following decomposition shows (by an argument analogous to the one
above) that 2 - EZ is a (one-dimensional) martingale with

mSn’p m’“’p

respect to the o0-fields generated by’ the diffe%encps {xi—xl,yj—xl, 2y %1
1<i<m,1<j<n,1c<k f_p}, for any sampling rule which depends

only on these differences (i.e. is translation invariant):

m+y n+k p+k
(ntptk+f) J x, = (mt3)C | v, + 1 z)
7 =7 & m+l n+l p+l
Wi, £l Ma1,P min+p+i+k+L

m n
[m(k+2) - §(n+p) (] x + J v + E z)
1 1 1

(m+n+p)(m+n+p+5+k+2)

One consequence of the martingale property may be obtained from

the optional sampling theorem. In the two population case, if M and N

are the values of m and n on termination of the experiment, and E %gﬁ'< )

then

_ s MN
E ZM,N = GE(m).

This résult providés supporting evidence for the validity of the mean

path approximation, in which one approximates the random path

(MR

s ) by (22—, I0_§). similar pesults hold for general k,

m,n m+n * mt+n

and in particular for Z R
m,n,p
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Two further martingales (W and V - ', say) may be obtained
g m,n,p m,n,p*> ~V 1Y

by permuting the labels m,n,p and populations X, Y and Z, and one

m n

finds that Z + W+ V = 0. The '"natural statistics" %:— (x v.),

mp
E?E(yn_z ) and =) (xm zp) used in sections'6 and 7 are linear combina-

tions of Z, W and V in which the coefficients depend on m, n and p.

Thus the martingale property is not preserved, but it is still possible
to feel that the mean path approximation is redsonablé, and so this

approximation forms the basis of the heuristic analysis of section 6.






