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ABSTRACT

_ We present a small sample approximation to the
distribution of the efficient score statistic for iesting the
null hypothesis A=2,, where A is the hazard ratio in a
proportional hazards medel. Here, "small sample” refers
to a small number of failures in the observed data. Our
basic approximation is to the conditional distribution of
observations’ group memberships, given the observed
number of failures and number of censored observations
between successive failures; the implied distribution of
the score statistic is found by simulation. Our method can
be incorporated into sequential procedures for monitoring
survival data and it successfully overcomes inaccuracies in
the usual normal approximations that arise when only a
few subjects have failed at early analyses.

A simulation stady to assess the accuracy of our
approximation reguired bootstrap simulation nested within
experimental replications. Here, the computational
demands were alleviated substantially by conducting the
bootstrap tesis themselves sequentially; wusing an
mnovative form of stochastic curtailment reduced the
required compuiation by a factor of up to 25, 50 or even
more.

1. INTROBUCTION

Consider a sequential clinical trial in which subjects arrive
over a period of time, each patient is randomly allocated
o one of iwc treatments and his or her subsequent
progress is followed until death. Suppose that survival
iime is the major endpoint of interest and a proportional

hazards model with hazard ratio A between the two
treatments is assumed. The logrank statistic is commonly
used in such situations. Asymptotic theory (Tsiatis 1981,
1982, Harrington, Fleming & Green 1982) shows that the
joint distribution of the sequence of logrank statistics
observed at successive interim analyses is approximately
multivariate normal. In the asymptotic seiting, resulis are
obtained in the limit as the rate of accrual of subjecis to
the study increases, with calendar times of analyses held
fixed. The accuracy of the normal approximation for a
single analysis depends primarily on the total number of
observed failures; at early analyses, when only a smali
number of patients have been accrued and very few have
failed, it may be quite poor. Nevertheless, in extreme
cases, for example, if 11 out of 12 failures have occurred
on the same treatment arm, one would still like to have
the opportunity of reaching an early decision.

Inaccuracies in the normal approximation for the logrank
statistic and more general score statistics are greater when
A#1. In order to implement sequential procedures based
on repeated confidence intervals (Jenmison & Turnbull,
1984, 1989) it is importani to have reliable group
sequential tests of null hypotheses Hy: A=A for ail Ap. A
good approximation o0 the joint distribution of the
sequence of logrank statistics under values of A1 is also
needed to construct confidence intervals for the hazard
ratio following a conventional group sequential test. Our
objective in this paper is to develop tests of Hy: A=4, for
general g, which achieve a specified type I error divided
equally between the iwo sides of the aliemative
hypothesis 1 #1g.

In § 2 we describe the sequential survival problem and in
§3 we introduce our proposed smalli sample



approximation. Implementation of this approximation for
significance tesis and confidence intervals is discussed in
§4. In § 5 we report on simulation studies carried oui 0
assess the accuracy of our approximation; we also
describe a form of sequential curtailment of the bootstrap
test which led to large reductions in the computation time
of these simulations. In § 6 we make some concluding
remarks and indicate a topic for future research.

2. THE SURVIVAL PROBLEM

We consider the problem of comparing two groups of
patienis in a clinical trial. We assume that survival times
for the two groups follow a proportional hazards medei
with hazard rates A(f) and Ah(s) in groups 1 and 2
respectively.  Suppose subjects enter the study at
staggered intervals and they are also subject 10 competing
risk censoring which is assumed to be independent of
survival time and of treatment group, for example, loss to
follow up due to a subject’s moving to a different part of
the country. Suppose also that the survival study is
monitored sequentially, interim analyses being conducted
at predetermined calendar times. Our objective is to derive
sequential tests of the null hypothesis Hy: A=1y against a
two sided alternative, achieving a specified type 1 error, a.

Let d, denote the number of exact failures observed at the
time of the kih analysis and ¢ <1, <...<{y, the ordered

values of these failure times; the failure time for each
subject is measired from his or her time of entry (o the
study. Note that some subjects may not yet have eniered
the study and others will be subjeci io end-of-study
censoring in addition to competing risk censoring. The
efficient score statistic for testing Hy : 4 = A9, based on the
partial likelihood (Cox, 1972) of the data available at the
time of the kth analysis, is
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where r;; and r;, are the numbers at risk in groups 1 and
2 respectively just before time f; and §; is an indicator
variable taking the value 1 if the failure at time ¢; is in
group 2; the variables §;, r;; and r;, all depend on k but
this dependence is suppressed to simplify the notation. If
Ao=1, this statistic reduces o the well-known logrank
statistic.

Harringion et al. (1982) prove that the sequence of
statistics  {Zi{A0)}, %=1, has, asymptotically, =
multivariate normal joint distribution with independent
increments. A consistent estimate of the asymplotic
variance is available and the correspondingly standardised

statistic,

Ly(R0)
z. Agrirrial(riy +Aeri? Y2

2.2)

is approximately N(0,1). Equivalenily, one can ireat the
joint distribution of the sequence of unstandardised
statistics {L;(1o))} as that of a sequence of zero-mean
normal variables with the variance of Ly(1p) equal to
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and independent increments, ie., the same joint
distribution as a standard Brownian motion observed at
times J, in the Brownian motion timescale. This
representation i particularly convenient for the
construction of group sequential tests of Hy:A=1y. We
shall follow the approach of Slud & Wei (1982) and
specify a group sequential test with X analyses by a
sequence of probabilities 7z, ... , 7x, summing to «, where
7, denotes the amount of type I error to be "spent" at the
kth analysis. Thus, Hy: A=3¢ is to be rejected at the kth
analysis if |[Ly(do)|>cy, where the critical values
€1,..., Cg are chosen to satisfy

PILiGo)l <ers ooy Ly (Rp) | < Ciys

|Li(Ao) | 2e) =m  k=1,...,K. (23)

Under the above normal approximation to the joint
distribution of the sequence L;{(d¢),L,{Ap),..., values
¢1,¢y,... can be calculated successively, using numerical
integration to evaluate the left hand side of (2.3). Note
that only the values /,,..., [, which are known at the
time of the kih analysis, are needed to find c;.

Gail, DeMets & Stud (1982) and DeMeis & Gail (1985)
have stdied the normal approximation to the joint
distribution of sequentially calculated logrank statistics,
They find this approximation o work well for A=1 but
note that differences from the anticipated power of
sequential tests occur at A=2, Jennison & Turnbull (1989)
report on a simulation study investigating the adequacy in
sequeniial sests of the normal approximation for general
score statistics. They note that it works well in many
cases but that problems do arise when only a2 small
namber of failures, e.g., 20 or 30, have occurred at the
time of ome or more early analyses. Inaccuracies are
greatest when the values of x, for small & are reasonably
large, for example, if a repeated significance test at
constant nominal level (Pocock, 1977), adapted 1o unequal
increments in f, is used. In typical examples, achieved



one-sided error rates range from 0.035 o 0.06 compared
with their intended value of &/2 =0.05. Closer inspection
of these examples reveals that the empirical probability of
first rejecting H, at analysis k differs substantially from
the nominal value, x,, when the average number of
failures occurring by analysis & is smail.

Qur proposal for improving agreement with nominal error
rates is to retain the gemeral approach outlined above,
calculating critical values ¢, by solving (2.3) under the
npormal approximation. However, if no more than 30
failures have been observed at analysis k the criterion for
rejeciing Hy is replaced by a two-sided significance test of
size 2{1—®(c,/\I})} and this test is conducted using a
good small sample approximation o the distribution of
Ly(A9). This method of calculating a sequence of nominal
significance levels appropriate to normal data but
implementing individual tests using exact or nearly exact
distributions of non-normal statistics appears to work well
quitc generally; Jennison & Turnbull (1991) note that it
gives good results for sequential - and 2-tests.

3. A SMALL SAMPLE APPROXIMATION TO

THE DISTRIBUTION OF L,(4¢)

We introduce the small sample approximation in the non-
sequential case. Notation is as in § 2, but subscripis k
denoting the number of the interim analysis are omitted.
Let n denoie the total number of observations available.
Arrange the set of n survival times, censored or exact, in
ascending order and let J(i), i=1,..., n, take the value O
if the ith time is censored and 1 if i is exact. We shall
approximate the conditional distribution of L{4;) under
A=Ay given {J(i);i=1,...,n} or, equivalently, given the
pumber of exact failures d and the numbers of censored
observations between each pair of successive failure times.
We first approximate the conditional joint distribution of
observations’ group membesships, 1 or 2, given
(J@):i=1,...,n}. This approximating distribution is
most easily described by means of an algorithm and this
also provides a siraightforward method for generating
realisations from the distribution. Start at time =0, with
mumbers #; and n, at risk in groups 1 and 2 respectively
where », and n, are the actual group sizes; if the next
cbservation is censored allocate it to gromp 1 with
probability #,/(n;+n,) and o group 2 otherwise, if the
next observation is exact allocate it to group 1 with
probability n,/(n+4gny) and to group 2 otherwise,
decrease either n, or ny by 1 as appropriate and proceed
to the next observation; continue this procedure until all
observations have been allocated a group label. The value
of L(A¢) is calculated by applying the formula (2.1) to the

new data set; the distribution of such values forms our
approximation to the conditional distribution of L(4¢)
given {J(i);i=1,...,n} under A=2,.

To see that this method is only approximate, consider the
labelling of the first censored observation: if the number
of subsequent exact failures is relatively high and Ap>1,
there is a greater conditional probability that the censored
observation is from group 1, since this would leave more
members of group 2 who are more likely to fail before
being censored. Here "relatively” high depends on the
baseline hazard rate ho(?) and the censoring distribution
and, since these are unknown, it follows that the
conditional distribution of L{Ay) cannot be found exactly.
However, our approximate conditional distribution is
exactly correct either if Ap=1 or in the absence of
censoring. It can also be shown, by application of the
Martingale convergence theorem (Brown, 1971, Theorem
2), that the implied distribution for the standardised
statistic  (2.2) comverges to the standard normal
distribution. Thus, our approximation is guaranteed 0 be
reliable for large samples; in addition, the fact that it is
supported on the same set of values as L(4y) and its
exaciness in the above special cases promisecs a beiter
performance in small samples than the usual normal
approximation.

We shall refer to tests of Hy: A=21, in which the reference
distribution for L(2) is obtained by simulating from the
distribution described above as "bootstrap” tests. Usage
of the term "bootstrap” now exiends to tests whichk would
previously have been described simply as Monte Carlo
tests but our tests do possess other features more closely
related o the ideas introduced by Efron (1979).
Specifically, the reference conditional distribution used in
simulations is only an approximation to the true
distribution, but it is asymptotically equivaleni. However,
we have deliberately chosen not to generate "bootstrap”
samples by resampling from the original survival times
(Efron, 1981) or by sampling from Kaplan-Meier survival
estimates (Reid, 1981); we believe the dependence on 4,
of the bootsirap distribution for testing Hy: A=Ay o be a
key factor in the accuracy of our method, in particular, i
is essential in order for the approximation toc be exact in
the two special cases mentioned above.

4, IMPLEMIENTATION

The basic methed for Monte Carlo testing was suggested
by Barnard (1963). Tc perform 2 size @, equal tailed test
of the null hypothesis Hy:A=A1y, generate N-1 wvalues
from the approximating conditional distribution for L{Ao)
as described in § 3. Combining these with ithe observed



value gives a sample of N observations. If the
approximating distribution were exactly correct then,
under #,, the observed value would be equally likely to
be any one of the N values in this sample, so a
satisfaciory test is o reject Hp if the observed value is
one of the Na/2 smallest or No/2 largest values.

Marriott (1979) discusses how large N should be in a test
of this form. Our recommendation is o take N extremely
farge, e.g., 10000, 100000 or 2 million. Although
Barnard’s test provides a clever way of incorporating the
randomness of the simulations into the type I error
statement, small values of N do sacrifice power; since
survival data are wusually expensive to collect but
simulations are easy and fasi, it is only right to make as
much use as possible of the available data. It is also
advisable, for cbvious reasoms, to minimise the chance
that two statisticians conducting the "same" bootstrap test
reach opposite conclusions. Our philosophy here is really
0 use simulation to perform Monte Carlo integration with
N chosen io ensure that the numerical error is negligible.

Computation of a confidence interval for A is of interest in
its own right; if is also a necessary step in consiruciing a
sequence of repeated confidence intervals for A
Computation of a 1-« level confidence interval for 4
requires the inversion of a family of hypothesis tests.
Equivalently, we seek A and A such that L(A) is at the
1-a/2 quantile of the bootstrap distribution for A= and
L(A) is at the o/2 quaniile of the bootstrap distribution
under A=A. Substantial savings in computation can be
made by modelling

p(A) = P{Booisirap L under A > observed L(1)]

as a function of A in the vicinity of the endpoints of the
confidence interval, initial estimaies of which can be
obtained using the normal approximation. We illustrate
this approach with an example.

The following display represenis the rank data for a
sample of 40 survival times, twenty in group 1 and twenty
in group 2. The display shows the group memberships of
the forty observations arranged in increasing order with
asterisks denocting censored observations.

1°,2,2,1%,2,2,1,1,2, 2,2, 1, 2,

1°,2,1%,2,4,2,2,1, 2, 1",2, 1, 1", 1,
2%, 1%, 1, 2%, 1,1, 2°, 1", 1", 2, 2°, 1", 2°.
The normal approximation yields (0.714, 4.112) as a 95%

confidence interval for A. Performing 10000 bootstrap
simulations at each of a2 set of A values near 0.714 gave

the following results:

log 2 Number out of 10000
bootstrap values
> observed L(A)

-0.40 190
-0.39 209
-0.38 238
-0.37 244
-0.36 241
-0.35 267
-0.34 258
-0.33 272
-0.32 284
-0.31 303
-0.30 332

Fiiting a logistic regression model, we obtain
log {p/(1-p)} = -—-1.993 + 4.712 log A

and solve to find 2=0.702 for p=0.025. Repeating the
same exercise at values of A near 4.112 gave a fitted
model

fog {p/(1-p)} = —2.211 + 3.936 logd

and, hence, 4=4.450 for p=0.975. Thus owr 95%
confidence interval is (0.702, 4.450). Note that we fit two
separate models and use each one only in the vicinity of
those A values used to fit it. Examination of the deviance
of each fitted model provides a check on its chosen form.
Also, variances of the roots, A and A, can be obtained
from variances and covariances of the parameiers of the
logistic regression model. In this example standard errors
for A and A are 0.003 and 0.036 respectively; if these are
deemed too large, further simulations should be
performed.

Many authors use pivotal or nearly pivotal guantities to
construct bootsirap confidence intervals. It is unlikely
that a really good pivot exists in this problem since the
distribution of L(1y) is discrete and often "clumpy” —
values depend primarily on LJ;, the number of failures in
group 2, with small perturbations arising from the second
terin LAgr;,/{r; +AgF;2). In any case, we would argue
that o investigate p(Ry) by simulating directly under
A=2, removes one level of approximation and a possible
source of error.



8, ASSESSMIENT

5.1 Design of simulation studies

We have examined the accuracy of cur proposed method
in producing equal tailed size @ tests (or, equivalently,
I—a confidence intervals). In a2 simulation study, we
applied our method to M data sets simulated under the
null hypothesis and observed the empirical error rate. To
estimate a true error rate of around 0.05 with a standard
error of 0.0015, say, requires M=20000 replicates; since
N-1 bootstrap simulations are nested within each
replication, the computational task is substantial.

If ow approximation io the conditional distribution of
L(A¢) is good, the standard argument for Barnard’s (1963)
Monte Carlo test, as described in §4, implies that the
error probabilities of this test should be close to their
nominal values for all N, as long as N/2 is an integer.
However, if the approximation is poor, the achieved error
rates for small N are complex functions of the true and
approximating distributions and they might still turn out to
be close to their nominal values. Thus, studies with large
N, of the order of the value to be used in practice, are
necessary to confirm- fully the accuracy of the
approximation. In our simulations, we started with N=20
and 100 and, since these gave promising results, moved
on o N=1000. In sequential tests, the bootstrap test is

N-C-1 4

(a)

part of a larger procedure and Bamard’s argument for
small N does not apply. Thus, a large value of N must be
used from the outset. We have used N=1000, which is
considerably less than the value we recommend for
analysing real data. However, a heuristic argument in
which the randomness of the bootstrap test is equated with
additional variance in L(A,) suggests that this should
affect the error rates only slightly.

5.2 Sequential curtailment of bootstrap tests

In our bootstrap test, the value L{Ay) is calculated from
the data, N-1 "bootstrap” values of L are simulated and
Hy: A=Ay is rejected if the number of bootstrap values
greater than L(4¢) is <C or 2N—-C-1 for some integer C.
(For the present discussion we shall ignore the possibility
that the bootstrap value is exactly equal to L(Ag).) Let G,
denote the number out of the first »n bootstrap values
which exceed L(2g), 0<a<N-1. Then H, is rejected if
and only if Gy.i<C or Gy 2N-C-1. If, after n
bootsirap values have been computed, G,>C and
G, < n—-C eventual acceptance of Hy is inevitable and the
bootstrap simulations can be curtailed at this point. Also,
if G,<C+n+1-N or G,=2N-C-1, simulation can be
curtailed as it is inevitable that Hy will be rejecied. These
rules define a sequential test with the stopping boundary
shown in Figure l1a. This sequential rule could be used in
analysing 2 set of data, but only if acceptance or rejection

Gy 1
N-C-1
C -

{ | >

n N-1 =&

(®)

Figure 1. Boundaries of sequential bootstrap tests designed to reject Hy if Gy_y <C or Gy 2N-C-1. Here
G, is the number out of the first n bootstrap statistics exceeding the observed value. In (8) the test is curtailed
only if the final result is completely inevitable. Much narrower boundaries are achieved in (b) by allowing a
small probability of disagreement with the fixed sample test using all N—1 bootstrap values.

N



of H, at a single significance level were the sole question
of interest. Its value in a simulation study assessing the
accuracy of an approximation to the null distribution is
much clearer, since there, concentration on a single
significance level is quite appropriate.

Note that here, the question being tested sequentially is
whether or not C+1 < Gy_; SN-C-2, ie., the intention is
to produce the same outcome as the fixed sample
bootstrap test with the full N—1 simulated values. An
alternative approach, which we shall not pursue here,
would be to test sequentially the null hypothesis that
L(Ay) Hes beiween the /2 and iI-o/2 qguantiles of the
hootstrap distribution.

The deterministic curtailment described above does not
take full advantage of the sequential setting. If we allow
a very small probability of reaching the opposite
conclusion from a fixed sample test using all N-1
bootstrap values, subsiantially greater reductions in the
numbers of booistraps can be achieved; for the methods
we consider these probabilities are of the order of 1073, so
their effect on estimated error probabilities with standard
errors of around 107 really is negligible. We shall
consider tests of the following general form, a typical
example of which appears in Figare 1b. At stage n,

if G,<a, conclude Gy_ <C

if G,2d, conclude Gy, 2N-C-1

if nzny and b,<G,<c, conclude C<Gy_ 1 <N-C-1

else continue by generating the
(n+1)th bootstrap.

Here CIN_l:C, bN_l‘-—-“C'*'i, CN_1=N-C—2 and
dy_1=N-C-1. We restrict attention to tests which are
symmetric in  that a,+d,=b,+c,=n for each
n=1,...,N-1. Note the role of ny, the minimum number
of bootstraps required to conclude C < Gy <N-C-1.

To design and evaluate such tesis, we consider the
distributon  of (G,;n=1,...,N-2} given Gy_;.
Marginally, each G, has a hypergeomeiric distribution
with parameters N—1, Gy, and n; if Gy, N-1-Gy_y,
n and N—1-n are all large, this can be approximated by
the normal distribution,
#Gy_y Gy (N-1-Gy_1) n(N-1-n)
N-1 (N=1* (W-2)
The joint disribution of {G,; n=1,...,N-1} given Gy,
forms a random walk from Gy=0 0 Gy..; =Gy, with
P(Guyy = G+ 1) = (Gy-1 ~GI(N-1-n),

PGy =G,) = 1=(Gy1 ~G(N-1-n). (52)

N ( ). (5.1

Approximate calculations could be based on the
convergence of this process 0 2 Brownian bridge as

N-—co, However, such approximation is unnecessary
since (5.2) allows exact numerical evaluation of any given
sequential test using standard techniques as described in,
for example, Schulz et al. (1973). It is easily seen that
the largest conditional probability, given Gy.;, of a
sequential test reaching the opposiie conclusion from that
of the fixed sample test with all N—1 bootstraps is the
maximum of P(Conclude Gy_; £C | Gy =C+1) and
P(Conclude Gy-1 >C | Gy_1 =C); note that probabilities
relating to the conclusion Gy_; 2N-C-1 are equal by
symmetry and we ignore probabilitiecs such as
P(Conclude Gy_y 2N-C-1|.Gy_; =C)  which are
smaller by an order of magnitude. This maximum is then
an upper bound on the overall probability that the
sequential test and fixed sample test do not agree.

The tests used in our simulation studies had the following
form, which we shall refer to as "conditional repeated
significance tesis". Values of a, are set at extreme points
of the lower il of the marginal distribution of
G,|Gy-1=C+1; if the mean of this distribution,
a(C+D/I(N-1), is less than 200 or greater than C+1-200,
a, is set at the 107 point of the hypergeometric
distribution, for other cases a, is the 1077 point of the
approximating normal distribution (5.1), the more extreme
iail point being used to allow for any error in the normal
approximation. Values of b,, ¢, and d, are the
corresponding upper tail points of G, |Gy_,=C, lower tail
points of G, |Gy_;=N-C-1 and upper iail poinis of
G, |Gy-y=N-C-2, respectively; ng is the smaliest value
of n for which c,=b,. Exact calculations, using (5.2),
give the worst case probability that the sequential test
reaches 2 different conclusion from the fixed sample test,
as described above. In our examples, using this form of
boundary with N=1000, the worst case error was less than
1075, The construction of this test is in the same spisit as
the stochastically curtailed tests introduced by Lan, Simon
& Halperin (1982), however, there are imporiant
differences and the much narrower boundaries of our test
for small # lead to major improvements in performance.

Table 1. Average number of bootstrap evaluaiions under
Ho for sequential tests of the "conditional repeated
significance ftest" form described above. The reference
fixed sample test rejects Hy if the observed statisiic is one
of the Nal2 lowest or Nal2 highest values in the combined
sample of observed statistic plus N—1 bootstrap values.

N
100 1000 10008

al2=0.05 | 29 182 688
a/2=0.01 9 84 295




Table 1 shows the average number of bootstrap
evaluations under H, for conditional repeated significance
tesis with two-sided type I emor probabilities « and
number of bootstraps N—1 in the reference fixed sample
test. Note that for ¢f2=0.01 and N=10000, less than 3%
of ihe fixed sample size, N1, is required on average and
this proportion continues to decrease as N increases.
These reductions in average sample size are well in excess
of those usually achieved by sequential tests. The main
reason for this is that, under Hy, Gy-; is typically well
away from the borderline values C and N-C-1. Since
this is the situation usually encountered in simulation
studies, and since a sequential stopping rule is easily
added to 2 simulation program, we strongly recommend
the routine use of sequential methods in bootstrap
simulation studies. The above form of boundary was
chosen for convenience and other boundaries could
certainly be wused instead. However, our experience
suggests that any test which provides sufficient
opportunity for very early stopping 0 accept or reject Hy
will have a very similar performance.

5.3 Simulation results

We first tested our proposed methods in the fixed sample
seiting. Two sets of survival times were generated under
a proportional hazards model with hazard ratio Ao and it
was noted whether the null hypothesis Hy:A=21y was
rejected in favour either of A>1y or of A<dy. Results
from one example are given in Table 2. In this case there
were 30 observations in each group, survival was
exponential with the geometric mean of the two median
survival times equal to 1 and censoring was uniform on
[0,1). The average number of observed failures was
around 17 for each Ag.

1t is seen from Table 2 that the normal approximation is
satisfactory when 2g=1 but deteriorates as Ay moves away
from 1. The substaniial differences between achieved and
nominal error rates for a/2=0.01 are a particular cause of
concern since tests at about this level are often used at
intermediate stages of sequential tests. The small sample
approximation, which was implemented here with a
bootsirap sample size of N=1000, works very well and is

Table 2. Empirical error rates for single sample tests of Hy : A=A using the score statistic (2.1) with (a) the
normal approximation and (b) the new small sample approximation described in § 3 with bootstrap N = 1000. The
table shows separately the estimated probabilities that Hy is rejected in favour of larger or smaller values of A
when the intended error rate is cl2. Results are based on a simulation study with 20000 replications; standard
errors are 0.0015 for a/2=0.05 and 0.0007 for c/2=0.01.

Ag=1 Normal approximation
New approximation

Ao =1.5 Normal approximation
New approximation

Ag=2 Normal approximation
New approximation

Ag=3 Normal approximation

New approximation

a/2=10.05 al2=10.01
Ay A>Ag A>y A>2
0.056  0.050 0.0097  0.0097
0.04¢  0.049 0.0097 0.0097
0.046 0.053 0.0086  0.0107
0.049  0.050 0.0098 0.0090
0.045 0.056 0.0067 0.0134
0.050 0.050 0.0094 0.0101
0.042 0.061 0.0055 0.0144
0.049  0.052 00112 0.009%4




within one or two siandard errors of the nominal error
rates in all cases. The same comparisons have been made
for examples with different survival and censoring
distributions and different sample sizes, and in all cases
results were similar to those reported here.

Tabie 3 shows simulation resuits for a sequential survival
study. The experimental design is typical of many
clinical trials, with a total duration of 5 years and subjects
entering over an initial two year accrual period according
to a Poisson process with rate 100 per year. On entry,
each subject is randomly allocated to one of two treatment
groups. The results of Table 3 are for the cases of
exponential survival times and Weibull survival times
with shape parameter p=3. The survival distributions
follow the proportional hazards model with a hazard ratic
Ao and the geometric mean of the two median survival
times equal to 2.5 years. In addition to right censoring at
each interim analysis, competing risk censoring is present
with & hazard rate of 0.1. Up to 10 interim analyses take
place at intervals of 6 months and these are carried out
using all information available ai that time on those
subjects already entered into the study; thus, the amount
of information available at each analysis varies from one
simulation to another. In testing H : A=Ay, the Shud and

Wei (1982) method, as described in § 2, was used with
error probabilities to be "spent" at each analysis,
%, k=1, ..., 10, taking values corresponding to a Pocock
(1977) repeated significance test with 10 equally sized
groups of observations; if no failures at all had occurred
at an early amalysis the allocated error probability was
carried forward o the next analysis. Tests using the new
small sample approximation to the distribution of the
score statistic (2.1) were implemented with a bootstrap
sample size of 1000 at interim analyses at which 30 or
fewer failures had occurred but if more than 30 failures
were observed the normal approximation was used
instead.

The lack of accuracy of the normal approximation, which
the results for fixed sample tests had portended, is seen
clearly in Table 3. In the case of Weibull failure times,
for which the number of early failures is very small, the
normal approximation is even unreliable for Ap=1. In
contrast, the new small sample approximation leads to
error rates very close to their nominal levels in all cases.
Similar findings for other experimental designs suggesi
that the new approximation is reliable quite generally and
provides a widely applicable approach to testing at early
analyses in sequential survival siudies.

Table 3. Empirical error rates for sequential tests of Hy : A=A using the score statistic (2.1) with () the normal
approximation and (b) the new small sample approximation described in § 3 with N=1000. The table shows
estimated probabilities that Hy is rejected in favour of larger or smaller values of 2 when the intended error rate
is /2 =0.05. Results are based on 20000 replications; standard errors are 0.0015.

Exponential survival

Normal approximation 0.046 0.046
New approximation 0.052 0.052

Weibull, p =3, survival

New approximation 0.048  0.048

Normal approximation 0.036  0.036,

" Empirical error rates
2.0 = 2 /10 = 3
A>A A<l A>ly A<y
0.036 0.060 0.032 0.067
0.04¢  0.051 0.049  0.051
0.024  0.057 0.021  0.073
0048 0.050 0.047  0.052




6. DISCUSSION

We have presented a small sample approximation to the
distribution of the efficient score statistic for testing a
hypothesised hazard ratio, Ag, in the proportional hazards
model. The method has been shown i yield error
probabilities close to their nominal values in both fixed
sample and sequential tests. Even when the number of
observed failures is as low as, say, 5 the method still
manages 10 achieve near nominal error rates, despite the
discrete nature of the sample space (the number of failures
in either group must be an integer between 0 and 5). The
reason for this is the slight difference in the second term
of the score statistic (2.1) produced by different paticrns
of censoring. There is something rather worrying here
since a distinct ordering is created of points in the sample
space for which the likelihocod, as a function of A, is
almost identical. In ceriain situations one might well
prefer not to separate such ouicomes, for example, one
would probably wish to avoid finding a two-sided
significance level of 0.015 at an carly analysis of a
survival study where only one subject had failed and six
subjects, all in the same group as the failure, had been
censored before the failure time! We intend to address
this problem in greater depth in a subsequent paper.

In implementing and assessing our proposed method, we
have made use of "bootstrap” methods and we conclude
with a few remarks on this topic. The numerical results
of § 5.3 show our method to be much more accurate than
many booistrap tests. We attribute this to the fact that our
bootstrap samples are actually generated under the null
hypothesis A=2¢; it is our belief that, in situations where
this is possible, such an approach will be preferable to
direct resampling from the observed data plus atlowance
for the possibly non-null value of A by pivotal techniques.
For similar reasons, when constructing a bootstrap
confidence interval for A, we advocate modelling as a
fonction of A the probability that 2 bootstrap sample
exceeds the observed siatistic. Finally, we note the very
substantial savings that can be achieved using sequential
methods in conjunction with booistrap sampling and
recommend their use more generally.
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