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SUMMARY

We consider sample size re-estimation in a clinical trial, in particular when there is a significant delay

before the measurement of patient response. Mehta and Pocock have proposed methods in which sample

size is increased when interim results fall in a “promising zone” where it is deemed worthwhile to increase

conditional power by adding more subjects. Our analysis reveals potential pitfalls in applying this

approach. Mehta and Pocock use results of Chen, DeMets and Lan to identify when increasing sample

size but applying a conventional level α significance test at the end of the trial does not inflate the

type I error rate: we have found the greatest gains in power per additional observation are liable to lie

outside the region defined by this method. Mehta and Pocock increase sample size to achieve a particular

conditional power, calculated under the current estimate of treatment effect: this leads to high increases

in sample size for a small range of interim outcomes, whereas we have found it more efficient to make

moderate increases in sample size over a wider range of cases. If the above pitfalls are avoided, we believe

the broad framework proposed by Mehta and Pocock is valuable for clinical trial design. Working in this

framework, we propose sample size rules which apply explicitly the principle of adding observations when

they are most beneficial. The resulting trial designs are closely related to efficient group sequential tests

for a delayed response proposed by Hampson and Jennison.

Key words: clinical trial; group sequential test; sample size re-estimation; adaptive design;
flexible design; optimal design; promising zone.

1 Introduction

Adaptive strategies to extend a clinical trial have been proposed for a wide variety of situations:
when there is uncertainty over the value of a nuisance parameter such as response variance;
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when there are co-primary endpoints with differing relative effect sizes; when the goals of
superiority and non-inferiority are considered simultaneously; or in “enrichment” designs where
treatment efficacy may be assessed in both a general population and a specified sub-population.
Nevertheless, considerable attention has been given to the relatively simple setting of a parallel
design with a single primary outcome variable, where investigators re-consider the size of
treatment effect they wish to detect with high probability and, typically, increase sample size
to give adequate power at a smaller effect size. Such a change of objective is commonly based
on an unblinded interim estimate of the treatment effect. It is this last form of sample size
re-assessment that we shall examine in detail, prompted by recently published proposals.

The statistical considerations arising in clinical trials are many and complex and include:
multiple primary and secondary endpoints; adverse safety events; compliance and treatment
switching; quality of life; data quality; cost-benefit and risk analysis; intent-to-treat issues;
multiple sites and stratification. However, the section of the protocol that concerns the
justification of the sample size, power and interim analysis plan is typically based on a single
primary endpoint (even though implications for other endpoints may be noted). If there is a
plan for sample size modification at an interim analysis, specific instructions for this should be
laid out in the protocol; this would then be in keeping with the U.S. FDA’s “Draft Guidance on
Adaptive Design” [1] which strongly endorses pre-specified, non-flexible rules, stated in the study
protocol. In a trial that is blinded to the sponsor, the Data Monitoring Committee (DMC) will
be given flexibility to make decisions in some areas, such as responding to adverse safety events,
but members of the DMC will have committed to following rules for sample size modification and
stopping boundaries by signing their agreement to the DMC Charter, which is a legal document.

Consider designing a trial where θ is the effect parameter of primary interest and the null
hypothesis H0: θ ≤ 0 is to be tested against the one-sided alternative θ > 0. The type I error
rate is to be protected at level α and the goal is to achieve power of 1 − β at some positive
treatment effect θ = ∆. Dispute may arise over the choice of ∆, for example, investigators may
consider using a minimum effect of interest ∆1 or a more optimistic anticipated effect size ∆2.
As an example, suppose response variance and other features of a trial design are such that
two fixed sample designs with sample sizes 500 and 1000 give rise to the power curves shown
in Figure 1. If the treatment effect is equal to the minimum clinically significant effect, ∆1, a
sample size of 1000 would give reasonable power but a design with only 500 subjects would be
under-powered. However, a sample size of 500 does provide good power under θ = ∆2 and, if
the true effect size were really this large, a sample size of 1000 would be unnecessarily high.

While regulatory guidances such as ICH E9 quite rightly emphasize the protection of the type I
error rate, trial sponsors have a strong interest to design trials that achieve sufficient power in
an efficient manner: reducing the sample size of a trial by just a few percent can easily translate
into savings between $100,000 and $1million. From an ethical viewpoint, there is a desire to
keep sample sizes small, producing results to support an effective new treatment as rapidly as
possible and minimizing the numbers of subjects randomized to an inferior treatment. At the
same time, it is important to avoid conducting under-powered studies.

Adaptive designs offer a mechanism to adjust sample size in response to updated treatment
effect estimates. The proposals of Bauer and Köhne [2], Fisher [3], and Cui et al. [4] have the
form:
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Figure 1: Choosing the sample size for a trial
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Start with a fixed sample size design;

Examine interim data;

Add observations to increase power when appropriate.

Group sequential designs (see, for example, [5]) follow a different route:

Specify the desired power function, considering the range of possible effect sizes;

Set the maximum sample size a little higher than the fixed sample size;

Stop at an interim analysis if the data support an early conclusion.

When viewed holistically, these two approaches produce similar types of design. In each case
there is an overall maximum possible sample size but, depending on the observed data, the
actual sample size can be smaller than this. We are assuming here that an adaptive design has a
pre-specified adaptation rule, as recommended in the U.S. FDA Guidance [1]. Anderson and Liu
used the phrase “start small and ask for more” to describe the first form of design in a March,
2004 presentation at the Conference on Adaptive Design for Clinical Trials in Philadelphia.
However, with a pre-specified adaptation rule, there should be no doubt that sample size will be
increased when this is required (this assumption does not exclude the case of a trial sponsor with
limited resources who is able to rely on the promise of further investment if interim results are
promising). With a full specification of the trial design in place, any adaptive or group sequential
design has an overall power curve that can be computed at the start of the trial. Designs with
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Figure 2: Power and ASN curves for competing procedures
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similar power curves can be compared in terms of their average sample size functions, Eθ(N).
Figure 2 compares two designs with essentially identical power curves: since the average sample
size function of one is lower than that of the other for all values of θ, there can be little doubt
that this design is the one to be preferred.

In previous work we, and others, have compared group sequential designs (GSDs) and adaptive
designs and concluded in favor of GSDs as they achieve given power with lower average sample
size than published proposals for adaptive designs; see, for example, Jennison and Turnbull [6–8],
Tsiatis and Mehta [9] and Fleming [10]. Suppose we specify a type I error rate α, power 1−β at
a designated effect size θ = δ, and a set of values of θ at which low Eθ(N) is desired. We impose
the constraints that there are at most K (≥ 2) analyses and the maximum sample size is at most
R (> 1) times that required by a fixed sample size test. A GSD has a fixed sequence of group
sizes and stopping boundaries that ensure the type I error rate and power requirements are met.
An adaptive GSD (AGSD) is a generalization of a group sequential design in which, at any stage
k ∈ {1, . . . ,K − 1}, future group sizes are allowed to depend on the responses observed thus far.
Since AGSDs form a larger class, they have the opportunity to be more efficient. However, the
benefits of adapting group sizes are small: in examples presented by Jennison and Turnbull [7]
the efficiency gain of optimal K-group AGSDs over optimal K-group GSDs is only about 2%;
Lokhnygina and Tsiatis [11] compare adaptive and non-adaptive two-stage designs and report
differences in efficiency of 1%; Banerjee and Tsiatis [12] investigate two-stage designs for a binary
response and find adaptive designs to give decreases of 3% to 5% in expected sample size under
the null hypothesis (although, because of the discreteness of the response, type I and type II error
rates are not matched exactly in this comparison). It follows that, for any K-group adaptive
design, there is a (simpler) K-group GSD of almost equal efficiency. In fact, in our investigations
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of published proposals for adaptive designs, we found these designs to use sub-optimal sample
size rules and this led to their being significantly less efficient than well-chosen GSDs.

Despite the above arguments in support of non-adaptive GSDs, Mehta and Pocock [13] have
proposed a new adaptive procedure, termed the “promising zone” approach. We shall refer
to this paper hereafter as “MP”. Since the claims in MP are counter to the findings we have
reported, it is appropriate to revisit the “GSD versus AGSD” question. A significant feature
of MP’s Example 1 is that response is measured some time after treatment, so many patients
have been treated but are yet to produce a response at the interim analysis (we refer to these as
pipeline subjects). Delayed response is common and not easily handled by standard GSDs, and
the effects of pipeline subjects on average sample size need to be considered when comparing
trial designs. Hampson and Jennison [14] have presented a new form of GSD which handles
delayed response and, in an investigation of two-stage versions of their designs, they found little
benefit in adaptive choice of group sizes in their delayed response GSDs.

We note that Mehta and Pocock also recommend their methods for trials with a rapidly observed
response — but then the conclusions of previous investigations [6–12] support the use of standard
GSDs, as discussed above. In MP’s second example of an acute coronary syndromes trial, the
primary endpoint is measured within 48 hours of randomization. Meretoja et al. [15] have
recently described a trial to be conducted using MP’s promising zone approach, in which the
primary endpoint is observed after 24 hours.

The organization of this paper is as follows. First, we introduce MP’s Example 1 and examine
the statistical properties of their proposed design for this problem We present a two-group GSD
which can be applied to the same problem and which achieves essentially the same power curve.
This rather naive GSD makes no use of the potential information from pipeline subjects at the
interim analysis but these subjects are counted in the expected sample size when the trial stops
early: even so, we find that this naive GSD outperforms the MP design. We then take up
the task of finding more competitive designs within MP’s general framework. We show that
alternative sample size rules can reduce average sample size, to an extent. However, for the
best results, we find it is necessary to abandon the Chen et al. [16] approach to controlling the
type I error rate. In Section 5 we use a combination test statistic [2] in the final hypothesis test.
In his discussion of Mehta and Pocock [13], Glimm [17] suggests using the “conditional error
function” approach. A combination test is a special case of this method and we see that, with a
suitable sample size rule, a design employing a combination test can have very good efficiency; in
particular, it can achieve the power of MP’s design with a lower Eθ(N) function than the naive
GSD that ignores pipeline data. In Sections 6 and 7, we return to tests using the usual Wald
statistic in the final analysis. The design presented in Section 7 is an example of a “delayed
response group sequential design”, as proposed by Hampson and Jennison [14], and we note the
similarity of this design to adaptive designs created in our extension of MP’s framework.

2 Mehta and Pocock’s Example

MP’s Example 1 concerns a Phase 3 trial of treatments for schizophrenia in which a new drug is
to be tested against an active comparator. The efficacy endpoint is improvement in the Negative
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Symptoms Assessment score from baseline to week 26. Responses, denoted by YBi, i = 1, 2, . . . ,
on the new treatment and YAi, i = 1, 2, . . . , on the comparator treatment, are assumed to be
normally distributed with known variance 7.52, so each

YAi ∼ N(µA, σ2) and YBi ∼ N(µB , σ2),

where σ2 = 7.52. The treatment effect is

θ = µB − µA.

An initial plan is for a total of n2 = 442 patients, 221 on each treatment and the final analysis
will reject H0: θ ≤ 0, if Z2 > 1.96, where

Z2 =
Y B(n2) − Y A(n2)√{4σ2/n2}

(1)

and Y A(n2) and Y B(n2) are treatment means from a total of n2 observations. This test has
one-sided type I error rate 0.025 and power 0.8 at θ = 2. Higher power, for example power of
0.8 at θ = 1.6, would be desirable but the sponsors are only willing to increase sample size if
interim results are promising.

An interim analysis is planned after observing n1 = 208 responses. Due to staggered accrual
and the 26 week delay in obtaining a response, another 208 pipeline subjects will have been
treated but will not have completed 26 weeks of follow up at the time of the interim analysis.
The purpose of the interim analysis is to revise the total sample size. The minimum value is the
original figure of 442, which includes the pipeline subjects and an additional 26 new subjects;
with “promising data”, an increase up to 884 subjects is permitted. MP use conditional power
to define their “promising zone” and to determine the appropriate increase in sample size for
particular interim results.

At the interim analysis the estimated treatment effect is θ̂1 = Y B(n1) − Y A(n1) and the
standardized test statistic is Z1 = θ̂1/

√
(4σ2/n1). The conditional power CPθ(z1) is defined

to be the probability that the final test, with the original n2 = 442 observations, rejects H0

given Z1 = z1 if the effect size is θ. That is,

CPθ(z1) = Pθ{Z2 > 1.96 |Z1 = z1}. (2)

MP divide possible outcomes at the interim analysis into three regions, based on the conditional
power under θ = θ̂1. These regions and the implications for sample size are:

Favorable CP
θ̂1

(z1) ≥ 0.8 Continue to n2 = 442;

Promising 0.365 ≤ CP
θ̂1

(z1) < 0.8 Increase n2;

Unfavorable CP
θ̂1

(z1) < 0.365 Continue to n2 = 442.

If the final decision is made by comparing the usual Wald statistic, Z2, to a standard normal
distribution, the data dependent choice of n2 may lead to inflation of the type I error rate;
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Figure 3: Sample size increases permitted by method of Gao et al.
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see [18]. It is, of course, crucial to protect the type I error rate when increasing sample size in
the promising zone. MP do this by using a result of Chen, DeMets and Lan [16] and a subsequent
extension of this result by Gao et al. [19]. Suppose at the interim analysis, the final sample size
is increased to n∗

2 > n2 and a final test is carried out without adjustment for this adaptation, so
H0 is rejected if

Z2(n
∗

2) =
Y B(n∗

2) − Y A(n∗

2)√{4σ2/n∗

2}
> 1.96.

Chen, DeMets and Lan (CDL) proved the very neat result that the overall type I error probability
will not increase if n2 is only increased when

CP
θ̂1

(z1) > 0.5. (3)

Gao et al. [19] proved an extension of this result for values of θ̂1 which are too low to satisfy (3).
For an interval of θ̂1 values, they showed the conditional type I error probability does not
increase when the final sample size is increased to n∗

2, as long as n∗

2 is higher than a lower
bound, which depends on θ̂1. We shall refer to an adaptive design using this result as following
the CDL+Gao approach. In MP’s Example 1, with an upper limit for n∗

2 of 884, the final sample
sizes permitted when using the CDL+Gao approach are shown in Figure 3. For values of θ̂1 in
the range (1.21, 1.40), n∗

2 can be set equal to 426 or to a value in the shaded region above the
minimum value for this θ̂1. At θ̂1 = 1.21, the lowest value for which a sample size increase is
permitted, the conditional power under θ = θ̂1 is 0.365, which explains the lower limit of the
promising zone in MP’s design.
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Figure 4: Sample size increase rule for MP design
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In the lower panel of Figure 3 we display the density of θ̂1 under θ = 1.6 (on a different vertical
scale) as an indication of the variability in θ̂1. The distribution of θ̂1 under other values of θ is
shifted but has the same variance.

In their design, MP increase sample size to the value n∗

2 that yields conditional power of 0.8
under θ = θ̂1, where this is possible. In the “unfavorable” region, no increase in n2 is permitted;
in the “favorable” region, CP

θ̂1
(z1) is already 0.8 or higher and no increase is needed; in the

“promising” zone, n2 is increased to the value that makes conditional power under θ = θ̂1 equal
to 0.8, truncating this value to 884 if it is larger than that. This sample size rule is illustrated
in Figure 4, where again we include the density of θ̂1 under θ = 1.6 for reference.

Because of the high variance of θ̂1, increases in n2 occur in a region of quite small probability,
regardless of the true value of θ. The left hand panel of Figure 5 shows that the resulting increase
in power is quite small. Although it was stated that power 0.8 at θ = 1.6 would be desirable,
the power at this effect size has only risen from 0.61 to 0.658. The cost of this increase in power
is the higher expected sample size function shown in the right hand panel of Figure 5.

Calculations underlying the plots in Figure 5 were carried out using the numerical integration
methods described by Jennison and Turnbull in Chapter 19 of [5]. The same methods are used
for all the results presented in this paper and approximation errors in these results are negligible.

We note that the construction of the promising zone and the sample size increase function is
very sensitive to the value of θ̂1, and we have seen this is a highly variable estimate of θ. In
fact, the value of θ̂1 is used twice in determining the conditional power that underlies the sample

8



Figure 5: Power and ASN curves for the MP design and a fixed sample size design with N = 442
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size function: once through the value of z1 in the conditional power (2) and again because this
conditional power is evaluated at θ = θ̂1. This double role of θ̂1 has been noted by Glimm [17]
who describes this practice as “dangerous” and recommends that the MP design “should be
carefully inspected for its operating characteristics”.

It is permissible to modify the MP design by setting the sample size to achieve a higher
conditional power under θ = θ̂1, or by raising the maximum for n2 above 884. However, we have
found that the resulting gains in power are small for the increases in Eθ(N). This leads us to
consider alternatives to the MP design.

3 Alternatives to the MP Design

Suppose we are satisfied with the overall power function of the MP design. We shall present two
more types of design which have the same power function and compare their properties with
those of the MP design.

A fixed sample design

Emerson et al. [20] note that a fixed sample size study with 490 subjects has essentially the same
power curve as the MP design. Comparison with Figure 5 shows that this figure of 490 is lower
than the expected sample size of the MP design for effect sizes θ between 0.8 and 2.0. Although
this fixed sample size is 11% more than the minimum of 442 required by the MP design, it is
much lower than the MP design’s maximum sample size of 884.
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A group sequential design

Despite the delayed response, we can still consider a group sequential design with an interim
analysis after 208 observed responses. However, if the trial stops to reject H0 or accept H0 at
the first analysis, the sample size must be counted as 416 in order to include all the subjects
admitted to the study and treated thus far.

We consider a two-stage error spending design for a one-sided test using a ρ-family error spending
function with ρ = 2 that has type I error rate α = 0.025 under H0 and power 0.8 at θ = 1.9;
see Chapter 7 of [5]. This design has an interim analysis after 208 responses, with 208 pipeline
subjects at that time, and a final analysis after a total of 514 subjects have been admitted and
observed. The stopping rule and decision rule are:

At analysis 1

If Z1 ≥ 2.54 Stop, reject H0

If Z1 ≤ 0.12 Stop, accept H0

If 0.12 < Z1 < 2.54 Continue

At analysis 2

If Z2 ≥ 2.00 Reject H0

If Z2 < 2.00 Accept H0

The sample size rules for the MP design, the fixed sample size trial, and our group sequential
design are compared in Figure 6. For the group sequential design (GSD), the lower dot-dash
line represents the 208 responses observed at the interim analysis, while the dashed line gives
the sample size of 416 when the trial stops at this analysis and the final sample size of 514 when
the trial continues on to the second group of observations. The maximum sample size of 514 is
a factor R = 1.05 times the 490 needed for the same power in a fixed sample design.

The performance properties of the three designs are compared in Figure 7. By construction,
all three designs have essentially the same power curve. It is evident that the GSD dominates
the MP design everywhere with respect to average sample size. This is despite counting the
208 pipeline subjects when the trial stops at the interim analysis without using the information
they could provide. Note that the 2-stage GSD we have described is different from the 2-stage
GSD referred to as “Plan 3” in [13]. That GSD has the higher power of 0.8 at θ = 1.6 which,
although desirable, is not achieved by the MP design. Since our design has the same overall
power as the MP design, it is fairer to compare this design with the MP design with respect to
average sample size.

One might simply decide at this point that conclusions about the relative merits of GSDs and
AGSDs for the case of an immediate response carry over to trials with a delayed response.
However, we recognize that our 2-stage GSD has unsatisfactory features and a design that made
use of information from the pipeline subjects would be preferable. The framework of the MP
design is appealing in that the information from the pipeline subjects at the interim analysis
is eventually used, while interim data are used to decide how many additional subjects will
be recruited for the final analysis; a similar strategy was previously proposed by Faldum and
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Figure 6: Sample size rules for MP, fixed (N = 490) and group sequential designs
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Hommel [21]. Also, the principle of adding observations when they will do the most good is
attractive. The questions we shall address in the remainder of this paper concern: the form of
sample size rule that gives the most additional power for the accompanying increase in sample
size; and whether an alternative to the CDL+Gao approach for protecting the type I error rate
is needed to create more efficient trial designs.

4 Deriving Efficient Sample Size Rules in the MP Framework

We continue to study MP’s Example 1 and retain the basic elements of their design. The interim
analysis takes place after n1 = 208 observed responses. A final sample size n∗

2 is to be chosen
based on θ̂1 or, equivalently, Z1 = θ̂1/

√{4σ2/n1}. We allow values of n∗

2 ∈ [442, 884] that in
addition satisfy the CDL+Gao conditions, as displayed in Figure 3. At the final analysis, H0

is rejected if Z2 > 1.96, where Z2 is the standard Wald statistic with no adjustment for the
adaptive choice of sample size.

In our search for efficient sample size rules in the above framework, we specify a rule that makes
a tradeoff between the competing goals of high conditional power and low sample size. Suppose
we observe Z1 = z1 and are considering a final sample size n∗

2. Let

Z2(n
∗

2) =
Y B(n∗

2) − Y A(n∗

2)√{4σ2/n∗

2}
=

θ̂(n2)√{4σ2/n2}
.
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Figure 7: Power and ASN curves for three designs
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For a given θ̃, denote the conditional power under θ = θ̃, given Z1 = z1 and sample size n∗

2, by

CP
θ̃
(z1, n

∗

2) = P
θ̃
{Z2(n

∗

2) > 1.96 |Z1 = z1}.

In order to implement the idea of using additional sample size where it is most effective in
increasing power, we specify a parameter γ which represents the acceptable “rate of exchange”
between sample size and conditional power, evaluated at an effect size of interest θ = θ̃ (such
as θ̃ = 1.6 in MP’s example). For each value of z1, or equivalently θ̂1, we choose n∗

2 to optimize
the combined objective

CP
θ̃
(z1, n

∗

2) − γ(n∗

2 − 442). (4)

At high values of θ̂1, the gradient of CP
θ̃
(z1, n

∗

2) decreases as n∗

2 increases above 442, in which

case our rule is to increase sample size up to the point where the improvement in conditional
power on adding one more observation is less than γ. For lower values of θ̂1, the gradient of
CP

θ̃
(z1, n

∗

2) increases and then decreases with n∗

2: in some cases, the maximum of (4) is at a

value n∗

2 > 442 where the gradient of CP
θ̃
(z1, n

∗

2) falls back below γ; in others the maximum is

at n∗

2 = 442. We have subtracted 442 from n∗

2 in (4) to emphasize that we are concerned with
the cost of additional observations although, of course, this does not affect where the maximum
occurs. To start with we shall set θ̃ = 1.6, an effect size where power is lower than desired and
we wish to “buy” additional power.

Before using the criterion (4) to derive sample size rules, it is important to comment on the
role of this objective function. Although one could base the value of γ on the cost of treating
each subject in the trial and an estimate of the financial return from a positive outcome, this is
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certainly not required. Instead, γ can be regarded as a tuning parameter that controls the degree
to which sample size may be increased when interim data are promising but not overwhelming.
With such a criterion in place, interim data sets with different values of Z1 will be treated
consistently, with the benefits of any increase in sample size being measured on a common scale.
Since the value of γ determines the operating characteristics of the optimized design, we can
choose a value that gives a design with a specific overall power: we shall do precisely this to
obtain designs with power curves matching that of the MP design seen in Figure 7.

Although the criterion (4) concerns conditional probabilities given the interim data, choosing a
sample size rule to optimize this objective function also yields a design with an overall optimality
property expressed in terms of unconditional power. Let the function n∗

2(z1) specify a sample
size rule for choosing the total sample size n∗

2 when Z1 = z1 is observed at the interim analysis.
Then, we can write

P
θ̃
(Reject H0) − γE

θ̃
(N) =

∫
{CP

θ̃
(z1, n

∗

2(z1)) − γn∗

2(z1)} f
θ̃
(z1) dz1, (5)

where f
θ̃
(z1) denotes the density of Z1 under θ = θ̃. Since our sample size rule maximizes

CP
θ̃
(z1, n

∗

2(z1)) − γn∗

2(z1) for every z1, it also maximizes the right hand side of (5). It follows

that such a rule has the minimum E
θ̃
(N) among all rules that achieve the same power under

θ = θ̃. We shall see that working with this simple optimality property involving Eθ(N) at a
single value of θ is sufficient to explore aspects of the MP design and to give rules that improve
on its performance over a range of θ values. More general criteria involving a weighted average
of Eθi

(N) taken over several effect sizes θi or a weighted integral of Eθ(N) can also be defined
and we shall discuss these in Section 6.

Having specified θ̃ and γ, finding the sample size n∗

2 that maximizes the combined objective
function (4) is straightforward. For a given value of θ̂1, and hence z1, we simply compute
CP

θ̃
(z1, n

∗

2) over the range of values of n∗

2 and choose the n∗

2 that gives the maximum value of

CP
θ̃
(z1, n

∗

2) − γ(n∗

2(z1) − 442). We have chosen to use γ = 0.140/(4σ2) = 0.140/(4 × 7.52) with

θ̃ = 1.6, as this leads to a design with a power curve almost identical to that of the MP design.

The left panel of Figure 8 shows plots of CP
θ̃
(z1, n

∗

2) and CP
θ̃
(z1, n

∗

2)− γ(n∗

2(z1)− 442) for the

case θ̃ = 1.6, γ = 0.140/(4σ2) and θ̂1 = 1.5, so z1 = 1.44. The combined objective function has
its maximum at n∗

2 = 654, a somewhat lower value than the 712 for the MP design. Note that
the slope of the function CP

θ̃
(z1, n

∗

2) is γ at the optimum n∗

2 since the higher slope at lower

values of n∗

2 implies that (4) is increasing and the lower slope at higher values of n∗

2 means (4)
is decreasing.

The right panel of Figure 8 plots the same pair of functions for the less promising interim
estimate θ̂1 = 1.3. In this case, the slope of the conditional power curve is initially higher
and there is greater benefit from taking additional observations. The optimum n∗

2, where the
derivative of CP

θ̃
(z1, n

∗

2) has fallen to γ, occurs later and (4) is maximized at n∗

2 = 707. This

sample size is substantially lower than the final sample size of 884 in the MP design.

The left panel of Figure 9 shows our optimized sample size n∗

2 as a function of the interim
estimate θ̂1, labeled “CDL+Gao Min E(N) at θ = 1.6” in the legend, and compares this with
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Figure 8: Plots of CP
θ̃
(z1, n

∗

2) and CP
θ̃
(z1, n

∗

2) − γ(n∗

2 − 442) for θ̃ = 1.6 and γ = 0.140/(4σ2).
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the sample size rule of the MP design. The right panel shows Eθ(N) for these two designs and for
the two-stage GSD described in Section 3. The design using our optimal rule for γ = 0.140/(4σ2)
has power 0.658 at θ = 1.6, the same as the MP design. Because of the sigmoid shape of the
power curves, matching the type I error probability of 0.025 at θ = 0 and power 0.658 at θ = 1.6
implies that the two designs have essentially identical power curves over the whole range of θ,
as we saw in the left panel of Figure 7. The vertical dotted line in the right panel of Figure 9
is included to aid comparison of values of Eθ(N) at θ = 1.6. Our optimal rule has the lowest
possible Eθ(N) at θ = 1.6 among all rules following the CDL+Gao framework that achieve
power 0.658 at θ = 1.6. Although this only guarantees an improvement over the MP design for
θ = 1.6, the right panel of Figure 9 shows we have achieved lower Eθ(N) for θ values up to 2.4
and there are only slight differences at higher values of θ.

Despite our new design’s optimality property, we see from Figure 9 that it still has higher Eθ(N)
than the two-stage GSD proposed in Section 3, which does not make use of data from pipeline
subjects (although these are still counted in Eθ(N)). We conclude that the constraints implicit
in the CDL+Gao framework do not allow the most efficient designs to be realized. A first feature
of the CDL+Gao construction is its conservatism: the actual one-sided type I error rate is less
than the permitted α = 0.025 and, as a consequence, the power is reduced. A second aspect
of the CDL+Gao construction is the constraint on values of θ̂1 for which the sample size can
be increased. It is clear from Figure 6 that the two-stage GSD of Section 3 increases sample
size over a wider range of θ̂1 values than MP’s promising zone and the shape of our optimized
sample size rule in the left panel of Figure 9 suggests it would help to increase n∗

2 at lower values
of θ̂1. A third feature of MP’s application of the CDL+Gao method is that they only allow
sample size to be increased. In practical terms, it is possible to terminate recruitment at the
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Figure 9: Efficient rules within the MP framework
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interim analysis, in which case the pipeline subjects will bring the final numbers up to 416, a
lower figure than the original sample size of 442. The two-stage GSD of Section 3 had 416 as
its sample size when stopping at the interim analysis — but then it failed to use data from
the pipeline subjects at all. Allowing a choice of final sample size with a minimum of 416, the
value determined by the number of pipeline subjects at the interim analysis, is a natural way to
extend the group sequential approach to the case of a delayed response.

In order to relax the above constraints which underlie MP’s implementation of the CDL+Gao
approach, we need an alternative method to protect the type I error rate in an adaptive design.
We shall do this by using combination test statistics, as proposed by Bauer and Köhne [2], which
enable more general adaptations.

5 Using Combination Test Statistics

In creating a “combination test” framework, we first re-visit the initial plan, with a fixed total
of n2 = 442 subjects and an interim analysis with n1 = 208 observations, and we express the
final test in terms of the two sets of data observed before and after the interim analysis. We
define the standardized statistics based on these two sets of observations as

V1 =

∑n1/2
i=1 YBi − ∑n1/2

i=1 YAi√
(n1σ2)

and

V2 =

∑n2/2
i=(n1/2)+1 YBi − ∑n2/2

i=(n1/2)+1 YAi√{(n2 − n1)σ2}
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and note that the definition of the overall test statistic in (1) is equivalent to setting

Z2 = w1V1 + w2V2

where w1 =
√

(n1/n2) and w2 =
√{(n2 − n1)/n2}. (There is deliberate redundancy of notation

here as V1 is the same as the previously defined Z1. This is because we wished to reflect the
similarity between terms V1 and V2 and were unable to use the name Z2, which is already defined
as the standardized statistic for the combined data.) With n2 fixed, Z2 ∼ N(0, 1) under θ = 0
and the decision rule is to reject H0: θ ≤ 0 when Z2 > 1.96.

Now suppose we adapt the second stage sample size based on first stage data, increasing the
total sample size from n2 to n∗

2. The standardized statistic for the second stage data alone is
now

V ∗

2 =

∑n∗

2
/2

i=(n1/2)+1 YBi − ∑n∗

2
/2

i=(n1/2)+1 YAi√{(n∗

2 − n1)σ2} . (6)

The weighted inverse normal combination test statistic is defined as

Z∗ = w1V1 + w2V
∗

2

where, importantly, w1 and w2 are the original weights, defined in terms of n1 and n2. The
combination test based on this test statistic rejects H0: θ ≤ 0 when Z∗ > 1.96.

To see that this combination test has one-sided type I error rate 0.025, consider first the case
θ = 0. In this case, V ∗

2 has a conditional N(0, 1) distribution given any set of interim data;
hence, V ∗

2 has an unconditional N(0, 1) distribution and is, therefore, statistically independent
of V1. Since V1 ∼ N(0, 1), V ∗

2 ∼ N(0, 1) and w2
1 + w2

2 = 1, we have Z∗ ∼ N(0, 1) and the
combination test has type I error rate 0.025. It remains to consider cases where θ < 0. Here, V1

is normal with variance 1 and a fixed negative mean. The conditional distribution of V ∗

2 given
the interim data is normal with variance 1 and a mean which depends on the choice of n∗

2, but
is always negative. It follows that the overall distribution of Z∗ is stochastically smaller than a
N(0, 1) variate when θ < 0 and so the combination test’s type I error rate is less than 0.025.

Some comments on the combination test approach are appropriate before we apply this method
to MP’s Example 1. Bauer and Köhne [2] proposed the use of combination tests in adaptive
clinical trial design, focusing on a combination rule based on the product of P-values introduced
by R. A. Fisher [22]. There is a relationship between combination tests and procedures which
preserve the conditional type I error probability when adaptation occurs, as proposed by, for
example, Proschan and Hunsberger [18] and Müller and Schäfer [23]. Jennison and Turnbull [6]
note that combination tests preserve the conditional type I error probability given the interim
data at the time of adaptation and they go on to show that any flexible design, which allows
a choice of whether or not to adapt, must preserve this conditional error rate in order for the
overall type I error rate to be protected. Glimm [17] argues that the MP designs can be viewed
as procedures which protect the conditional type I error probability, but with some conservatism.
It follows from the equivalence referred to above, that the MP designs can also be interpreted as
a conservative form of combination test that applies a higher threshold than 1.96 to the statistic
Z∗ defined in (6) when the CDL+Gao method is used to ensure the type I error rate is protected.
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We now return to MP’s Example 1. We shall apply the weighted inverse normal combination
test with weights w1 =

√
(n1/n2) =

√
(208/442) and w2 =

√{(n2 − n1)/n2} =
√

(234/442).
Applying this test after the total sample size has been changed to n∗

2, the conditional power
given V1 = Z1 = z1 under treatment effect θ is

CPθ(z1, n
∗

2) = Pθ{Z∗ > 1.96 |Z1 = z1} = Pθ{V ∗

2 > (1.96 − w1z1)/w2 |Z1 = z1}, (7)

where the conditional distribution of V ∗

2 given Z1 = z1 is N(θ
√

(n∗

2 − n1)/(2σ), 1). We are at
liberty to modify the sample size at all values of z1, or equivalently θ̂1, in the knowledge that
the type I error rate will be protected at level 0.025. We use this freedom: firstly, to avoid the
conservatism when increasing sample size for values of θ̂1 covered by the CDL+Gao approach;
secondly, to increase sample size for values of θ̂1 where this is not permitted in the CDL+Gao
approach; and thirdly, to decrease sample size for some values of θ̂1, noting that the pipeline
subjects imply a minimum sample size of 416.

In order to create a design with low E
θ̃
(N) under θ = θ̃, we follow our previous strategy and

choose n∗

2 to maximize the combined objective

CP
θ̃
(z1, n

∗

2) − γ(n∗

2 − 442), (8)

where now CP
θ̃
(z1, n

∗

2) is defined by (7). The argument presented in Section 4 can be applied

to show that the resulting design has the minimum value of E
θ̃
(N) among all designs in this

larger class that achieve the same power under θ = θ̃.

As before, we consider combination test (CT) designs optimized for θ̃ = 1.6. The optimal CT
design with γ = 0.250/(4σ2) matches the MP test’s power of 0.658 at θ = 1.6. The sample size
rule for this design is shown in the left panel of Figure 10. The form of this optimized sample
size rule is quite different from that of the MP design, with the greatest increases in sample
size occurring at values of θ̂1 below the range for which the CDL+Gao approach allows any
change of sample size. Plots of average sample size in the right panel of Figure 10 show the CT
design has lower Eθ(N) than the MP design across the range of θ values; this new design also
improves on the simple group sequential design which ignores (but is charged for) data from
pipeline subjects when stopping at the interim analysis. Examination of intermediate designs
which exploit only some of the three freedoms listed above shows that the improved performance
depends in roughly equal parts on all three aspects of the CT design: absence of conservatism;
permitting sample size modification for all values of θ̂1; and allowing reduction in sample size
in some cases.

There is clearly scope to increase sample sizes beyond those shown for the optimized CT design
in the left panel of Figure 10. Thus, it would be quite feasible to reduce the parameter γ in (8)
and produce efficient designs with higher power curves. However, we shall continue to calibrate
designs by matching the MP’s design power curve in order to draw comparisons with this design.

One conclusion from examining the optimized combination test (CT) design is that the best
opportunities for investing additional resource are not in Mehta and Pocock’s promising zone.
The left panel of Figure 10 shows this directly when interest is primarily in reducing Eθ(N) for
θ = 1.6. However, the fact that the CT design has lower Eθ(N) for all values of θ implies that
the MP design cannot be ideal for any value of θ.
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Figure 10: Efficient combination test designs
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We have presented a CT design which minimizes E
θ̃
(N) for θ̃ = 1.6. However, we see from the

Eθ(N) curve in the right hand panel of Figure 10 that this design has robust efficiency as it
performs well under a wide range of θ values. One could, instead, optimize a CT design for a
different value of θ̃, choosing γ in (4) to meet a specified power requirement. We have constructed
such designs with power curves matching the MP design and examined their properties: their
sample size rules vary gradually with θ̃, as do the resulting Eθ(N) curves.

Several authors have pointed out that the combination test approach leads to the use of a non-
sufficient statistic in the final decision rule. In order to give credibility to the final decision,
Burman and Sonesson [24] suggest use of a “dual test” which rejects H0 overall only if it
is rejected by both the combination test and the naive test based on the sufficient statistic
and ignoring the adaptive sampling. The MP design can be viewed as applying the dual
test when, following the CDL+Gao approach, it applies the naive test rather than the more
permissive combination test. Interestingly, in using the combination test to facilitate sample
size increases not permitted by the CDL+Gao approach, we are in step with the dual test as
here the combination test is stricter than the naive test. See also the discussion in Section 4
of [25]. Clearly, issues of credibility must be considered when specifying a trial design and the
method of analysis. However, we believe that combination tests are well understood and we
would expect the CT design illustrated in Figure 10 to be accepted as a valid method.
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6 Further Extensions of the MP Framework

We have seen how the weighted inverse normal combination test can be used to create a trial
design which has low average sample size under a specified effect size. The same methodology
can be extended in two further ways.

Minimizing a weighted average sample size

Rather than aim to minimize Eθ(N) at a single value θ = θ̃, we could consider a weighted
average of terms Eθi

(N) over a number of effect sizes θi, or an integral

∫
h(θ)Eθ(N) dθ. (9)

Here, the function h(θ) should reflect both the likelihood of each θ value and the importance
placed on reducing sample size at that effect size. After scaling h so that its integral is 1,
the expression (9) can be regarded as the average sample size when θ is drawn from a prior
distribution with density h(θ). Assuming we still wish to use the weighted inverse normal
combination test, we can derive the sample size function that maximizes

∫
h(θ) {Pθ(Reject H0) − γEθ(N)} dθ. (10)

for a specified value of γ. A little algebra shows that, on observing Z1 = z1, n∗

2 should be chosen
to maximize ∫

g(θ|z1)CPθ(z1, n
∗

2) dθ − γn∗

2, (11)

where g(θ|z1) is the posterior distribution of θ given prior h(θ) and Z1 = z1, and CPθ(z1, n
∗

2) is
the conditional power function defined by (7). The calculations simplify when h(θ) is a normal
density as the conditional distribution of V ∗

2 , as defined in (6), is also normal and the integral
in (11) is a single normal tail probability. Use of the combination test implies that the resulting
procedure will have the required type I error probability. One may then search over values of γ
to find a design with a suitably high power function.

Generalizing the final decision rule

Another option is to replace the inverse normal combination test by a more general final decision
rule. Suppose we wish to find the design in this general class which maximizes the optimality
criterion (10) with a specific choice of h(θ), subject to a type I error constraint. This problem
is very close to a two-stage version of the K-stage adaptive design problem solved by Jennison
and Turnbull [7], but now the presence of pipeline subjects implies a minimum value for n∗

2 and
the criterion (10) contains an integral of the power function rather than power at a single value
of θ. Since power curves follow, almost exactly, a one-parameter family, it is just as easy to
calibrate a design through this integral of power.

The optimal design can be found by following the procedure described in Appendix 2 of [7]. To
summarise briefly, we formulate a Bayes sequential decision problem with a mixture prior for
θ comprising a point mass at θ = 0 and the remaining probability distributed with a density
proportional to h(θ) and add a cost for a type I error when θ = 0 to the criterion (10). Given an
observed value Z1 = z1 and a candidate sample size n∗

2, the optimal final decision on observing
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V ∗

2 can be derived as a Bayes rule and the posterior risk given Z1 = z1, using sample size
n∗

2 and the Bayes optimal decision rule can be evaluated. The value of n∗

2 with the smallest
posterior risk is the optimal choice for the case Z1 = z1. Properties of the resulting design are
found by integrating over values z1. Hence, for a given value of γ, the cost of a type I error
can be chosen so that the optimal design has type I error probability 0.025. A second level of
searching over values of γ can then be conducted to find the optimal design with the desired
power characteristics.

One benefit of working through this optimization process is that it provides a benchmark of
the best possible sampling and decision rules for a given objective. The final decision rule
has the attractive feature that, because it is a Bayes rule, it is expressed as a function of the
sufficient statistic for θ (see [7]). Working in this general class, we have found the design for
MP’s Example 1 that minimizes Eθ(N) for θ = 1.6 among all designs with n1 = 208, n∗

2 in
the range 442 to 884, type I error probability 0.025 and power 0.658 at θ = 1.6. We found
this design to be almost indistinguishable from the optimized CT design of Section 5 whose
properties are shown in Figure 10. The fact that there is little room to improve on the weighted
inverse normal combination test in this case can be attributed to the small range of n∗

2 values
used in the optimal design. One should expect greater benefit from more general final decision
rules when the range of n∗

2 values is greater, and we have seen that this is in fact the case in
examples with smaller numbers of pipeline subjects and, hence, a lower minimum value that n∗

2

can take. In the next Section we shall explain how this optimized design is closely related to a
form of group sequential design developed to accommodate delayed response and the resulting
pipeline subjects at interim analyses.

7 Using a Delayed Response GSD

We have noted that MP’s Example 1 has the distinctive feature of a large number of subjects
in the pipeline at the time of the interim analysis. Until recently, little attention had been paid
to the effect of a delayed response on standard GSDs. This is rather surprising, given that
almost all endpoints are measured some time after treatment and in many trials this delay is
substantial. Hampson and Jennison [14] review proposals for incorporating observations from
pipeline subjects that accrue after the decision has been made to stop a trial at an interim
analysis, and note that it has proved difficult to use this information effectively; they then
propose a new form of GSD which anticipates data from pipeline subjects from the outset.
These delayed response group sequential designs (DRGSDs) combine a rule which stipulates
when patient recruitment ceases and a final decision rule, applied after observations have been
obtained from pipeline subjects, which determines whether or not the null hypothesis is rejected.

We have constructed a DRGSD with just two analyses for MP’s Example 1. This design matches
the MP design in having type I error probability 0.025 and power 0.658 when θ = 1.6. As in
other designs, the first analysis takes place after n1 = 208 observed responses. If termination
is halted at this point, the study continues until responses are obtained from the 208 pipeline
patients and the final sample size is 416. If recruitment continues beyond the first analysis, a
further 102 patients are admitted to the trial and the final sample size is 518. This maximum
sample size of 518 was obtained by multiplying the fixed sample size needed to achieve power
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Figure 11: Comparison of MP and CT designs with delayed response group sequential designs
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0.658 under θ = 1.6 by an inflation factor of R = 1.05. Given these sample sizes, four constants
are needed to complete the specification of the DRGSD. In the stopping rule and decision rule
stated below, we have chosen the critical values to minimize Eθ(N) at θ = 1.6 among designs
with type I error probability 0.025 and power 0.658 when θ = 1.6. Computation of these values
is achieved by solving a related Bayes decision problem, in a similar way to the optimizations
described in Section 6.

At analysis 1 ( 208 responses)

If Z1 ≤ 0.088 or Z1 ≥ 1.999 Halt recruitment, continue

to final sample of 416 (Case A)

If 0.088 < Z1 < 1.999 Recruit a further 102 subjects,

continue to final sample of 518 (Case B)

Case A: At analysis 2 with 416 responses

If Z2 ≥ 1.948 Reject H0

If Z2 < 1.948 Accept H0

Case B: At analysis 2 with 518 responses

If Z2 ≥ 1.984 Reject H0

If Z2 < 1.984 Accept H0

The sample size rule for this DRGSD is shown in the left panel of Figure 11. In contrast to
the CT design shown in the same display, the DRGSD has only two possible total sample sizes.
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Nevertheless, the average sample size curves in the right panel of Figure 11 demonstrate that
the DRGSD is almost as efficient as the CT design. Having just two scenarios to plan for after
the interim analysis may have logistical benefits for trial organisers. There is certainly less of
a problem of “information leakage”, whereby parties who are blinded in order to protect the
integrity of the trial may be able to make deductions about the interim data from knowledge of
the target sample size after the interim analysis.

Hampson and Jennison [14] considered adaptive versions of their DRGSD in which the final
sample size could take any value, subject to the minimum value determined by the number of
pipeline subjects who would automatically be observed. The adaptive DRGSD that minimizes
Eθ(N) at θ = 1.6 is also included in Figure 11: the left panel shows that its sample size rule is
almost identical to that of the CT design and the average sample size curves in the right panel
are so close that they look like a single curve. In fact, this adaptive DRGSD is exactly the
same as the optimal design with a general form of final decision rule discussed in Section 6 since
both are constructed by minimizing Eθ(N) at θ = 1.6 within the class of two-stage designs with
n1 = 208, n∗

2 ≥ 416, type I error probability 0.025 and power 0.658 at θ = 1.6.

From the above comparisons, we deduce that in this example there is minimal benefit to be
gained from fine-tuning the final sample size of a DRGSD in response to interim data. Hampson
and Jennison [14] report similar findings in other examples of two-stage designs with different
numbers of pipeline subjects. Thus, we have strong evidence that Jennison and Turnbull’s
[7] argument that adaptive choice of group sizes in a GSD offers at best modest gains can be
extended from the case of an immediate response to the case of delayed responses.

If planning for a data-dependent total sample size does not pose logistical problems, a trial
design with a fully adaptive sample size may still be considered as an attractive proposition. All
we would note is that the sample size rule and final decision rule need to be chosen carefully.
We have seen that an optimized CT design works well in MP’s Example 1; however, when the
number of pipeline subjects is smaller, the optimal CT design is not so efficient and more general
adaptive designs should be considered. On the other hand, it is known that DRGSDs with fixed
group sizes based on error spending functions from the class described in Section 4.1 of [14]
provide highly efficient designs for a variety of pipeline sizes. Moreover, the error spending
versions of Hampson and Jennison’s DRGSDs are able to adapt to an unpredictable number of
pipeline patients.

8 Conclusions

We have studied in depth Mehta and Pocock’s [13] Example 1 and evaluated their proposed
trial design for this problem. The nature of the delayed response in this example means that
standard GSDs are not readily applicable. In the discussion at the 2004 workshop “Adaptive
Clinical Trial Designs: Ready for Prime Time?” [26], Mehta stated “I do not agree with Jay
Siegel’s assertion that this overrun problem will be exactly the same in the adaptive situation
as it is in the group sequential situation. The two situations are not analogous.” The need for
a new type of trial design which allows a data-dependent choice of sample size while making
proper use of the information anticipated from pipeline (or overrun) subjects motivates the MP
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design.

Mehta and Pocock [13] note it is desirable to spend additional resource when this will have the
greatest benefit. We fully agree with this objective and have pursued it in the example. Our
investigations have led us to some clear conclusions. The first is that designs which rely on the
result of Chen et al. [16] to support a simple form of final analysis are at a disadvantage since
this result does not allow sample size to be increased in situations where the greatest benefits
might accrue. Secondly, we have found that setting sample size to attain a specific conditional
power under θ = θ̂1 is sub-optimal. Instead, we have derived efficient designs by using a weighted
inverse normal combination test to control the type I error rate and by choosing the final sample
size to optimize a criterion that balances the gain in conditional power under a fixed effect size θ̃
against the extra sample size, imposing the constraint that the final sample size must include
current pipeline subjects. The calculations required for this optimization are quite simple and
involve only conditional probabilities and expectations, even though the resulting design also
has optimal unconditional properties. Although we have focused on the particular case of MP’s
Example 1, we have found the above conclusions to apply quite generally for different delays in
observing the final endpoint and, hence, different numbers of pipeline patients.

Another option is to follow the conventional group sequential framework more closely and limit
the choice at the interim analysis to halting recruitment and waiting to observe responses for
the pipeline subjects, or adding a fixed number of additional subjects. This gives a DRGSD,
as defined in [14], and one can follow the recommendations of Hampson and Jennison for using
error spending designs to create designs with robust efficiency over a range of effect sizes. The
error spending approach is useful in dealing with departures of observed sample sizes from the
numbers originally planned. Additional features of Hampson and Jennison’s methods described
in [14] are: they extend easily to designs with three or more analyses; if measurements can be
taken on a short-term endpoint which is correlated with the primary endpoint (for example,
one might consider the Negative Symptoms Assessment score measured at 10 weeks in MP’s
Example 1), this information can be used at an interim analysis to gain greater benefit from the
pipeline subjects.
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