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ABSTRACT

It is standard practice to monitor clinical trials with a view to stopping early if results

are sufficiently compelling. We explain how the properties of stopping boundaries can be

calculated numerically and how to optimise boundaries to minimise expected sample size

while controlling type I and II error probabilities. Our optimisation method involves the

use of dynamic programming to solve Bayes decision problemswith no constraint on error

rates. This conversion to an unconstrained problem is equivalent to using Lagrange multipliers.

Applications of these methods in clinical trial design include the derivation of optimal adaptive

designs in which future group sizes are allowed to depend on previously observed responses;

designs which test both for superiority and non-inferiority; and group sequential tests which

allow for a delay between treatment and response.

Keywords: Clinical trial; group sequential test; Bayes decision problem; dynamic

programming; optimal stopping.

INTRODUCTION

It is natural to wish to examine data as they accumulate during the course of a long-term clinical

trial. However, with frequent looks at the data, there is greater opportunity to make an erroneous

decision. Armitageet al. (1969) report the overall type I error rate when applying repeated

two-sided significance tests atα = 0.05 to accumulating data and show this rises to 0.11 with

3 analyses and 0.14 with 5 analyses. Thus, special statistical methods are required to avoid

inflation of the type I error rate due to over-interpretationof interim results.

Group sequential designs which require data to be analysed on a small number of occasions

during the course of a study are well suited to clinical trials (Pocock, 1977). DeMetset al.

(1984) report an early application of a group sequential clinical trial design in the Beta-Blocker

Heart Attack Trial which compared propanolol with placebo.A stopping boundary of the

form proposed by O’Brien & Fleming (1979) was employed and the trial stopped after the

sixth of seven planned analyses. This stopping rule permitted early termination for a positive

conclusion. In a retrospective analysis of 72 cancer studies conducted by the U.S. Eastern Co-

operative Oncology Group, Rosner & Tsiatis (1989) found that, if group sequential stopping

rules had been applied, the major benefit would have come fromstopping early for a negative



outcome, with this occurring in around 80% of studies. Thus,a good clinical trial design should

allow early termination for either positive or negative results.

Our interest is, therefore, in group sequential designs which achieve specified type I error

rate and power and stop early, on average, under both null andalternative parameter values.

In addition, it is desirable that optimised designs can be applied to a variety of response

distributions to give flexibility of use in different types of study.

SEQUENTIAL DISTRIBUTION THEORY

The properties of a group sequential design depend on the joint distribution of the test statistics

being monitored at each interim analysis. We consider first the simple example of a balanced

two-sample problem with normal response. Here, responsesXA1, XA2, . . . from Treatment A

andXB1, XB2, . . . from Treatment B are observed sequentially. Suppose the{XAi} and{XBi}
are independent and normally distributed with common variance σ2 and meansµA and µB,

respectively. Then the “treatment effect”θ = µA−µB is the parameter of primary interest.

At interim analysisk (k = 1, . . . ,K), the first nk responses from each treatment arm are

observed. The maximum likelihood estimate ofθ at this analysis is

θ̂k =
nk

∑
i=1

(XAi−XBi)/nk

and this has the marginal distribution

θ̂k ∼ N(θ, I−1
k ),

whereIk = nk/(2σ2) is theFisher informationfor θ at analysisk.

The standardized test statistic based on the responses available at analysisk is

Zk =
nk

∑
i=1

(XAi−XBi)/(σ
√

2nk) = θ̂k
√
Ik.

It is easy to check that the joint distribution ofZ1, . . . ,ZK has the defining properties

(i) (Z1, . . . ,ZK) is multivariate normal,

(ii) Var(Zk) = 1 and E(Zk) = θ
√
Ik, k = 1, . . . ,K,

(iii) Cov(Zk1,Zk2) =
√

(Ik1/Ik2), for 1≤ k1 ≤ k2 ≤ K.

(1)

We refer to the set of properties (1) as thecanonical joint distributionfor a sequence of

statisticsZ1, . . . ,ZK with information levels{I1, . . . ,IK} for the parameterθ. In fact, Jennison &

Turnbull (1997) and Scharfsteinet al. (1997) show this joint distribution arises in a great many

situations. Examples include: unbalanced two-sample comparisons; normal responses adjusted

for baseline covariates; longitudinal data; parallel and crossover designs. The same canonical

joint distribution also holds approximately for binary andsurvival data. For further details of

how to construct{Zk} and{Ik} sequences in specific applications, see Chapter 3 of Jennison &



Turnbull (2000). Our key conclusion is that we can build a unified theory of group sequential

tests since properties of particular decision boundaries computed using (1) will be applicable to

a wide variety of situations.

A PROBLEM OF OPTIMAL STOPPING

Consider a clinical trial whereθ denotes the treatment effect and it is desired to test the null

hypothesisH0: θ ≤ 0 against the one-sided alternativeθ > 0 using a group sequential design

with up toK analyses. The type I error rate is set atα underθ = 0 and power 1−β is required

whenθ = δ. A fixed sample size test would need information forθ equal to

I f ix = {Φ−1(α)+Φ−1(β)}2/δ2,

whereΦ denotes the standard normal cumulative distribution function. In a group sequential

design, the maximum information level has to be higher and weset this to be

Imax= RI f ix

for a chosen valueR > 1. Assuming equal increments in information between analyses, we

have

Ik = (k/K)Imax, k = 1, . . . ,K.

Figure 1 illustrates a typical stopping boundary on theZ scale for a group sequential test

with five analyses.
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Fig. 1. Stopping boundary for a group sequential one-sided test with 5 analyses

The lower boundary pointsak and upper boundary pointsbk are plotted fork = 1, . . . ,5. Note

thata5 = b5 to ensure a decision is reached at the final analysis. The example of a sample path

stays within the continuation region at analyses 1 and 2, then crosses the upper boundary at

analysis 3, resulting in termination of the trial to rejectH0 at this point.

We shall consider the problem of deriving a boundary satisfying the error rate requirements,

with given values ofR andK, which minimises

{E0(I )+Eδ(I )}/2, (2)



whereI denotes the level of information observed at termination. In our initial example of a

two-treatment comparison with normal responses, information is proportional to sample size so

minimising the expression (2) is equivalent to minimising the average of the expected sample

sizes underθ = 0 andθ = δ. In optimising the group sequential design we can choose the

2K−1 boundary points freely subject to the constraints imposedby the error rate requirements

underθ = 0 andδ. This leaves a high dimensional space of possible boundaries in which to

search. Before considering the optimisation problem, we discuss the calculation of properties

for a particular boundary.

COMPUTATIONS FOR GROUP SEQUENTIAL TESTS

We need to be able to calculate the probabilities of basic events such as the outcome

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3

illustrated in Figure 1. Combining such probabilities gives key properties, such as

Pθ{RejectH0}. For a one-sided test withK analyses, define the events

A1 = {Z1 < a1}, R1 = {Z1 > b1},

Ak = {a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk < ak}, k = 2, . . . ,K,

and

Rk = {a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk > bk}, k = 2, . . . ,K.

Then

Pθ{AcceptH0} = Pθ{A1} + . . . +Pθ{AK}, Pθ{RejectH0} = Pθ{R1} + . . . +Pθ{RK}

and the observed information on termination is

Eθ(I ) = (Pθ{A1}+Pθ{R1}) I1 + . . . + (Pθ{AK}+Pθ{RK}) IK.

Armitageet al. (1969) present recursive formulae for the densities of statistics at interim

analyses. Working on theZ-statistic scale, the densityf1(z1) of Z1 is that of aN(θ
√
I1, 1)

variate and the joint distribution of theZks implies that

Z2|Z1 ∼ N(θ(I2− I1)/
√
I2+Z1

√
(I1/I2), (I2− I1)/I2).

We denote this conditional density byf2(z2|z1). Since analysis 2 is only reached ifa1 < Z1 < b1,

the sub-density forZ2 is

f2(z2) =

Z b1

a1

f1(z1) f2(z2|z1)dz1.

In the general recursive step, the sub-density forZk at analysisk can be written as

fk(zk) =
Z bk−1

ak−1

fk−1(zk−1) fk(zk|zk−1)dzk−1,



where fk(zk|zk−1) is the density of the distribution

N(θ(Ik− Ik−1)/
√
Ik +Zk−1

√
(Ik−1/Ik), (Ik− Ik−1)/Ik).

Numerical quadrature can be used to evaluate each of the functions f1, f2, etc., in succession on

a grid of points. Hence, we can compute the probabilities of specific events, such as

Pθ{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} =

Z b2

a2

f2(z2)Φ
(

θ(I3− I2)+z2
√
I2−b3

√
I3√

(I3− I2)

)
dz2.

As an alternative approach to the same calculations, we can write probabilities as nested

integrals, for example,

Pθ{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} =
Z b1

a1

Z b2

a2

Z ∞

b3

f1(z1) f2(z2|z1) f3(z3|z2) dz3 dz2 dz1.

Applying numerical integration, we replace each integral by a sum of the form

Z b

a
f (z)dz =

n

∑
i=1

w(i) f (z(i)),

wherez(1), . . . ,z(n) is a grid of points froma to b. Thus, we have

Pθ{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} ≈
n1

∑
i1=1

n2

∑
i2=1

n3

∑
i3=1

w1(i1) f1(z1(i1)) w2(i2) f2(z2(i2)|z1(i1)) w3(i3) f3(z3(i3)|z2(i2)).

Multiple integrations and summations arise in these calculations and for an outcome at

analysisk we need to evaluate ak-fold sum of the form

n1

∑
i1=1

n2

∑
i2=1

. . .
nk

∑
ik=1

w1(i1) f1(z1(i1)) w2(i2) f2(z2(i2)|z1(i1)) . . . wk(ik) fk(zk(ik)|zk−1(ik−1)).

However, the structure of thek nested summations is such that the computation required is of

the order ofk−1 double summations, much less than a generalk-fold summation. We have

found that using Simpson’s rule with 100 to 200 grid points per integral gives probabilities to

an accuracy of 5 or 6 decimal places. For details of sets of grid points that will provide accurate

results efficiently, see Chapter 19 of Jennison & Turnbull (2000).

COMPUTING OPTIMAL GROUP SEQUENTIAL TESTS

We can now apply the methods of efficient computation for group sequential boundaries

described in the previous section to derive optimal group sequential tests. Recall that we seek

a test ofH0: θ ≤ 0 againstθ > 0 with type I error rateα underθ = 0 and power 1− β at

θ = δ. Among all group sequential designs which achieve this using K analyses at information

levels Ik = (k/K)Imax, k = 1, . . . ,K, where Imax = RI f ix, we seek the design minimising

{E0(I )+Eδ(I )}/2.



Following Eales & Jennison (1992) and Barber & Jennison (2002), we deal with the

constraints on error rates by introducing Lagrangian multipliers to create theunconstrained

problemof minimising

{E0(I )+Eδ(I )}/2 + λ1Pθ=0{RejectH0} + λ2Pθ=δ{AcceptH0}.

Once we have developed a method for solving this problem, we search for a pair of multipliers

(λ1, λ2) such that the solution has type I and II error ratesα andβ, then this design solves the

constrained problemtoo. The Lagrangian approach has a Bayesian interpretation. Suppose we

put a prior distribution onθ with

P{θ = 0} = P{θ = δ} = 0.5

and specify costs of: 1 per unit of information observed; 2λ1 for rejectingH0 whenθ = 0; and

2λ2 for acceptingH0 whenθ = δ. Then, the total Bayes risk is

{E0(I )+Eδ(I )}/2+λ1Pθ=0{RejectH0}+λ2Pθ=δ{AcceptH0},

just as in the Lagrangian problem. The Bayes interpretationof the problem is useful in

understanding how to solve it using the technique of “Dynamic Programming” or “Backwards

Induction”. For eachk = 1, . . . ,K, we denote the posterior distribution ofθ given Zk = zk at

analysisk by p(k)(θ|zk) for θ = 0 andθ = δ. In applying dynamic programming to find the

optimal Bayes rule, we work backwards from the final analysisas follows.

At analysis K

There is no further sampling cost once analysisK has been reached, so we simply compare the

two possible decisions

RejectH0: E(Cost) = λ1 p(K)(0|zK),

AcceptH0: E(Cost) = λ2 p(K)(δ|zK).

The boundary pointaK is the value ofzK where these expected costs are equal and the optimum

decision rule at analysisK is to rejectH0 for ZK ≥ aK and to acceptH0 if ZK < aK.

At analysis K−1

We now know the optimal procedure to follow if we continue on to analysisK and we use this

information in assessing that option. Consider an outcome in which the trial has continued to

analysisK −1 where we observeZK−1 = zK−1, as shown in Figure 2.
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Fig. 2. Dynamic programming: State of the process at analysisK −1



If the trial is terminated at analysisK −1, there is no further cost of sampling and the expected

additional costs for the two possible decisions are

RejectH0: E(Cost) = λ1 p(K−1)(0|zK−1),

AcceptH0: E(Cost) = λ2 p(K−1)(δ|zK−1).

If we let the trial continue on to analysisK, the expected additional cost is

1× (IK − IK−1) + λ1 p(K−1)(0|zK−1)Pθ=0{ZK ≥ aK|ZK−1 = zK−1}

+ λ2 p(K−1)(δ|zK−1)Pθ=δ{ZK < aK|ZK−1 = zK−1}.

Equating the costs of pairs of decisions gives the optimal boundaries. The upper boundary point

bK−1 is the value ofzK−1 for which

E(Cost of continuing) = E(Cost of stopping to rejectH0)

and the lower boundary pointaK−1 is the value ofzK−1 where

E(Cost of continuing) = E(Cost of stopping to acceptH0).

After determining the optimal values ofaK−1 andbK−1, we set up a grid of points for use in

numerical integration over the rangeaK−1 to bK−1, as illustrated in Figure 3.
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Fig. 3. Dynamic programming: Completed calculations for stageK −1

For each grid pointzK−1, we sum over the posterior distribution ofθ to calculate

β(K−1)(zK−1) = E(Additional cost when continuing to analysisK |ZK−1 = zK−1)

and store this information. We are now ready to move back to analysisK −2.

At analysis K−2

AnalysisK −2 has all the features of a generic analysisk. Calculating the expected additional

cost when continuing on to the next analysis involves an integral over valueszK−1 betweenaK−1

andbK−1, but we have already set up a grid of points covering this interval, as seen in Figure 4,

and stored values of the expected future costβ(K−1)(zK−1) on reachingzK−1 and proceeding

optimally thereafter.
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Fig. 4. Dynamic programming: State of the process at analysisK −2

If the trial is stopped at analysisK −2 with ZK−2 = zK−2, the expected additional costs for the

possible decisions are

RejectH0: E(Cost) = λ1 p(K−2)(0|zK−2),

AcceptH0: E(Cost) = λ2 p(K−2)(δ|zK−2).

If the trial continues on to analysisK −1, the expected additional cost is

1× (IK−1− IK−2) +

λ1 p(K−2)(0|zK−2)Pθ=0{ZK−1 > bK−1|ZK−2 = zK−2} +

λ2 p(K−2)(δ|zK−2)Pθ=δ{ZK−1 < aK−1|ZK−2 = zK−2} +

R bK−1
aK−1

{p(K−2)(0|zK−2) f (K−1)
0 (zK−1|zK−2)+

p(K−2)(δ|zK−2)) f (K−1)
δ (zK−1|zK−2)} β(K−1)(zK−1)dzK−1,

where f (K−1)
θ (zK−1|zK−2) is the conditional density underθ of ZK−1 givenZK−2 = zK−2. As

before, equating the costs of the decisions to rejectH0 and to continue sampling gives the

optimal upper boundary pointbK−2 and equating the costs of acceptingH0 and continuing

sampling gives the optimal lower boundary pointaK−2. It remains to set up a grid of points for

use in numerical integration over the rangeaK−2 to bK−2 and calculate

β(K−2)(zK−2) = E(Additional cost when continuing|ZK−2 = zK−2)

at each of these points. The dynamic programming process then moves back to analysisK −3,

and so on all the way back to analysis 1, at which point we have the full solution to our problem.

We can now return to the original problem of finding an optimalgroup sequential test with

the specified type I and II error probabilities. Having set upa method of finding the Bayes

optimal design for a particular pair of costs(λ1, λ2), we add another layer and search for a pair

(λ1, λ2) such that the type I and type II error rates of the Bayes optimal design areα andβ,

respectively. The resulting design will be the optimal group sequential test, with the required

frequentist error rates, for our original problem. It is important to remember that the output



of the dynamic programming routine will be fed into a numerical search algorithm, so results

should not only be of high accuracy but also possess the continuity properties, etc., that the

higher level search algorithm expects. This continuity requirement has implications for the

definition of the grids of points used in numerical integration if discontinuities in the calculated

values are to be avoided as the range of integration varies.

That the solution of a frequentist problem is found by solving a Bayes problem is in

keeping with the general principle that good frequentist procedures should be similar to Bayes

procedures. See Jennison & Turnbull (2006a) for further discussion of the relation between

admissible group sequential procedures, in the frequentist sense, and solutions of Bayes

problems.

The methods we have described are of broad applicability. Infinancial mathematics,

dynamic programming arguments are commonly used to establish theory underlying the pricing

of financial derivatives, but their use in direct computation of optimal strategies for executing an

option has been more limited. In considering the translation of methods, it is important to note

that the name “optimal stopping problem” is used with a specific meaning in probability theory:

the quantity being optimised is a function of the sample pathobserved prior to the stopping time.

This definition includes the unconstrained problem we have just solved but does not extend to

the original problem of finding an optimal group sequential test with given type I and II error

probabilities.

PROPERTIES OF OPTIMAL DESIGNS

Inspection of the properties of optimised designs shows thepotential benefits of group

sequential testing. As an example, consider one-sided tests with α = 0.025, 1− β = 0.9, a

maximum ofK equally spaced analyses andImax = RI f ix. Table 1 presents the values of

{E0(I ) + Eδ(I )}/2 achieved by designs minimising this criterion for a variety of values of

K andR.

Table 1. Minimum values of{E0(I )+Eδ(I )}/2 expressed as a percentage ofI f ix

R Minimum

K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 atR=1.13

3 76.2 69.3 66.6 65.1 65.2 65.0 atR=1.23

5 72.2 65.2 62.2 59.8 59.0 58.8 atR=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 atR=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 atR=1.8

The results show that the minimised expected information (or, equivalently, expected sample

size) decreases as the number of analysesK increases, but with diminishing returns. Similarly,

expected information decreases with increasing values ofR, up to a point. Given the costs



associated with conducting interim analyses and the desireto avoid too high a maximum sample

size, designs with between 3 and 5 analyses andR around 1.05 or 1.1 appear attractive options.

The methods we have described can be applied with a variety ofoptimality criteria. We

have used them to minimise general criteria of the form∑i wiEθi(I ) or
Z

f (θ)Eθ(I )dθ

for a normal densityf (θ). As well as providing specific designs directly, optimal procedures

serve as benchmarks for other methods which may have additional useful features, for example,

“error spending tests” which are designed to handle unpredictable information sequences.

RELATED PROBLEMS

The methods we have described for optimising a group sequential design can be applied to more

general forms of group sequential procedure. We shall summarise three examples.

Adaptive choice of group sizes in a group sequential test

It is intuitive to think that a group sequential design mightbenefit from taking a smaller group

size when the current test statistic lies close to the stopping boundary and a larger group size

when the test statistic is mid-way between the boundaries. Schmitz (1993) proposed such

procedures in which the group sizes are chosen adaptively. These designs are most easily

defined in terms of the score statisticsSk = Zk
√
Ik, k = 1, . . . ,K. For the first group of subjects,

I1 is fixed and we observe

S1 ∼ N(θI1, I1).

The next group size, and henceI2, is then chosen as a function ofS1 and the statisticS2 is

observed. The incrementS2−S1 is conditionally independent ofS1 givenI2 and

S2−S1 |I2 ∼ N(θ(I2− I1), (I2− I1)).

The procedure continues with data-dependent choice of eachIk until stopping occurs with a

decision to accept or rejectH0, or the final analysisK is reached. The sampling rule and stopping

rule are pre-specified and defined so as to achieve the desiredoverall type I error rate and power.

Various methods have recently been proposed for modifying sample size during the course

of a clinical trial in response to interim estimates of the treatment effect. The paper of Cuiet

al. (1999) addresses the problem of “rescuing” an under-powered study but other authors have

recommended this approach as a prospective strategy for dealing with uncertainty about the

likely treatment effect when planning a study. The resulting “adaptive” methods fall into the

general class of procedures proposed by Schmitz (1993).

Jennison & Turnbull (2006a) derive optimal versions of these adaptive group sequential

tests in order to assess the efficiency gains they can offer. Their findings are disappointing.

Measuring expected sample size as a percentage of that required in a fixed sample size design,



optimal adaptive designs improve on the efficiency of optimal non-adaptive group sequential

tests with equal group sizes by about 2 percentage points. Ifthe group sizes of the non-adaptive

test are allowed to be unequal, but still fixed in advance, this difference reduces to about 1

percentage point.

The positive message is that standard group sequential designs offer a simple and efficient

methodology for interim monitoring of clinical trials and their properties cannot be significantly

improved on by more complex adaptive designs. Trials can be designed to achieve power over

the range of effect sizes of possible interest: if the treatment effect is particularly high, this is

likely to lead to early stopping for a positive conclusion and a smaller sample size (Jennison &

Turnbull, 2006b).

Testing for either superiority or non-inferiority

When an accepted treatment for a medical condition is already available, it is not appropriate to

test a new treatment against placebo. In comparing a new treatment against an active control,

there are two types of positive outcome: the new treatment may be shown to besuperior to

the current standard; or the new treatment may be shown to benon-inferior to the standard.

Demonstrating non-inferiority is achieved by rejecting a null hypothesis of the formH0,NI:

θ ≤ −d in favour ofθ > −d, whereθ is a measure of the difference in effect between the new

treatment and the standard andd is the accepted “non-inferiority margin”, which should be set

(and agreed with regulators) before the trial begins.

Adaptive trial designs have been proposed for such a situation. If a trial is instigated with

the intention of demonstrating superiority of a new treatment over the standard, this goal may

be adapted to proving non-inferiority if results are not as good as anticipated. The fact that

there are two null hypotheses is not an issue since these are nested: the null hypothesis for

non-inferiority,H0,NI: θ ≤−d, is a subset of that for superiority,H0,S: θ ≤ 0. A more important

issue is that the two hypothesis tests may require differentsample sizes. Wanget al. (2001)

note the non-inferiority margind is often smaller than the effect sizeθ = δ at which power for

declaring superiority is specified and, hence, a larger sample size is needed to give adequate

power atθ = 0 in the test for non-inferiority. Thus, if early data indicate that the key issue is

to test for non-inferiority, there may be reason to increasethe trial’s sample size at an interim

stage.

However, a non-adaptive group sequential approach is also possible. Öhrn & Jennison

(2010) embed tests for both superiority and non-inferiority in a group sequential design with

fixed group sizes. The example of a stopping boundary displayed in Figure 5 shows three

outcomes are possible: to rejectH0,S: θ ≤ 0 (establishing superiority); to rejectH0,NI but not

H0,S (showing non-inferiority only); or to acceptH0,NI: θ ≤ −d (failing even to show non-

inferiority).
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Fig. 5. A four-stage group sequential design to test for both superiority and non-inferiority

Early stopping is allowed for each outcome. It is significantthat the lower arm of the

continuation region, which involves discrimination between no effect and non-inferiority, is

longer than the upper arm which tests between non-inferiority and superiority.Öhrn & Jennison

(2010) derive tests which minimise expected sample size while satisfying two type I error rate

constraints and two power requirements. This is achieved bydefining related Bayes decision

problems, solving these by dynamic programming, and searching for a set of costs such that the

optimal procedure has the specified error rates and power.

Group sequential tests for a delayed response

In many trials, the clinical response is measured some time after each patient is randomised

and the allocated treatment administered. Delays can also occur while validating and analysing

responses. Thus, after a group sequential test stops, additional data will accrue from “pipeline”

subjects who have entered the study but not yet responded.

In her PhD thesis, Hampson (2009) presents a framework for group sequential testing which

recognises a delay in observing responses and models this appropriately. Formally, termination

of the trial proceeds in two stages: first, recruitment of newpatients ceases; then, after waiting

to observe responses from all subjects enrolled at this time, a final decision is made. Again, it

is possible to derive an optimal design which minimises a stated efficiency criterion by creating

related Bayes problems and solving these by dynamic programming. A search for the costs in

the Bayes decision problem that produce a procedure with therequired type I error rate and

power gives the optimal frequentist design for a delayed-response.

Examination of optimised designs reveals the extent to which the benefits of lower expected

sample sizes usually provided by group sequential tests arereduced when response is subject to

delay. However, there may be opportunities to recover thesebenefits. For example, if a second,

more rapidly observed endpoint has a high correlation with the primary endpoint, a stopping

rule based on the joint analysis of this pair of endpoints canmitigate the effects of the delay

in observing the primary endpoint. A full account of this work is presented by Hampson &

Jennison (2013).



CONCLUSIONS

We have seen that the monitoring of clinical trials poses a range of problems of statistical

inference and optimal design. A general distribution theory gives a basis for generic

methodology with wide applicability. Moreover, efficient computational methods, based on

iterated numerical integration, are available to calculate properties of group sequential clinical

trial designs.

The optimisation of a group sequential test for a specific sample size criterion is an important

issue. Such problems can be tackled by using Dynamic Programming to solve related Bayes

decision problems and searching for a set of costs so that theoptimal Bayes procedure also

solves the original problem with frequentist error rate constraints. The examples we have

presented illustrate the versatility of this methodology for tackling a variety of problems of

practical significance.
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