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ABSTRACT

It is standard practice to monitor clinical trials with a wieto stopping early if results

are sufficiently compelling. We explain how the propertidsstopping boundaries can be
calculated numerically and how to optimise boundaries taimise expected sample size
while controlling type | and Il error probabilities. Our optisation method involves the

use of dynamic programming to solve Bayes decision problettts no constraint on error

rates. This conversion to an unconstrained problem is atpnvto using Lagrange multipliers.
Applications of these methods in clinical trial design urabd the derivation of optimal adaptive
designs in which future group sizes are allowed to dependreviqusly observed responses;
designs which test both for superiority and non-inferigriadnd group sequential tests which
allow for a delay between treatment and response.

Keywords: Clinical trial; group sequential test; Bayes decision pealy dynamic
programming; optimal stopping.

INTRODUCTION

It is natural to wish to examine data as they accumulate duhie course of a long-term clinical
trial. However, with frequent looks at the data, there isatge opportunity to make an erroneous
decision. Armitageet al. (1969) report the overall type | error rate when applyinge&ted
two-sided significance tests at= 0.05 to accumulating data and show this rises to 0.11 with
3 analyses and 0.14 with 5 analyses. Thus, special statistiethods are required to avoid
inflation of the type | error rate due to over-interpretatadnnterim results.

Group sequential designs which require data to be analysedsmall number of occasions
during the course of a study are well suited to clinical giéPocock, 1977). DeMetst al.
(1984) report an early application of a group sequentiaiciil trial design in the Beta-Blocker
Heart Attack Trial which compared propanolol with placebA. stopping boundary of the
form proposed by O’Brien & Fleming (1979) was employed ane tial stopped after the
sixth of seven planned analyses. This stopping rule pexthgtrly termination for a positive
conclusion. In a retrospective analysis of 72 cancer stucheducted by the U.S. Eastern Co-
operative Oncology Group, Rosner & Tsiatis (1989) found,tifagroup sequential stopping
rules had been applied, the major benefit would have come $topping early for a negative



outcome, with this occurring in around 80% of studies. Tlaugood clinical trial design should
allow early termination for either positive or negativeuts.

Our interest is, therefore, in group sequential designswvhchieve specified type | error
rate and power and stop early, on average, under both nulbiedhative parameter values.
In addition, it is desirable that optimised designs can bglieg to a variety of response
distributions to give flexibility of use in different type$ study.

SEQUENTIAL DISTRIBUTION THEORY

The properties of a group sequential design depend on thedisitribution of the test statistics
being monitored at each interim analysis. We consider firstsimple example of a balanced
two-sample problem with normal response. Here, respoKgesXaz, ... from Treatment A
andXg1, Xg2, ... from Treatment B are observed sequentially. SupposeXag and{Xg;}
are independent and normally distributed with common veméso? and meansia and pig,
respectively. Then the “treatment effe@= pa — Us is the parameter of primary interest.

At interim analysisk (k= 1,...,K), the firstng responses from each treatment arm are
observed. The maximum likelihood estimateBadt this analysis is

Nk

B = .Z\(XAi — Xgi)/Nk

and this has the marginal distribution
é\k ~ N(97 Ik_1>7

where Iy = ny/(202) is theFisher informatiorfor 8 at analysis.
The standardized test statistic based on the responséasdwait analysik is

Nk

Z = _;(XAi —Xgi)/(0\/2n) = B/ k.

It is easy to check that the joint distribution&f, . . ., Zx has the defining properties

(i) (Z4,...,Zk) is multivariate normal
(i) Var(z)=1 and E(Z) =6k, k=1,....K, (1)
(iii) COV(Zkl,Zkz) = \/(Ikl/lkz), forl1 <k; <k <K.

We refer to the set of properties (1) as tbanonical joint distributionfor a sequence of
statisticeZy, . . ., Zx with information levels{ I3, . . ., Ik } for the parameted. In fact, Jennison &
Turnbull (1997) and Scharfsteat al. (1997) show this joint distribution arises in a great many
situations. Examples include: unbalanced two-sample anisgns; normal responses adjusted
for baseline covariates; longitudinal data; parallel araksover designs. The same canonical
joint distribution also holds approximately for binary asdrvival data. For further details of
how to construc{Zy} and{ Ik} sequences in specific applications, see Chapter 3 of Jenfiso



Turnbull (2000). Our key conclusion is that we can build afiedi theory of group sequential
tests since properties of particular decision boundaoesputed using (1) will be applicable to
a wide variety of situations.

A PROBLEM OF OPTIMAL STOPPING

Consider a clinical trial wher@ denotes the treatment effect and it is desired to test the nul
hypothesidHp: 6 < 0 against the one-sided alternate- O using a group sequential design
with up toK analyses. The type | error rate is sebatinderf = 0 and power 1 f3 is required
when@ = d. A fixed sample size test would need information@icequal to

Itix = {®H(a) + ®~H(B)}?/8%,

where® denotes the standard normal cumulative distribution flonctin a group sequential
design, the maximum information level has to be higher andetéhis to be

Imax= leix

for a chosen valu® > 1. Assuming equal increments in information between ameslyse
have
Ik:(k/K)Imax, k:].,...,K.

Figure 1 illustrates a typical stopping boundary on Ethecale for a group sequential test
with five analyses.
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Fig. 1. Stopping boundary for a group sequential one-sided tebt5vitnalyses

The lower boundary points, and upper boundary poinbg are plotted fok =1,...,5. Note
thatas = bs to ensure a decision is reached at the final analysis. Themgarha sample path
stays within the continuation region at analyses 1 and 2) tnesses the upper boundary at
analysis 3, resulting in termination of the trial to rejétf at this point.

We shall consider the problem of deriving a boundary satigfyhe error rate requirements,
with given values oR andK, which minimises

{Eo(1) +E5(1)}/2, (2)



where I denotes the level of information observed at terminationodr initial example of a
two-treatment comparison with normal responses, infoionas proportional to sample size so
minimising the expression (2) is equivalent to minimisihg awverage of the expected sample
sizes unde® = 0 andB = . In optimising the group sequential design we can choose the
2K — 1 boundary points freely subject to the constraints impdieithe error rate requirements
under6 = 0 andd. This leaves a high dimensional space of possible bourgdarieshich to
search. Before considering the optimisation problem, vgewss the calculation of properties
for a particular boundary.

COMPUTATIONS FOR GROUP SEQUENTIAL TESTS
We need to be able to calculate the probabilities of basintev&ich as the outcome
a1<Zl<b1, az<22<b2, Zg>b3

illustrated in Figure 1. Combining such probabilities giv&ey properties, such as
Po{RejectHp}. For a one-sided test witk analyses, define the events

.57[1:{21<al}, 17(1:{21>b1},

Ac={a<Zy<by,...,a1<Z1<ber, Zk<a}, k=2,... K,

and
Re={a1<Zi<by, ..., 1<Zy1<by1,Z>bt, k=2,....K.

Then

Pe{ACCGptHo} = Pe{ﬂl} +...+ Pe{/‘ZlK}, Pe{REjeCtHo} = Pe{‘](]_} +...+ PG{RK}

and the observed information on termination is

Eo(I) = (Po{A1} +Po{R1}) h + ... + (Po{Ak} +Po{R«}) k.

Armitageet al. (1969) present recursive formulae for the densities disties at interim
analyses. Working on thg-statistic scale, the densitff(z;) of Z; is that of aN(0./I1, 1)
variate and the joint distribution of th&s implies that

2|2y ~ N(6(L2— 1) /v I+ Z1/(11/ I2), (12— 1)/ I2).

We denote this conditional density lfy(z,|z;). Since analysis 2 is only reacheaif < Z; < by,
the sub-density foZ, is
by
fz(Zz) = /a f]_(Z]_) f2(22|21) dZ]_.

1
In the general recursive step, the sub-densityfoat analysik can be written as

be—1
f(z) = /ak fio1(Z-1) fu(z|zc—1) dZ-1,
-1



where fi(z|z_1) is the density of the distribution

N(O(Lc — Ik-1)/ v/ I+ Z-1v/(I-1/ ) (I — I-1)/ L)

Numerical quadrature can be used to evaluate each of thedusd;, f,, etc., in succession on
a grid of points. Hence, we can compute the probabilitiepetsdic events, such as

O(—L)+2/bL—b3/I3
e

As an alternative approach to the same calculations, we c#e probabilities as nested
integrals, for example,

by
Po{ar <Z1 <by,ap < Zp <bp, Z3 > bz} = fa(z0) P <

a

bl b2 00
Pe{al <Zi<biax<Zy<bp, Z3> b3} = / / A fl(Zl) f2(22|21) f3(Z3|22) dzdzdz.
a Jag 3

Applying numerical integration, we replace each integgablsum of the form

wherez(1),...,z(n) is a grid of points froma to b. Thus, we have

Po{as < Z1 <by,ap <Zp < by, Z3 > b3} ~

Ny N2 n3
wi(i1) fa(za(i1)) We(iz) f2(z2(i2)[z1(i1)) wa(ia) fa(za(iz)[z(i2))-
i1=1i=1i3=1
Multiple integrations and summations arise in these catouts and for an outcome at
analysisk we need to evaluatekafold sum of the form

n  ng Ni

D> e > walin) fa(z(in)) waliz) fa(za(i2)[2a(i11)) - - Wic(ik) Fe(ze(itg) [2c-1(ik-1))-
i1=1i=1 k=1
However, the structure of thenested summations is such that the computation required is o
the order ofk — 1 double summations, much less than a genlefald summation. We have
found that using Simpson'’s rule with 100 to 200 grid pointsipgegral gives probabilities to
an accuracy of 5 or 6 decimal places. For details of sets dffgints that will provide accurate
results efficiently, see Chapter 19 of Jennison & Turnbl@0@).

COMPUTING OPTIMAL GROUP SEQUENTIAL TESTS

We can now apply the methods of efficient computation for greequential boundaries
described in the previous section to derive optimal grouqueatial tests. Recall that we seek
a test ofHp: 6 < 0 against® > 0 with type | error ratea under® = 0 and power 13 at

8 = 8. Among all group sequential designs which achieve thisgiKimnalyses at information

levels Iy = (k/K) Imax k= 1,...,K, where Inax = RIfix, we seek the design minimising
{Eo(1) +Es(1)}/2.



Following Eales & Jennison (1992) and Barber & Jennison 2200ve deal with the
constraints on error rates by introducing Lagrangian mliéis to create theinconstrained
problemof minimising

{Eo(1) +E5(1)}/2 + A1 Pe—o{RejectHo} + A2Ps_s{AcceptHo}.

Once we have developed a method for solving this problem eaech for a pair of multipliers
(A1, A2) such that the solution has type | and |l error raieand 3, then this design solves the
constrained problentoo. The Lagrangian approach has a Bayesian interpretedigppose we
put a prior distribution or® with

P{6=0}=P{6=08}=0.5
and specify costs of: 1 per unit of information observed; #or rejectingHo when8 = 0; and
2\, for acceptingHp whenB = . Then, the total Bayes risk is
{Eo(I) +Es(1)}/2+ A1 Po—o{RejectHo} + A2 Py_s{AcceptHo},

just as in the Lagrangian problem. The Bayes interpretatibthe problem is useful in
understanding how to solve it using the technique of “Dyr@aRrogramming” or “Backwards
Induction”. For eactk = 1,...,K, we denote the posterior distribution &fgiven Zx = z at
analysisk by p®(8|z) for 8 = 0 and® = 5. In applying dynamic programming to find the
optimal Bayes rule, we work backwards from the final analgsi$ollows.

At analysis K

There is no further sampling cost once analy§isas been reached, so we simply compare the
two possible decisions

RejectHp: E(Cosh = A1 pK)(0]z),

AcceptHo:  E(Cosbh = Ao p®)(8]z).
The boundary poind is the value ok where these expected costs are equal and the optimum
decision rule at analysis is to rejectHo for Zx > ax and to accepi if Zx < ak.
At analysis K— 1

We now know the optimal procedure to follow if we continue oranalysiK and we use this
information in assessing that option. Consider an outcametich the trial has continued to
analysiK — 1 where we observéq 1 = z«_1, as shown in Figure 2.

Zy

A

Fig. 2. Dynamic programming: State of the process at anakgsisl



If the trial is terminated at analysis — 1, there is no further cost of sampling and the expected
additional costs for the two possible decisions are

RejectHp:  E(Cosh = Aq p—Y(0|z_1),
AcceptHo: E(Cost = Ao pK—Y(8|z¢_1).

If we let the trial continue on to analysk§, the expected additional cost is
1x (Ik — Ik—1) + M p® Y (0]z« 1) Po—o{Zk > ax|Zx 1=z 1}

+ A2 pE (8|2 _1) Po_s{Zk < ak|Zk—1 = z«_1}.

Equating the costs of pairs of decisions gives the optimahbdaries. The upper boundary point
bk _1 is the value ofz _1 for which

E(Cost of continuingg = E(Cost of stopping to rejedilp)
and the lower boundary poiak _; is the value ofz 1 where
E(Cost of continuingg = E(Cost of stopping to acceplp).
After determining the optimal values a1 andbk_1, we set up a grid of points for use in

numerical integration over the rangg 1 to bx_1, as illustrated in Figure 3.

Z
k A by -1

Fig. 3. Dynamic programming: Completed calculations for stige 1

For each grid pointk 1, we sum over the posterior distribution ®to calculate
BK=D(z_1) = E(Additional cost when continuing to analy$s Zx _1 = zx_1)

and store this information. We are now ready to move back atyaisK — 2.
At analysis K- 2

AnalysiskK — 2 has all the features of a generic analysi€alculating the expected additional
cost when continuing on to the next analysis involves amgratieover valuegx 1 betweerak _1
andbk 1, but we have already set up a grid of points covering thigwaleas seen in Figure 4,
and stored values of the expected future @¥t Y (z¢_1) on reachingz_1 and proceeding
optimally thereafter.



aK-1

Fig. 4. Dynamic programming: State of the process at anaksis2

If the trial is stopped at analysi§€ — 2 with Zx_» = z«_», the expected additional costs for the
possible decisions are

RejectHp: E(Cost = Ay pK=2(0|z¢_2),
AcceptHo:  E(Costh = Ao pK=2)(8|z¢_»).

If the trial continues on to analysis — 1, the expected additional cost is

1x (IK,]_ — IKfz) +
A1 pR=2(0|2¢_2) Po—o{Zk-1 > bk-1|Zx—2 = Zx 2} +
A2 P82 (8] 2k _2) Pos{Zk—1 < AK—1|Zk—2 = Zx 2} +

D1 {pK-2) (02 o) £ (12 -2) +

-1

K28z —2)) f5 Y (z1lzx-2)} B® D (zc-1)dz1,
where féKil)(zK_ﬂzK_z) is the conditional density undérof Zx 1 givenZx_» = z«_2. As
before, equating the costs of the decisions to ref&ciand to continue sampling gives the
optimal upper boundary poirix_» and equating the costs of acceptiHg and continuing
sampling gives the optimal lower boundary paat ». It remains to set up a grid of points for
use in numerical integration over the rarege » to bx _» and calculate

BK=2(z_,) = E(Additional cost when continuin@x _» = zx_»)

at each of these points. The dynamic programming processtioges back to analysis — 3,
and so on all the way back to analysis 1, at which point we Haséuil solution to our problem.
We can now return to the original problem of finding an optigiadup sequential test with
the specified type | and Il error probabilities. Having setaumethod of finding the Bayes
optimal design for a particular pair of cos;, A»), we add another layer and search for a pair
(A1, A2) such that the type | and type Il error rates of the Bayes optdasaign area andf3,
respectively. The resulting design will be the optimal gr@equential test, with the required
frequentist error rates, for our original problem. It is iorfant to remember that the output



of the dynamic programming routine will be fed into a numatisearch algorithm, so results
should not only be of high accuracy but also possess thernotytiproperties, etc., that the
higher level search algorithm expects. This continuityuieement has implications for the
definition of the grids of points used in numerical integyatif discontinuities in the calculated
values are to be avoided as the range of integration varies.

That the solution of a frequentist problem is found by salvim Bayes problem is in
keeping with the general principle that good frequentisicpdures should be similar to Bayes
procedures. See Jennison & Turnbull (2006a) for furthecudision of the relation between
admissible group sequential procedures, in the frequesiase, and solutions of Bayes
problems.

The methods we have described are of broad applicability.financial mathematics,
dynamic programming arguments are commonly used to estaibhieory underlying the pricing
of financial derivatives, but their use in direct computatid optimal strategies for executing an
option has been more limited. In considering the trangtatibmethods, it is important to note
that the name “optimal stopping problem” is used with a dperieaning in probability theory:
the quantity being optimised is a function of the sample paterved prior to the stopping time.
This definition includes the unconstrained problem we hagégolved but does not extend to
the original problem of finding an optimal group sequentasttwith given type | and Il error
probabilities.

PROPERTIES OF OPTIMAL DESIGNS

Inspection of the properties of optimised designs shows pgbntial benefits of group
sequential testing. As an example, consider one-sided &gt a = 0.025, 1- 3 =0.9, a
maximum of K equally spaced analyses amigax = RI;ix. Table 1 presents the values of
{Eo(I) +E5(I)}/2 achieved by designs minimising this criterion for a variet values of
K andR.

Table 1. Minimum values of{Eq(I) +Eg(I)}/2 expressed as a percentagelaf

R Minimum
1.01 105 11 12 1.3 over R

80.8 74.7 73.2 73.7 75.8 73.0 R=1.13
76.2 69.3 66.6 651 65.2 65.0 Rt=1.23
72.2 65.2 62.2 59.8 59.0 58.8 Rt=1.38
10 69.2 62.2 59.0 56.3 55.1 54.2 Bt=1.6
20 67.8 60.6 57.5 54.6 53.3 51.7 Bt=1.8

aa w N AN

The results show that the minimised expected informationgguivalently, expected sample
size) decreases as the number of anal¥sexreases, but with diminishing returns. Similarly,
expected information decreases with increasing valueR, afp to a point. Given the costs



associated with conducting interim analyses and the disaeoid too high a maximum sample
size, designs with between 3 and 5 analysesraarbund 1.05 or 1.1 appear attractive options.

The methods we have described can be applied with a varietptohality criteria. We
have used them to minimise general criteria of the farmviEq, (1) or

/f(e) Eq(1)d0

for a normal densityf (8). As well as providing specific designs directly, optimal gedures
serve as benchmarks for other methods which may have aditiseful features, for example,
“error spending tests” which are designed to handle unptalie information sequences.

RELATED PROBLEMS

The methods we have described for optimising a group sei@lidesign can be applied to more
general forms of group sequential procedure. We shall suimsmthree examples.

Adaptive choice of group sizes in a group sequential test

It is intuitive to think that a group sequential design migknefit from taking a smaller group
size when the current test statistic lies close to the stappoundary and a larger group size
when the test statistic is mid-way between the boundarieshm8z (1993) proposed such
procedures in which the group sizes are chosen adaptivehesd designs are most easily
defined in terms of the score statistigs= Zx+/ Ik, k=1,...,K. For the first group of subjects,
I is fixed and we observe

S I~ NI, L)

The next group size, and hendg is then chosen as a function 8f and the statistiS, is
observed. The increme® — S is conditionally independent &; given I> and

S-S |L~NO(L—1NL),(L—1h)).

The procedure continues with data-dependent choice of gaahtil stopping occurs with a
decision to accept or rejekly, or the final analysiK is reached. The sampling rule and stopping
rule are pre-specified and defined so as to achieve the desieeall type | error rate and power.

Various methods have recently been proposed for modifyamgpde size during the course
of a clinical trial in response to interim estimates of theatment effect. The paper of Cei
al. (1999) addresses the problem of “rescuing” an under-pesvstudy but other authors have
recommended this approach as a prospective strategy ftingleeth uncertainty about the
likely treatment effect when planning a study. The resgltiadaptive” methods fall into the
general class of procedures proposed by Schmitz (1993).

Jennison & Turnbull (2006a) derive optimal versions of theslaptive group sequential
tests in order to assess the efficiency gains they can offeeir Tindings are disappointing.
Measuring expected sample size as a percentage of thatedduia fixed sample size design,



optimal adaptive designs improve on the efficiency of optinan-adaptive group sequential
tests with equal group sizes by about 2 percentage poirttse froup sizes of the non-adaptive
test are allowed to be unequal, but still fixed in advances thiference reduces to about 1
percentage point.

The positive message is that standard group sequentigdesffer a simple and efficient
methodology for interim monitoring of clinical trials ankldir properties cannot be significantly
improved on by more complex adaptive designs. Trials cangsggded to achieve power over
the range of effect sizes of possible interest: if the tremtheffect is particularly high, this is
likely to lead to early stopping for a positive conclusiordansmaller sample size (Jennison &
Turnbull, 2006b).

Testing for either superiority or non-inferiority

When an accepted treatment for a medical condition is ajraadilable, it is not appropriate to
test a new treatment against placebo. In comparing a netntegd against an active control,
there are two types of positive outcome: the new treatment Ib@ashown to besuperiorto

the current standard; or the new treatment may be shown twhanferior to the standard.
Demonstrating non-inferiority is achieved by rejecting @l rmypothesis of the fornHg -

0 < —d in favour of® > —d, wheref is a measure of the difference in effect between the new
treatment and the standard amhds the accepted “non-inferiority margin”, which should ket s
(and agreed with regulators) before the trial begins.

Adaptive trial designs have been proposed for such a siuatf a trial is instigated with
the intention of demonstrating superiority of a new treaitr@ver the standard, this goal may
be adapted to proving non-inferiority if results are not a®dj as anticipated. The fact that
there are two null hypotheses is not an issue since theseeatedh the null hypothesis for
non-inferiority,Honi: 6 < —d, is a subset of that for superiorityly s: 8 < 0. A more important
issue is that the two hypothesis tests may require diffesaniple sizes. Wanet al. (2001)
note the non-inferiority margid is often smaller than the effect siBe= d at which power for
declaring superiority is specified and, hence, a larger $asipe is needed to give adequate
power atd = 0 in the test for non-inferiority. Thus, if early data indieahat the key issue is
to test for non-inferiority, there may be reason to incretfigetrial’s sample size at an interim
stage.

However, a non-adaptive group sequential approach is aseige. Ohrn & Jennison
(2010) embed tests for both superiority and non-inferyoint a group sequential design with
fixed group sizes. The example of a stopping boundary displag Figure 5 shows three
outcomes are possible: to rejddgs: 8 < 0 (establishing superiority); to rejekfon; but not
Ho,s (showing non-inferiority only); or to acceptiponi: © < —d (failing even to show non-
inferiority).
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Fig. 5. A four-stage group sequential design to test for both sopigriand non-inferiority

Early stopping is allowed for each outcome. It is significtmat the lower arm of the
continuation region, which involves discrimination beemeno effect and non-inferiority, is
longer than the upper arm which tests between non-inféyiarid superiorityOhrn & Jennison
(2010) derive tests which minimise expected sample sizéevglaitisfying two type | error rate
constraints and two power requirements. This is achieveddiying related Bayes decision
problems, solving these by dynamic programming, and seaydbr a set of costs such that the
optimal procedure has the specified error rates and power.

Group sequential tests for a delayed response

In many trials, the clinical response is measured some tiitee @ach patient is randomised
and the allocated treatment administered. Delays can alsg avhile validating and analysing
responses. Thus, after a group sequential test stopsicaditiata will accrue from “pipeline”
subjects who have entered the study but not yet responded.

In her PhD thesis, Hampson (2009) presents a framework émpgsequential testing which
recognises a delay in observing responses and models finism@jately. Formally, termination
of the trial proceeds in two stages: first, recruitment of qpatients ceases; then, after waiting
to observe responses from all subjects enrolled at this, tinfimal decision is made. Again, it
is possible to derive an optimal design which minimises testefficiency criterion by creating
related Bayes problems and solving these by dynamic pragiag A search for the costs in
the Bayes decision problem that produce a procedure withiettyeired type | error rate and
power gives the optimal frequentist design for a delayesppoase.

Examination of optimised designs reveals the extent to wthie benefits of lower expected
sample sizes usually provided by group sequential testedreed when response is subject to
delay. However, there may be opportunities to recover thesefits. For example, if a second,
more rapidly observed endpoint has a high correlation vhithgrimary endpoint, a stopping
rule based on the joint analysis of this pair of endpoints rcétigate the effects of the delay
in observing the primary endpoint. A full account of this was presented by Hampson &
Jennison (2013).



CONCLUSIONS

We have seen that the monitoring of clinical trials posesrayeaof problems of statistical
inference and optimal design. A general distribution tgegives a basis for generic
methodology with wide applicability. Moreover, efficienbraputational methods, based on
iterated numerical integration, are available to cal@ifabperties of group sequential clinical
trial designs.

The optimisation of a group sequential test for a specifiqggasize criterion is an important
issue. Such problems can be tackled by using Dynamic Pragnagnto solve related Bayes
decision problems and searching for a set of costs so thatghmal Bayes procedure also
solves the original problem with frequentist error rate stoaints. The examples we have
presented illustrate the versatility of this methodology fackling a variety of problems of
practical significance.
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