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Group Sequential Designs for Survival Data
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25.1 Introduction

Consider an experiment or study where entry of subjects is staggered over
time. We are interested in a survival or “time to event” response, measured
from entry into the trial. The subjects are followed for a certain duration
until their event time is observed or censored. The situation is depicted in
Figure 25.1 with the horizontal lines in the diagram representing survival
times of twelve subjects. A solid circle at the right hand end designates an
exact observation (subjects 1, 2, 4, 5, 7, 8, 9 and 11), whereas a hollow circle
indicates that the survival time is censored. Note that censoring can occur
because of end-of-study (subjects 3, 10 and 12) or for some other reason such
as competing risk or loss to follow-up (subject 6). This situation is common
in the conduct of clinical trials. Of course, the situation where all subjects
start together at the beginning is a special case and this is more common in
engineering or product life-testing experiments.

Consider the problem of testing between two hypotheses H0 and H1

concerning some parameter θ. The data are analysed not just at the planned
end of the study, but also at interim times at calendar time points during
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FIGURE 25.1
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the course of the study, with a maximum of K > 1 analyses. At the interim
analyses, the decision can be made to stop the study concluding either H0 or
H1, or to continue on to the next analysis. Figure 25.2 illustrates the case of
three analyses. At an interim analysis, subjects are censored if they are still
known to be alive at this point. Information on such subjects will continue to
accrue at later analyses.

At the first interim analysis, we analyze data on elapsed survival times
from randomization. These times have a common starting point of zero and
“analysis time” censoring occurs for subjects surviving past the first analysis;
see Figure 25.3. Then, at interim analysis 2, we analyze data on survival
from randomization time with “analysis time” censoring occurring for subjects
surviving past the second analysis; see Figure 25.4. This process continues on
through further analyses until the conclusion of the trial.

25.2 Canonical joint distribution of test statistics based

on accumulating data

Suppose our main interest is in the parameter θ and let θ̂k denote an estimate
of θ based on data available at analysis k. For survival data, θ could be the
hazard ratio between two survival distributions, assumed constant over time,
or the coefficient for a treatment effect in a Cox (1972) regression model or
other type of failure time model.

The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . , K.
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FIGURE 25.2

Interim analyses
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FIGURE 25.4

Interim analysis 2

-
Survival time

•

•

◦

◦

•

◦

◦

◦

•

◦

◦

◦

In many situations, θ̂1, . . . , θ̂K are approximately multivariate normal,

θ̂k ∼ N(θ, {Ik}−1), k = 1, . . . , K,

and
Cov(θ̂k1

, θ̂k2
) = Var(θ̂k2

) = {Ik2
}−1 for k1 < k2.

This is termed the canonical joint distribution. It occurs, for example, when θ̂
is a maximum likelihood estimate or other consistent asymptotically efficient
estimator; see Scharfstein, Tsiatis and Robins (1997) and Jennison and
Turnbull (1997).

For testing H0: θ = 0, the standardized statistic at analysis k is

Zk =
θ̂k√

Var(θ̂k)
= θ̂k

√Ik.

For this statistic, the canonical joint distribution of (θ̂1, . . . , θ̂K) implies that

(Z1, . . . , ZK) is multivariate normal,

Zk ∼ N(θ
√Ik, 1), k = 1, . . . , K,

Cov(Zk1
, Zk2

) =
√
Ik1

/Ik2
for k1 < k2.

The score statistics , Sk = Zk
√Ik, are also approximately multivariate normal

with

Sk ∼ N(θ Ik, Ik), k = 1, . . . , K.
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The score statistics possess the “independent increments” property,

Cov(Sk − Sk−1, Sk′ − Sk′−1) = 0 for k 6= k′.

For computation it is useful to recognize the fact that these score statistics
behave as Brownian motion with drift θ observed at times I1, . . . , IK .

In testing the equality of two survival curves, the successive non-
standardized log-rank statistics have, asymptotically, the canonical joint
distribution of a sequence of score statistics. Here θ̂ is an estimate of the
log hazard ratio θ in a proportional hazards model and the information I
for θ is roughly equal to a quarter of the number of observed events. The
canonical distribution also applies to stratified log-rank statistics; see Jennison
and Turnbull (2000, Sec. 13.6.2).

If a Cox (1972) proportional hazards regression model is fitted
by maximum partial likelihood, the canonical joint distribution holds
approximately for successive estimates of a regression coefficient. Kaplan-
Meier (1958) estimates of survival probabilities at a fixed time point or of a
specified quantile (e.g., the median) also follow the canonical joint distribution;
see Section 25.7.

25.3 Group sequential boundaries and error spending

Suppose we are interested in testing the null hypothesis H0: θ = 0 versus
a one-sided or two-sided alternative hypothesis H1. At each interim analysis
or “stage”, we must decide whether to continue the study or to terminate,
concluding either H0 or H1. At each stage k, k = 1, . . . , K, this decision is
based on a statistic Zk according to the rule

If Zk ∈ Ck, continue on to stage k + 1,

if Zk ∈ Ak, stop and conclude H0,

if Zk ∈ Bk, stop and conclude H1,

where Ak, Bk and Ck are disjoint and exhaustive subsets of the real line, so
Ak ∪ Bk ∪ Ck = (−∞,∞), and we set CK = ∅ in order that the procedure
terminates at stage K.

Here, we shall consider the case of one-sided tests for superiority. Results
for tests of non-inferiority, two-sided tests and equivalence tests can be
developed analogously; see Jennison and Turnbull (2000). In a one-sided test
where positive θ values are desirable the hypotheses are H0: θ ≤ 0 and H1:
θ > 0. The type 1 error probability constraint is

Pθ=0{Reject H0} = α (25.1)
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FIGURE 25.5

A group sequential boundary
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and the type 2 error probability is specified through the power requirement
at effect size δ,

Pθ=δ{Reject H0} = 1 − β. (25.2)

In this case, the continuation and stopping regions are Ak = (−∞, ak),
Bk = (bk,∞) and Ck = (ak, bk), where ak ≤ bk for k = 1, . . . , K − 1, and
aK = bK . A typical boundary with critical values {(ak, bk)} is depicted in
Figure 25.5.

The upper boundary, {bk}, is often termed the efficacy boundary and the
lower boundary, {ak}, the futility boundary. The role of the futility boundary
and whether it will be used for guidance or as a binding rule affects the
construction of the boundaries. With a binding futility boundary, it is
assumed that crossing the lower boundary will definitely lead to stopping and
acceptance of H0, and the type I error probability is calculated as

K∑

k=1

Pθ=0{a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk > bk}.

A non-binding futility boundary is appropriate if the study may possibly
continue after crossing the lower boundary, so a type I error can still occur.
In this case, the type I error probability is calculated as

K∑

k=1

Pθ=0{Z1 < b1, . . . , Zk−1 < bk−1, Zk > bk}.

In either case the type II error probability is calculated as

K∑

k=1

Pθ=δ{a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk < ak}.
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The Pampallona and Tsiatis (1994) family provides a selection of one-sided
group sequential tests. The test with index ∆ has critical values of the form

bk = C̃1 (Ik/IK)∆−0.5,

ak = δ
√Ik − C̃2 (Ik/IK)∆−0.5, k = 1, . . . , K.

Given a specified pattern of information levels, for example, equally spaced
values Ik = (k/K) IK , k = 1, . . . , K, and a choice of binding or non-binding
futility boundary, constants IK , C̃1 and C̃2 can be found such that aK = bK

and the error probability constraints (25.1) and (25.2) are satisfied.
However, for survival data statistics such as those mentioned above, it

is impractical to schedule the interim analyses at equal or pre-specified
increments of information. Indeed, the increments in information will be both
unequal and unpredictable. For example, the information for the log-rank
statistic (approximately one quarter of the number of observed events) will
only become known at the time of an analysis. Information for a treatment
effect in a Cox (1972) regression model or a survival probability or quantile is
similarly unpredictable. Thus we shall need to use the error spending approach
of Lan and DeMets (1983) in which type I and II error probabilities are “spent”
as functions of the observed information.

For a one-sided test of H0: θ ≤ 0 against H1: θ > 0, we need two functions
to spend

Type I error probability α under θ = 0,

Type II error probability β under θ = δ.

A maximum information design works towards a target information level Imax.
The type I error probability α spending function f(I) rises from zero to α as
I increases from zero to Imax. Similarly, the type II error spending function
g(I) rises from zero at I = 0 to β at I = Imax.

-
IImax
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f(I)
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  !!
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6
g(I)
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  !!
""
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In implementing this error spending design, boundaries at each interim
analysis, k, are constructed so that the cumulative type I error probability
thus far is f(Ik) and the cumulative type II error probability is g(Ik). This
calculation can be carried out treating the futility as binding or non-binding,
as required.
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At analysis 1:

The observed information is I1.

We reject H0 if Z1 > b1, where

Pθ=0{Z1 > b1} = f(I1)

and we accept H0 if Z1 < a1, where

Pθ=δ{Z1 < a1} = g(I1).

Solving these equations determines the critical values a1 and b1.
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At analysis 2:

The observed information is I2.

We reject H0 if Z2 > b2 where, for a binding futility boundary,

Pθ=0{a1 < Z1 < b1, Z2 > b2} = f(I2) − f(I1).

or, for a non-binding futility boundary,

Pθ=0{Z1 < b1, Z2 > b2} = f(I2) − f(I1).

We accept H0 if Z2 < a2, where

Pθ=δ{a1 < Z1 < b1, Z2 < a2} = g(I2) − g(I1).

In either case, since a1 and b1 have been fixed at the previous analysis, we
can solve these equations for a2 and b2.
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At a general analysis k:

The observed information is Ik.

We reject H0 if Zk > bk where, for a binding futility boundary,

Pθ=0{a1 <Z1 <b1, . . . , ak−1 <Zk−1 <bk−1, Zk > bk} = f(Ik) − f(Ik−1),

or, for a non-binding futility boundary,

Pθ=0{Z1 < b1, . . . , Zk−1 < bk−1, Zk > bk} = f(Ik) − f(Ik−1).

We accept H0 if Zk < ak, where

Pθ=δ{a1 <Z1 <b1, . . . , ak−1 <Zk−1 <bk−1, Zk < ak} = g(Ik) − g(Ik−1).

Since a1, . . . , ak−1 and b1, . . . , bk−1 were determined at analysis k−1, these
equations can be solved for ak and bk.
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We remark that in the above description, the computation of ak and bk does
not depend on future information levels, Ik+1, Ik+2, . . . . The error spending
design is fully determined once the maximum information, Imax, and the
spending functions f(I) and g(I) have been specified, although the critical
values will depend on the information levels actually observed. One would like
the upper and lower boundaries to meet at a single point at the concluding
analysis where f(I) = α and g(I) = β. The maximum information Imax and
functions f(I) and g(I) can be chosen so that this will happen when observed
information levels follow a particular pattern, but it is important to be able
to handle other observed sequences I1, I2, . . . .

A convenient choice of error spending functions is provided by the so-called
ρ-family, for which

f(I) = α min{1, (I/Imax)
ρ} and g(I) = β min{1, (I/Imax)

ρ}.

Values ρ > 0 can be used and common choices are ρ = 1, 2 or 3. Lower values
of ρ correspond to plans with more aggressive early stopping. The value of
Imax should be chosen so that boundaries converge with aK = bK at the final
analysis under a typical sequence of information levels. So, for design purposes
we might plan for a maximum of K analyses at equally spaced information
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levels, Ik = (k/K) Imax, k = 1, . . . , K. Then, for each value of ρ there is an
associated Imax that should be used. Barber and Jennison (2002) show that
the resulting ρ-family error spending tests have excellent efficiency properties
when compared with other designs for the same number of analyses K and
maximum information Imax.

Once the trial is running, the occurrences of events are unpredictable.
Information levels may not follow the anticipated pattern and it may take
more or fewer than K analyses to reach the target information level Imax.
Thus, care is needed at the final analysis of a one-sided error spending test.

Over-running: If an analysis is reached with IK > Imax, solving the
equations for aK and bK is liable to give aK > bK .
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Information

The value calculated for bK will guarantee that the type I error probability is
equal to α. So, in this case, we can reduce aK to bK and the power attained
under θ = δ will be greater than 1 − β.

-
k

6Zk

•

•

• • •
bK

◦
aK

•

•

•

•

PP
`̀

��

""

""

"
"

........

Reject H0

Accept H0

Even when IK = Imax, over-running may occur if information deviates from
the pattern of, say, equally spaced values used in choosing Imax.

Under-running: A final information level IK < Imax may be imposed as
part of the trial design when a final planned analysis is reached, for example,
after a maximum length of follow-up of subjects’ survival.
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In this situation, values f(IK) = α and g(IK) = β are used in the equations
for aK and bK . Since the information level at this point is lower than Imax,
the solutions of these equations are liable to have aK < bK .
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Again, with bK as calculated, the type I error probability is exactly α. Here,
we increase aK to bK in order to protect the type I error rate and the attained
power at θ = δ will be below the planned 1 − β.

There is considerable freedom in implementing error spending group
sequential designs. A series of analyses can be stipulated at fixed calendar
times and the attained power will vary, depending on the observed information
levels. Alternatively, amendments may be made to the original study plan,
such as extending follow-up or adding centres to increase patient recruitment,
in order to reach the target information Imax. One proviso to protect against
any chance of bias in the claimed error probabilities is that such decisions
should be made in response to observed information levels and not estimated
treatment effects.

25.4 The group sequential log-rank test

We return to the problem of testing the equality of survival distributions
SA(t) and SB(t) for two treatment arms, A and B, based on accumulating
survival data. We denote the hazard rates on treatments A and B by hA(t)
and hB(t), respectively. At each analysis we observe a failure or censoring time
for each subject entered so far, measured from that subject’s date of entry or
randomization as defined in the study protocol. The way the set of data grows
as patients are accrued and follow up on each patient lengthens was shown in
Figures 25.1 to 25.4.

Let dk, k = 1, . . . , K, denote the total number of uncensored failures
observed across both treatment arms when analysis k is conducted. Some
of these times may be tied and we suppose that d′k of the dk failure times
are distinct, where 1 ≤ d′k ≤ dk. We denote these distinct failure times by
τ1,k < τ2,k < . . . < τd′

k
,k and let riA,k and riB,k be the numbers at risk on

treatment arms A and B, respectively, just before time τi,k. Finally, we denote
by δiA,k and δiB,k the numbers on treatment arms A and B that fail at time
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τi,k and define δi,k = δiA,k + δiB,k for i = 1, . . . , d′k. If there are no ties, then
δi,k = 1 and either δiA,k = 1 and δiB,k = 0 or δiA,k = 0 and δiB,k = 1 for each
pair i and k.

If the survival distributions SA(t) and SB(t) are equal, the conditional
distribution of δiB,k given riA,k, riB,k and δi,k is hypergeometric with
expectation

ei,k =
riB,k δi,k

riA,k + riB,k

and variance

vi,k =
riA,k riB,k δi,k (riA,k + riB,k − δi,k)

(riA,k + riB,k − 1) (riA,k + riB,k)2
. (25.3)

The unstandardized log-rank statistic at analysis k is

Sk =

d′

k∑

i=1

(δiB,k − ei,k)

and the standardized log-rank statistic is

Zk =

∑d′

k

i=1 (δiB,k − ei,k)
(∑d′

k

i=1 vi,k

)1/2
. (25.4)

The information Ik for the log hazard ratio is

Ik =

d′

k∑

i=1

vi,k. (25.5)

The log-rank test has optimal power properties to detect alternatives when
hazard rates in the two treatment arms are proportional, so hA(t) = λhB(t).
The sequence of log-rank statistics defined by (25.4) then has, approximately,
the canonical joint distribution for a sequence of Z-statistics, given I1, . . . , IK ,
with θ = log(λ), the log hazard ratio.

Since the canonical joint distribution holds, the methods described in
Section 25.3 can be used to construct group sequential error spending tests
from the sequence of statistics Zk and information levels Ik. In designing a
maximum information trial to meet a given power requirement, it is necessary
to predict the information levels that will arise, especially that at the final
possible analysis. Here, it is helpful to note from (25.3) that each vi,k is
approximately δi,k/4 if riA,k ≈ riB,k and either δi,k = 1 or δi,k is small relative
to riA,k + riB,k. Hence, Ik will be approximately equal to dk/4 and the final
information level will be close to one quarter of the total number of observed
failures. The illustrative example in the next section will show the usefulness
of this approximation in planning the sample size and length of follow-up that
may be necessary in a survival study.
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25.5 Example: A clinical trial for carcinoma of the

oropharynx

We illustrate the methods we have described by applying them to a clinical
trial conducted by the Radiation Therapy Oncology Group in the U.S. to
investigate treatments of carcinoma of the oropharynx. We use the data
from six of the larger institutions participating in this trial as recorded by
Kalbfleisch and Prentice (2002, Appendix II). Subjects were recruited to the
study between 1968 and 1972 and randomized to a standard radiotherapy
treatment or an experimental treatment in which the radiotherapy was
supplemented by chemotherapy. The major endpoint was patient survival
and patients were followed until around the end of 1973. Several baseline
covariates, thought to have strong prognostic value, were also recorded.

TABLE 25.1

Summary data for oropharynx cancer clinical trial

Analysis Number of subjects entered Number of deaths

k Date Treatment A Treatment B Treatment A Treatment B

1 12/69 38 45 13 14

2 12/70 56 70 30 28

3 12/71 81 93 44 47

4 12/72 95 100 63 66

5 12/73 95 100 69 73

The conduct of the study did not follow a group sequential plan but,
for purposes of illustration, we have reconstructed patients’ survival times
and their status, dead or censored, at times 720, 1080, 1440, 1800 and 2160
days from the beginning of 1968. This “reconstructed” data set was used
by Jennison and Turnbull (2000, Ch. 13). A summary of the reconstructed
data is given in Table 25.1: we used the precise death or censoring times
in the reconstructed data to compute the statistics and information values
in applying retrospectively a group sequential error spending design. As
the central survival records would not have been updated continuously, our
constructed data sets most likely resemble the information that would have
been available at interim analyses conducted a month or two after these times,
and so they are an approximation to the data that could have been studied by a
monitoring committee meeting at dates a little after 2, 3, 4, 5 and 6 years from
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TABLE 25.2

Design parameters for a group sequential procedure assuming equally spaced
information levels, Ik = (k/5) Imax, k = 1, . . . , 5

Design parameter Binding futility Non-binding futility

boundary boundary

Imax 34.48 35.58

Maximum number

of deaths
138 143

a1, b1 −1.096 3.090 −1.075 3.090

a2, b2 −0.053 2.714 −0.023 2.714

a3, b3 0.722 2.473 0.758 2.473

a4, b4 1.387 2.276 1.429 2.280

a5, b5 2.055 2.055 2.114 2.114

the start of the study. The longer waiting period to the first interim analysis
is intended to compensate for the slow initial accrual of survival information
while only a few patients had been entered to the trial.

Since the experimental treatment involved chemotherapy as well as
radiotherapy, the researchers would have been looking for a substantive
improvement in survival on this treatment in return for the additional
discomfort and short term health risks. A one-sided testing formulation is,
therefore, appropriate and we shall conduct our retrospective interim analyses
as a group sequential test of the null hypothesis of no treatment difference
against the one-sided alternative that the new combination therapy is superior
to the standard treatment of radiotherapy alone. For the sake of illustration,
we suppose the experiment was designed to achieve a type I error probability of
α = 0.025 and power 1−β = 0.8 when the log hazard ratio for the experimental
treatment versus the standard is equal to 0.5.

We have supposed that at the design stage a maximum of K = 5 interim
analyses were planned with equally spaced information levels. We use ρ-family
error spending functions with index ρ = 2 to create efficacy and futility
boundaries. Thus, type I error probability α and type II error probability β
are “spent” in proportion to (I/Imax)

2. With these specifications we compute
the target maximum information, Imax, which gives aK = bK when the
{ak, bk} are calculated as described in Section 25.3. The computations depend
on whether a binding or a non-binding futility (lower) boundary is to be
employed. Table 25.2 displays the design parameters for both situations under
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FIGURE 25.6

Expected number of events on termination of the group sequential log-rank
test with a binding futility boundary and equally spaced information levels
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the planning assumptions of equally spaced information levels, culminating
in Imax. Note the familiar “curved triangular” shape of the boundaries as
seen in Figure 25.5.

The maximum information Imax needed in the group sequential trial design
is 34.48 if a binding futility boundary is used or 35.58 if the futility boundary
is non-binding. Under the approximation I ≈ d/4, the maximum numbers of
failures that may need to be observed, df = 4 If , are 138 and 143, respectively.

A fixed sample study with no interim monitoring but the same type I error
rate α = 0.025 and power 1 − β = 0.8 at θ = 0.5 requires information

If =
{Φ−1(0.975) + Φ−1(0.8)}2

0.52
= 31.40.

Under the approximation I ≈ d/4, the total number of failures to be observed
is df = 4 If ≈ 126. Clearly this is smaller than the maximum event numbers
of 138 or 143 for the five stage design. However the group sequential procedure
benefits from the opportunity to stop before the last stage. Figure 25.6 shows
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TABLE 25.3

Summary data for the oropharynx trial and critical values for the error
spending design with binding futility boundary

Analysis Number Number

k entered of deaths Ik ak bk Zk

1 83 27 5.43 −1.41 3.23 −1.04

2 126 58 12.58 −0.21 2.76 −1.00

3 174 91 21.11 0.78 2.44 −1.21

4 195 129 30.55 1.68 2.16 −0.73

5 195 142 33.28 2.14 2.14 −0.87

the expected number of events for the group sequential design with a binding
futility boundary under different values of the hazard ratio. Plotted values
for hazard ratios away from one (and log-hazard ratios away from zero) are
less accurate since the approximation I ≈ d/4 is less reliable in these cases,
particularly in later stages of the trial when numbers at risk on the two
treatment arms become unequal. Figure 25.6 shows that the group sequential
design with a binding futility boundary has an expected number of events
under H0 of 72.9 and under H1 this becomes 94.5; the maximum expected
number of events, which occurs for log hazard ratio θ = 0.35, is 100.9,
still considerably less than the 126 events for a fixed sample design. With
a non-binding boundary the corresponding numbers are 74.3, 96.4 and 103.3,
assuming for purposes of this calculation that the futility boundary is in fact
obeyed.

We now turn to the task of applying the monitoring boundaries to the
reconstructed data set summarized in Table 25.1. The boundary values
(a1, b1), . . . , (a5, b5) are calculated using the observed information levels
I1, . . . , I5 rather than the equally spaced ones of the initial design. In
doing this, we apply the formulae of Section 25.3 at each interim analysis
in succession. From here on, we shall apply designs with binding futility
boundaries, noting that the exposition would be very similar if we were to
use non-binding futility boundaries instead.

The sequence of standardized log-rank statistics, Z1, . . . , Z5, and the
corresponding critical values (a1, b1), . . . , (a5, b5) are displayed in Table 25.3.
We can see from this table that, had this design been used, the trial would
have stopped for futility at analysis 2, about three years earlier than the
original trial, reaching the same conclusion with only 126 subjects accrued
instead of 195. Of course, those last three years may have produced further
valuable information about other aspects of the treatments such as toxicity or
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quality of life. With this in mind, investigators might have opted to continue
the trial despite unpromising interim results. It is in anticipation of such
eventualities that a non-binding futility boundary could be chosen since it
allows a subsequent positive result for efficacy to be reported without concern
that the type 1 error rate is inflated above the specified α.

25.6 Monitoring a hazard ratio with adjustment for

strata and covariates

The Oropharynx Cancer data set contained information on a number of
baseline covariates for each subject. These included gender, initial condition,
T-staging, N-staging and two indicator variables describing the tumor site.
Each patient was treated at one of six participating institutions and we shall
treat institution as a stratifying variable. We model the data by means of
a stratified proportional hazards regression model (Cox, 1972) in which the
hazard rate for patient i is modeled as

hil(t) = h0l(t) exp{β1I(Patient i on Treatment B) + Σ7
j=2 xijβj}.

The parameter β1 represents the log hazard ratio between treatments after
adjustment for the other covariates and stratification. We take the objective
to be to test H0: β1 ≤ 0 against the one-sided alternative β1 > 0.

Standard software for Cox regression will provide the maximum partial
likelihood estimate of the parameter vector, β, and its estimated variance
matrix. We are interested in the treatment effect represented by the first
component, β1. At analysis k we have

β̂
(k)
1 , vk = V̂ar (β̂

(k)
1 ), Ik = v−1

k and Zk = β̂
(k)
1 /

√
vk.

The standardized statistics Z1, . . . , Z5 have, approximately, the canonical joint
distribution of Section 25.2. Thus we may apply the group sequential designs
and error spending method of Section 25.3 to monitor the adjusted log hazard
ratio at successive interim analyses. In fact we can take exactly the same
method that we described in Section 25.5 and simply use the above statistics
Zk and information values Ik, k = 1, . . . , 5, in place of those for the log-rank
statistic.

Calculation gives the values (a1, b1), . . . , (a5, b5) shown in Table 25.4 for
the error spending group sequential design, again with a binding futility
boundary, to be applied to Z1, . . . , Z5. Under this model and stopping rule,
the study would — just — have stopped for futility at the second analysis.
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TABLE 25.4

Covariate-adjusted group sequential analysis of the oropharynx data

Analysis

k Ik ak bk β̂
(k)
1 Zk

1 4.11 −1.75 3.39 −0.79 −1.60

2 10.89 −0.44 2.85 −0.14 −0.45

3 19.23 0.59 2.50 −0.08 −0.33

4 28.10 1.45 2.24 0.04 0.20

5 30.96 2.23 2.23 0.01 0.04

25.7 Further work

In this chapter, we have concentrated on the use of an error spending group
sequential design for monitoring a log-rank statistic or a regression coefficient
in a Cox regression model. The methods we have presented form a good
introduction to other group sequential methods for survival data. The ideas
have been extended in two directions:

A. To other features of group sequential designs;

B. To other features of survival analysis.

A. Further group sequential methods that can be applied to the collection and

analysis of survival data. We have considered the “curved triangular” testing
boundaries that arise in one-sided hypothesis tests. These are commonly
used in superiority trials where it is hoped to show that a new treatment
improves on the current standard; the same forms of boundary also arise in
non-inferiority trials where hypotheses H0: θ ≤ 0 and H1: θ > 0 are replaced
by H0: θ ≤ −δ and H1: θ > δ, where δ represents an acceptable “margin of
inferiority”. Other boundary shapes are applicable for testing a null hypothesis
against a two-sided alternative or in tests of equivalence, where it is hoped to
demonstrate that the effect of a new treatment is within a specified tolerance
of that of an existing treatment.

In addition to the positive or negative outcome of a hypothesis test, it is
usually required to give point or interval estimates of the treatment effect at
the termination of a trial or to provide a P-value summarizing the strength of
evidence against a null hypothesis. Special methods are needed to construct
such quantities, taking into account the sequential nature of the design; see
Jennison and Turnbull (2000, Ch. 8).
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Repeated confidence intervals permit an interval estimate of a treatment
effect to be stated at any stage of the trial (not just the last), with the property
that the coverage probability of all the intervals is simultaneously controlled
at a given confidence level, 1−γ say. Such confidence intervals are wider than
naive, fixed sample size intervals computed at each stage, but they are free
from the “multiple looks” bias of sequential testing. This obviates the problem
of “over-interpretation of interim results”; see Jennison and Turnbull (1989).

B. Further techniques for survival data to which group sequential methods can

be applied. First consider a one-sample problem, where we are interested in
the time to an event such as death or the disease recurrence in a homogeneous
population. Sometimes a binary outcome is defined to indicate whether failure
has occurred after an elapsed time, τ say. If not all subjects are followed for
time τ , the simple proportion of those surviving to time τ will be a biased
estimate of the survival rate, while omitting subjects with potential censoring
times less than τ is inefficient. These difficulties are overcome by use of the
Kaplan-Meier estimate (Kaplan and Meier, 1958) of the survival function S(t).

Let Ŝk(t) denote the Kaplan-Meier estimate of the survival probability S(t)
at time t based on data available at analysis k. For a given value of τ , suppose
0 < S(τ) < 1 and there is a positive probability for each observation to be
uncensored and greater than τ , then Jennison and Turnbull (1985) show that
the sequence

Zk =
{Ŝk(τ) − S(τ)}
√

Var{Ŝk(τ)}
, k = 1, . . . , K, (25.6)

has, asymptotically, the canonical joint distribution of Section 25.2 with
θ = S(τ) and information levels Ik = [Var{Ŝk(τ)}]−1. A consistent estimate of

the variance of Ŝk(τ) is provided by Greenwood’s formula — see, for example,
Jennison and Turnbull (1985). Hence, a group sequential test of the hypothesis
H0: S(τ) = p0, where τ and p0 are specified, can be based on the standardized
statistics

Zk =
{Ŝk(τ) − p0}√{V̂k(τ)}

, k = 1, . . . , K,

and associated information levels Ik = {V̂k(τ)}−1, where V̂k(τ) denotes a

consistent estimate of Var{Ŝk(τ)}. Since information depends on the number
and times of observed failures, the error spending approach of Section 25.3
is needed for the construction of such tests. The Greenwood estimate is
straightforward to calculate and is typically available in the output of standard
statistical computer software for estimating survival curves. Alternatively, the
“constrained” variance estimator introduced by Thomas and Grunkemeier
(1975, Sec. 4) can be used in place of the Greenwood formula: simulations
reported by Thomas and Grunkemeier and by Barber and Jennison (1999)
show this should lead to more accurate attainment of error rates and coverage
probabilities for repeated confidence intervals. Barber and Jennison (1999) go
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on to propose further methods to achieve error rates and coverage probabilities
more accurately in smaller sample sizes.

Sometimes, interest is in a certain quantile of the survival distribution. For
0 < p < 1, we define the pth quantile of the survival distribution S(t) to be
tp = inf{t : S(t) ≥ p}. Assuming S(t) to be strictly decreasing in t, a group
sequential test of H0: tp = t∗ for specified t∗ and p is equivalent to a test of
H0: S(t∗) = p and the same Kaplan-Meier test statistics can be used with
τ = t∗ and p0 = p. Jennison and Turnbull (1985) have investigated repeated
confidence intervals for the median survival time.

Analogous methods can also be used in a two-sample comparison. If SA(t)
and SB(t) denote survival functions on treatments A and B in a randomized
trial, a test of H0: SA(τ) = SB(τ), for a given choice of τ , can be based on
successive statistics

Zk =
{ŜAk(τ) − ŜBk(τ)}
√{ṼAk(τ) + ṼBk(τ)}

, k = 1, . . . , K,

where ŜAk(τ) and ŜBk(τ) are Kaplan-Meier estimates of SA(τ) and SB(τ),

respectively, at analysis k and ṼAk(τ) and ṼBk(τ) are their estimated
variances. The problem of comparing the pth quantiles of two survival
distributions has been addressed by Keaney and Wei (1994).

25.8 Concluding Remarks

A variety of software packages is now available to implement the methods we
have described. One choice that can compute the error spending boundaries
described in Section 25.3 and that has a dedicated module for planning and
analyzing survival trials is East (Cytel, 2012). Another choice is the gsDesign

package in R.

It should be noted that not all sequences of standardized statistics follow
the canonical joint distribution of Section 25.2. As an example, Slud and
Wei (1982) have shown that this property does not hold for some weighted
log-rank test statistics when there is staggered entry. These statistics include
those arising in Gehan’s (1965) procedure for modifying the Wilcoxon test to
allow censored data.

This chapter has provided a basic overview of the use of group sequential
methods for survival data. There is a large literature on the subject which
we have not attempted to summarize here: some more references can be
found in Jennison and Turnbull (2000, Ch. 13). In particular, there is an
emerging literature on the adaptive clinical trial designs for survival data.
The availability at interim analyses of partial information about patients’
continuing survival causes particular problems in adaptive designs: for one
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example with correlated survival endpoints, and a solution to the adaptive
design problem, see Jenkins, Stone and Jennison (2011).
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