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Ordinarily, in a clinical trial one specifies at the outset: the patient population; the treatments;
the randomized allocation rule; the primary endpoint; the hypothesis to be tested; the sample size, or
equivalently, the power at a specific effect size. Adaptive designs allow these elements to be reviewed
during the trial. This is desirable because there may be limited information to guide these choices
initially, but more knowledge will accrue as the study progresses. For statisticians the term “adaptive
designs” refers to a body of statistical methodology that borrows ideas from both group sequential
and multiple comparison procedures along with elements of meta-analysis.

Here we shall only discuss that aspect of adaptive design that concerns the issue of modifying
the power or conditional power at an interim stage by modifying the target sample size. The cause
for such a modification may be unexpected: for example, external reasons may make a smaller effect
size suddenly commercially viable so it becomes worth detecting. But more usually it is because the
study was originally underpowered due to over-optimism or an initial reluctance to commit sufficient
resources. Later however, a moderate interim estimate of the true effect size shows that the trial is
headed for a negative conclusion even though that effect is positive and still worth detecting. Indeed,
this was the motivation for one of the seminal papers in this area — see Cui et al. (1999).

Suppose θ is a parameter of primary interest. Consider a group sequential study with up to K

analyses which yields the sequence of standardized statistics {Z1, . . . , ZK}. We say that these statistics
have the canonical joint distribution with information levels {I1, . . . , IK} for the parameter θ if:

(i) (Z1, . . . , ZK) is multivariate normal,

(ii) E(Zk) = θ
√Ik, k = 1, . . . , K, and

(iii) Cov(Zk1 , Zk2) =
√

(Ik1/Ik2), 1 ≤ k1 ≤ k2 ≤ K.

(1)

This canonical joint distribution arises in a great many situations — in two sample normal problems;
for normal responses with covariates; in parallel and crossover designs, etc. It also arises approximately
with binary and survival responses. For details, see Jennison and Turnbull (2000). For example, in
the one sample problem where independent observations X1, X2, . . . are normally distributed with
unknown mean θ and known variance σ2, then Zk =

∑nk
i=1 Xi/(σ

√
nk) and Ik = nk/σ2 is proportional

to the cumulative sample size nk, k = 1, . . . , K.
A one-sided group sequential test of the null hypothesis H0: θ ≤ 0 against θ > 0 takes the form:



After group k = 1, . . . , K − 1

if Zk ≥ bk stop, reject H0

if Zk ≤ ak stop, accept H0

(2) otherwise continue to group k + 1,

After group K

if ZK ≥ bK stop, reject H0

if ZK < aK stop, accept H0,
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Figure 1: Stopping boundary for K=5

where aK = bK to ensure termination at analysis K — see Figure 1. Typically, tests are designed
with analyses at equally-spaced information levels (or “group sizes”) ∆1 = . . . = ∆K where ∆k =
Ik−Ik−1; (k = 1, . . . , K) with I0 = 0. Then, for given K, the maximum information IK and boundary
values (ak, bk), k = 1, . . . ,K, can be chosen to attain type I error probability α under θ = 0 and power
1− β at an alternative θ = δ. This computation uses the distribution (1) for the {Zk} and implicitly
uses the fact that the information levels {Ik} are not influenced by responses {Zk}.

Suppose a test of the above form is under way. However, based on data observed at analysis j,
it is desired to increase the size of the planned succeeding information levels. Now it is no longer true
that future information levels are independent of previous responses. Indeed, if we continued to use
the boundary values {ak, bk} given in (2), the Type I error rate is no longer guaranteed at α and is
typically inflated.

Suppose, however, we go ahead with the adaptation so that now the cumulative information
levels are Ĩ(1), . . . , Ĩ(K) instead of the originally planned {I1, . . . , IK}. (Of course Ĩ(k) = Ik for
k ≤ j.) We can still maintain the Type I error with the same boundary if we proceed as follows. Let
Z̃(k) be the usual Z-statistic formed from data in stage k alone and ∆̃k = Ĩ(k)− Ĩ(k−1) the associated
increment in information. Note that, even though the information increment ∆̃(k) is an ingredient
of the statistic Z̃(k) and can depend on knowledge of the past Z̃(1), . . . , Z̃(k−1), under θ = 0, each
Z̃(k) still has a standard normal N(0,1) distribution conditionally — and hence unconditionally. Thus,
under H0, we may treat Z̃(1), Z̃(2), . . . as independent. Of course this is not true under the alternative
θ > 0, which is, of course, the reason why adapting the information levels can lead to increased power.
Therefore we may use the same boundary values given in (2) and maintain the specified Type I error
rate α, provided, instead of the {Zk}, we monitor statistics:

Z̃(k) = (w1Z̃
(1) + . . . + wkZ̃

(k)) / (w2
1 + . . . + w2

k)
1/2.(3)

for k = 1, . . . , K, where weights wk =
√

∆k; k = 1, . . . ,K are the square roots of the originally
planned information increments. This follows because, under H0, it is easy to see that the Z̃(k) follow
the same canonical joint distribution (1) — see Lehmacher and Wassmer (1999). Use of a procedure
based on (3) is an example of a combination test — Bauer and Köhne, K. (1994).

To summarize so far, we have seen how, by using (3), the investigator has the freedom to decide
how to modify the study in light of accruing data, yet maintain the Type I error. But what is the cost,
if any, of this flexibility? To examine this question, we need to consider specific strategies for adaptive
design. Jennison and Turnbull (2006a) consider the example of a group sequential test (GST) with
K = 5 analyses testing H0: θ ≤ 0 against θ > 0 with type I error probability α = 0.025 and power
1− β = 0.9 at θ = δ. A fixed sample size test for this problem requires information for θ

If = (zα + zβ)2/δ2,(4)

where zp denotes the 1 − p quantile of the standard normal distribution. Suppose the study is de-



signed as a one-sided test from the ρ-family of error-spending tests, as described in Jennison and
Turnbull (2000, Sec.7.3), for example. We choose index ρ = 3. The boundary values a1, . . . , a5 and
b1, . . . , b5 are chosen to satisfy

Pr θ{Z1 > b1 or . . . or Z1 ∈ (a1, b1), . . . , Zk−1 ∈ (ak−1, bk−1), Zk > bk} = (Ik/Imax)ρ α,

Pr θ{Z1 < a1 or . . . or Z1 ∈ (a1, b1), . . . , Zk−1 ∈ (ak−1, bk−1), Zk < ak} = (Ik/Imax)ρ β

for k = 1, . . . , 5. At the design stage, equally-spaced information levels Ik = (k/5)Imax are assumed
and calculations show that a maximum information Imax = 1.049 If is needed for the boundaries to
meet up with a5 = b5. The boundaries are as shown in Figure 1.

Suppose external information becomes available at the second analysis, leading the investigators
to seek conditional power of 0.9 at θ = δ/2 rather than θ = δ. Since this decision is independent of
data observed in the study, one might argue that modification could be made without prejudicing the
type I error rate. However, it would be difficult to prove that the data revealed at interim analyses
had played no part in the decision to re-design. Following the general method described in [1], it is
decided to change the information increments in the third, fourth and fifth stages to ∆̃k = γ∆k for
k = 3, 4, 5. The factor γ depends on the data available at stage 2 and is chosen so that the conditional
power under θ = δ/2, given the observed value of Z2, is equal to 1− β = 0.9. However γ is truncated
to lie in the range 1 to 6, so that sample size is never reduced and the maximum total information
is increased by at most a factor of 4. Figure 2(a) shows that the power curve of the adaptive test
lies well above that of the original group sequential design. The power 0.78 attained at θ = 0.5 δ falls
short of the target of 0.9 because of the impossibility of increasing conditional power when the test
has already terminated to accept H0 and the truncation of γ for values of Z2 just above a2.

It is of interest to assess the cost of the delay in learning the ultimate objective of the study.
Our comparison is with a ρ-family error-spending test with ρ = 0.75, power 0.9 at 0.59 δ and the first
four analyses at fractions 0.1, 0.2, 0.45 and 0.7 of the final information level I5 = Imax = 3.78 If . This
choice ensures that the power of the non-adaptive test is everywhere as high as that of the adaptive
test, as seen in Fig. 2(a), and the expected information curves of the two tests are of a similar shape.
Fig. 2(b) shows the expected information on termination as a function of θ/δ for these two tests;
the vertical axis is in units of If . Together, Figures 2(a) and 2(b) show that the non-adaptive test
dominates the adaptive test in terms of both power and expected information over the range of θ

values. Also, the non-adaptive test’s maximum information level of 3.78 If is 10% lower than the
adaptive test’s 4.20 If .

It is useful to have a single summary of relative efficiency when two tests differ in both power
and expected information. If test A with type I error rate α at θ = 0 has power function 1 − bA(θ)
and expected information EA,θ(I) under a particular θ > 0, we define its efficiency index at θ to be

EIA(θ) =
(zα + zbA(θ))2

θ2

1
EA,θ(I)

,

the ratio of the information needed to achieve power 1− bA(θ) in a fixed sample test to EA,θ(I). In
comparing tests A and B, we take the ratio of their efficiency indices to obtain the efficiency ratio

ERA,B(θ) =
EIA(θ)
EIB(θ)

× 100 =
EB,θ(I)
EA,θ(I)

(zα + zbA(θ))2

(zα + zbB(θ))2
× 100.

This can be regarded as a ratio of expected information adjusted for the difference in attained power.
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Figure 2: (a)Left panel: Power of the original test; of example adaptive design with sample size revised
at look 2 to attain conditional power 0.9 at θ = 0.5 δ; and of matched non-adaptive test (b)Right panel:
Eθ(I) of the example adaptive design and the matched non-adaptive design, expressed in units of If .

The plot in Fig. 3 shows the adaptive
design is considerably less efficient that the
simple group sequential test, especially for
θ > δ/2. We have studied a variety of
proposed adaptive designs and found similar
inefficiencies to the above example. These
include methods of Bauer and Köhne (1994),
Proschan and Hunsberger (1995), Shen and
Fisher (1999), Li et al. (2002). We have
also found similar inefficiencies in adaptive
designs which increase sample size in direct
response to low interim estimates of the
treatment effect. See the second example in
Jennison and Turnbull (2006a) and further
discussion in that paper. When adaptation
makes smaller increases in sample size, the
increase in power is smaller but efficiency loss
is still present.
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Figure 3: Efficiency ratio between example
adaptive design and the matched
non-adaptive design.

This leads to a seeming paradox: Since adaptive designs include adaptive designs as a sub-class,
should they not be able to be more efficient? The resolution of the paradox is to realize that in order
to have optimal efficiency properties, a sequential procedure should be based on the sufficient statistics
Z1, . . . , ZK and, in particular, not the weighted combination statistics Z̃(1), . . . , Z̃(K) given in (3);
also, the sample size modification rule should have the correct form for an efficient design and this is
quite different from that given by the conditional power rules that are often proposed — see Jennison
and Turnbull (2006a).

We now describe a formulation for examining optimality within a given class of group sequential
tests (GSTs). An ‘optimal” sequential test may be used directly or it can serve as a benchmarks for
other tests proposed for their convenience or intuitive appeal. We consider again the one-sided testing
problem of H0 : θ ≤ 0 versus HA : θ > 0. We set the Type I error rate α and specify power 1 − β



at θ = δ. The fixed sample test needs information If as given by (4). We specify the maximum
number K of looks allowed and the maximum information allowed as Imax = R If . Here R is termed
the “inflation factor”. As special cases, K or R could be set to ∞ if we do not wish to place an
upper bound on them. With these constraints we must look within the specified family of GSTs for
that one that minimizes the average information (e.g. sample size) at one θ-value or averaged over
several θ-values. To find this optimum procedure we must search for that sequence of information
levels {Ik} and stopping boundary values {(ak, bk)} that maximize the average expected sample size
criterion subject to the α and β constraints. This involves searching in a high dimensional space.
Rather than search this space directly, we create a sequential Bayes decision problem with a prior
on θ, sampling costs, and costs for a wrong decision. The solution is found by a backward induction
(dynamic programming) technique. Then a search (in two dimensions) over cost parameters leads to
a Bayes problem with solution equal to the optimal GST with error rates equal to the specified α

and β being sought. This is essentially a Lagrangian method for solving a constrained optimization
problem. See Barber and Jennison (2002), Jennison and Turnbull (2006a) for more details.

We will consider optimal procedures from within each of the following three nested families of
K-stage GST’s which are of interest:

A. Equal group sizes. These tests have equally spaced analyses: Ik = (k/K)R If , k = 1, . . . ,K.
Optimization is over the choice of boundary values {(ak, bk)}. Planning with equal group sizes
is the usual starting point when designing a GST.

B. Non-adaptive GSTs. Complete freedom is allowed in choosing critical values (ak, bk) and cu-
mulative information levels I1, . . . , IK to optimize the efficiency criterion subject to IK ≤ R If .
In particular, the initial information level I1 is allowed to be small which may be advantageous
if it is important to stop very early when there is a large treatment benefit — the “home run”
treatment. Importantly, note that the choice of the {Ik} and {(ak, bk)}, k = 1, . . . , K, is set at
the start of the study and cannot be updated as observations accrue.

C. Adaptive GSTs. These are fully adaptive designs. At each analysis k = 1, . . . , K−1, the next
cumulative information level Ik+1 and critical values (ak+1, bk+1) are chosen based on current
data. The whole procedure is chosen to optimize the efficiency criterion subject to IK ≤ R If .

The class of designs (C) was first considered by Schmitz (1993). Note that while the Schmitz
designs are adaptive in the sense that future increments in information levels are allowed to depend
on past and current values of the Z-statistic, these designs are not “flexible”. The way in which future
information levels can depend on the past and current values of the Z-values is specified the start
of the study. They cannot be chosen arbitrarily, unlike the procedures based on combination test
statistics (3).

As an example of comparing families of tests, Jennison and Turnbull (2006b) consider the
situation of testing H0: θ = 0 versus H1: θ > 0 with α = 0.025 and power 1 − β = 0.9 at
θ = δ. They take as their efficiency criterion low values of

∫
Eθ(I) f(θ) dθ, where I is the information

attained when the stopping boundary is crossed and f(θ) is the density of a N(δ, δ2/4) distribution.
In this case we impose the constraint on maximum information IK ≤ R × If with R = 1.2. Table 1
shows the optimal values of the efficiency criterion for classes (A),(B),(C) above as a percentage of the
fixed sample information for values of K=1–6, 8, 10. We see that the advantage of varying group sizes
adaptively is small — but it is present. On the other hand, such a procedure is much more complex
than its non-adaptive counterparts.



Table 1: Optimal Average E(I) as a percentage of the fixed sample information
Optimal non-adaptive Optimal non-adaptive Optimal adaptive

K equal group sizes (A) optimised group sizes (B) design (Schmitz)(C)

1 100.0 100.0 100.0
2 74.8 73.2 72.5
3 66.1 65.6 64.8
4 62.7 62.4 61.2
5 60.9 60.5 59.2
6 59.8 59.4 58.0
8 58.3 58.0 56.6

10 57.5 57.2 55.9

In the same setup, Jennison and Turnbull (2006b) also consider the efficiency criterion:

{Eθ=0(I) + Eθ=δ(I) + Eθ=Lδ(I)}/3,

with L = 2. This criteria might be appropriate if very early stopping is important then the treatment
is very effective (θ = Lδ with L > 1). However now we fix K=2 and consider varying R.
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Figure 4: Optimized average information I plotted against R for tests in classes A, B, C. The small box
symbols on the curves for classes B and C indicate the values of R at which these curves become flat.

Figure 4 shows how the optimized average information E(I) varies with R. For class A tests,
average information decreases initially as R increases but eventually starts to increase again. The
group sizes of class B tests are optimized subject to the constraint IK/If ≤ R: initially the optimal
tests have IK/If = R but as R is increased a value, R̃B say, is reached such that the optimal test
continues to take IK/If = R̃B even though higher values are allowed. Similarly, for given L and K,
there is a maximal inflation factor, R̃C say, for optimal tests in class C: even when larger values of
IK are permitted, all sample paths terminate with IK ≤ R̃CIf . The points at which the curves for
classes B and C reach their plateaus are marked in the figures but it is clear that values close to the
optimal average I are reached well before these points. Given the practical disadvantages of a high
value of R, it is reasonable to choose an inflation factor R considerably lower than these otherwise



“optimal” values – between 1.1 and 1.5, say. Since the curves B and C are close, we see that there is
an advantage of varying group sizes adaptively but this is slight, and most likely not worth the cost
of the extra complexity. This is in agreement with the conclusions from Table 1. The same features
occur when other values of K and L are considered — see Figures 1 and 2 and Tables I–IV of Jennison
and Turnbull (2006b).

We have seen that the pre-planned adaptive designs of Schmitz (1993) can be slightly more
efficient than conventional group sequential tests. However the more commonly used adaptive tests,
namely those based on combination statistics such as (3), are typically 10-25% less efficient. Why is
this? There are three contributing reasons:

1. Use of non-sufficient statistics. In Jennison and Turnbull (2006a) it is proved all admissible
designs (adaptive or non-adaptive) are Bayes procedures. Hence, their decision rules and sample
size rules must be functions of sufficient statistics. Unequal weighting of observations in adaptive
designs means these are not based on sufficient statistics. Thus, they cannot be optimal designs
for any criteria. The potential benefits of adaptivity are slight and any departure from optimality
can leave room for an efficient non-adaptive design, with the same number of analyses, to do
better. Note that this is stronger conclusion than that of Tsiatis and Mehta (2003) who allow
the comparator non-adaptive design to have additional analyses.

2. Sub-optimal sample size modification rule. Rules based on conditional power differ qualitatively
from those found for optimal adaptive designs. Conditional power rules invest a lot of resource
in unpromising situations with a low interim estimate of the treatment effect. The optimal rule
shows greater symmetry, taking higher sample sizes when the current test statistic is in the
middle of the continuation region, away from both boundaries. See Figure 5.
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Figure 5: (a) Left panel: Typical shape of sample size function for an optimal adaptive test;
(b) Right panel: Typical shape of sample size function for a conditional power adaptive design.

3. Over-reliance on a highly variable interim estimator of θ. The sample size modification rules
of many adaptive designs involve the current interim estimator of effect size which is highly
variable. This introduces extra noise and results in random variation in sample size that is in
itself inefficient; see Jennison and Turnbull (2003) for further discussion of this point in the
context of a two-stage design.

In conclusion, non-adaptive group sequential tests are well studied and optimal tests have been
derived for a variety of criteria. Incorporating adaptivity in pre-planned group sequential designs, as
proposed by Schmitz (1993) produces a small benefit. Using adaptive methods in an unplanned manner
offers flexibility to the organisers of a study but, since the sufficiency principle is contravened, there is
an efficiency cost. (It can also lead to some pathological results — see Burman and Sonesson (2006).)
One argument for flexible adaptive designs is that they allow investigators to choose a study’s power
curve in response to early estimates of the effect size, θ. This may be appealing when there is



uncertainty about the likely effect size and optimistic estimates are considerably larger than the
minimum clinically or commercially significant effect. Schäfer & Müller (2004) consider tests for a
range of detectable treatment effects and propose a design in which attention shifts to smaller effect
sizes at successive analyses. An alternative solution is simply to specify high power at the small but
clinically significant effect size and choose a group sequential test that achieves this while giving low
expected sample size under larger effects — see Jennison and Turnbull (2006b).

A key role that remains for flexible adaptive methods is to help investigators respond to unex-
pected external events. As several authors have pointed out, it is good practice to design a study as
efficiently as possible given initial assumptions, so the benefits of this design are obtained in the usual
circumstances where no mid-course change is required. However, if the unexpected occurs, adaptive
methods can be applied using the approach of maintaining conditional type I error probability —
Denne(2001), Müller & Schäfer (2001). Finally, the use of flexible adaptive methods to rescue an
under-powered study should not be overlooked. While it is easy to be critical of a poor initial choice
of sample size, it would be naive to think that such problems will cease to arise.
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