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Time-series Text: Chatfield (1996) The Analysis of Time Series, 5th edition. Chapman &
Hall/CRC Press. — abbreviated ATS.

Forecasting Monograph: Chatfield (2001) Time-Series Forecasting. Chapman & Hall/CRC Press.
— abbreviated TSF.

TOPICS TO BE COVERED

1. Preliminary questions; Problem-formulation; Types of forecasting method; Ex-post versus
ex-ante forecasting. Basic ideas of time-series analysis; Time plot; Some probability models

for time-series; Model selection.

2. Introduction to the many different time-series forecasting methods. Univariate and multi-
variate; Linear and non-linear; Can’t cover everything. Give overview and avoid technical

details.

3. Comparative review. Make general recommendations on choice of ‘best’ method; Discuss

empirical evidence — forecasting competitions;
4. Calculating interval forecasts; Model uncertainty and forecast accuracy.
5. Illustrate with examples.

PRELIMINARY QUESTIONS
Why forecast?

Economic planning

Sales forecasting
Production planning

Inventory control
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Evaluation of alternative economic strategies



What is the problem?

Important to FORMULATE PROBLEM properly (as in any statistical exercise). Often
hardest part. Ask Questions to get background information and Clarify Objectives. Build on
prior information. Use Context.

1) What is purpose of forecast?

Vital to clarify objectives. e.g production planning; planning the economy; informed manage-
ment decision-making; etc. Find out exactly how forecast will be used. So talk to forecast
users.

Systems Approach. Forecasts should be an integral part of planning system, not a separate
exercise. A simple approach, which is widely understood, may be preferred.

Do we want:
o forecasts only?
e a useful, descriptive model?
e an interpretable model?
e forecasts for use in control?

No point in giving RIGHT answer to WRONG question — an error of the third kind.

A (Silly?) Example.

Statistician’s forecast of sales = 34,000

Managing Director’s forecast (or target?) = 40,000

Sales Director’s forecast (or target?) = 37,000 — half-way between!

What should statistician’s objectives be? Not much point in high accuracy unless attitudes
change.

Further questions:

2) What accuracy is required? (Unrealistic expectations?)
3) What data are available?

4) How many series are there to forecast?

5) How far ahead are forecasts required?

Notation.
Observed data: z1,x2,...,ZN

Problem: to forecast xy ., where h = lead time or forecasting horizon.



Denote forecast by (N, h) or Zx(h)

Must specify both the time forecast is made AND the lead time - Don’t use &y

Forecasting Methods — Different Approaches.
Methods can be broadly classified into:

a) Judgemental methods (subjective, qualitative)

b) Univariate time series methods (projection, extrapolation). %(N,h) depends only on

TN,TN—1,-..and/or on position in time.
c¢) Multivariate time series methods. Z(NN, h) depends also on predictor variables.
d) Combination of a), b), c).

Methods can also be classified as
Automatic or Non-automatic — an important distinction.
— contrast stock control with econometrics
With many items, as in stock control, need simple automatic approach. In economics, prefer
non-automatic approach — probably multivariate.
Which method is best?
No simple answer. (Horses for Courses!) Wide variety of problems requiring different treatment.
Big gains can be made by being selective.

Choice of method depends on:
a) Objectives

b) Type of data (eg. macro or micro) and properties of series, particularly presence/absence

of trend/seasonality.
¢) Number of observations available
d) Length of forecasting horizon.
e) No. of series to be forecasted and cost allowed per series. What accuracy is required?

f) Skill and experience of analyst and computer software available. Use a method you feel

‘happy’ with. Try more than one method?



SPECIAL WARNING :

Forecasting is extrapolation, which can be dangerous. Forecasts are conditional statements that
if such-and-such behaviour continues, then....... Be prepared to modify them in light of any
additional information.

Quotes from Schumacher’s “Small is Beautiful,” Chapter 15.

Short-term forecasts. “A refined technique rarely produces significantly different results from
those of a crude technique.”

Long-term forecasts “are presumptious. However long-term feasibility studies, based on clearly
stated assumptions, are well worth doing.”

Good idea to construct alternative scenarios based on different assumptions.

Some dubious predictions!!

(i) “I think there is a world market for about five computers” — Founder of IBM in 1947

(ii) “There is no reason for any individual to have a computer in their home” — President of
Digital Equipment in 1977

(iii) “Stock prices have reached what looks like a permanently high plateau” — Yale Professor of

Economics in September 1929 (before crash!).

Out-of-sample versus in-sample forecasts. OR
Ex-ante versus ex-post forecasts.
If Z(h) only uses data up to time N = out-of-sample (or ez-ante) forecast
Note: Can’t use future data when computing forecasts OR in fitting the model.
In-sample ‘forecasts’ are NOT real forecasts.
In-sample 1-step-ahead forecast errors are the residuals
Typically find:
In-sample residual variance < Out-of-sample forecast error variance.
For MV forecasts, may need forecasts of explanatory variables as well as of response variable.
For forecasts to be genuinely ex-ante, all forecasts, including those of explanatory variables,
should only use data to time N.
Ez-post forecasting.
If, instead of forecasting explanatory variables, use actual values of the future explanatory
variables to compute forecasts (to assess model)
OR
Use assigned values of the future explanatory variables to compute forecasts (to assess different

strategies)



There are many ways to ‘cheat’ — for example:

1. Divide data into training set and test set, but fit model to all the data before ‘forecasting’
test set.

2. Fit several models to training set and choose the one which gives ‘best’ forecasts of test set.

Then re-use this model to give forecasts.

Some General Forecasting References

Books

Chatfield (2001); Diebold (2001); Montgomery, Johnson and Gardiner (1990);

Granger & Newbold. 1986. 2nd edn. Economic flavour.

Box & Jenkins. 1970. The famous book. NEW 3rd edn. 1994 with G. Reinsel. New chapters
on intervention analysis, outliers, process control.

Note: There are some bad books around!

Journals

The International Institute of Forecasting (IIF) sponsored J. of Forecasting (JoF) 1981-5 and
Int. J. of Forecasting (IJoF) 1985-. JoF is still published by Wiley.

See also J. Business & Econ. Stats. (JBES), Management Science, etc.

Review paper: Chatfield (1997, The Statistician).

BASIC IDEAS of TIME-SERIES ANALYSIS (TSA).

1. Introduction.

A time series is a collection of observations made sequentially through time.

Ezamples in economics, marine science, marketing,...

If observations taken at discrete times — discrete time series {X;} — though observed variable
may be discrete or continuous.

If observations taken continuously through time — continuous time series {X(¢)} .

May be deterministic or random (stochastic).

Discrete series may be (i) sampled from a continuous series (e.g. temperature), (ii) aggregated
(e.g. sales in successive months) or (iii) really discrete as observations only taken at fixed
intervals (e.g. annual dividend).

Much stat. theory is about independent obs. Special feature of time series is that obs. are NOT
independent. Must take order into account.

Objectives.

a) Description. Plot data. Summarize features e.g. trend, seasonality, outliers. Fit model.

b) Ezplanation. Multivariate modelling.



c) Forecasting (or prediction). For what purpose?

d) Control.

Approaches.

Analysis in time domain. Based on autocorrelation function.

Analysis in frequency domain. Based on spectral analysis.

Review of Books.

Introductory time-series texts: Chatfield, 1996; Harvey, 1993; Kendall & Ord, 1990. Wei, 1990.
More advanced texts include: Brockwell and Davis (1991, 2nd edn.); Fuller (1996, 2nd edn.)

2. Simple Descriptive Techniques

See ATS, Chapter 2. Classical TSA decomposes variation into:

1. Seasonal variation — usually annual
2. Other cyclic changes — e.g. economic cycles
3. Trend — long-term change in mean level

4. Irreqular fluctuations — may not be random

Good approach when variation dominated by trend and/or seasonality. But not when short-term
correlation present. And decomposition into trend/seasonality not unique.

2.3 The Time Plot

Plot obs. against time.

MOST IMPORTANT STEP in any TSA or forecasting exercise.

Shows up important features such as: (i) trend; (ii) seasonality; (iii) outliers; (iv) turning
points/discontinuities.

Vital to describe data and help in formulating a sensible model.

Drawing a time plot is not as easy as it sounds.

General guidelines:

a) Give clear title

b) Label axes

c) State units of measurement
d) Careful choice of scales

e) Careful choice of plotting symbol



f) Use trial-and-error to improve

- Guidelines often disregarded, especially by some PC packages. Some computer graphs are
AWFUL!! So use Tippex (!) or a better package which does give control over output.

- Avoid deception

Time plot is vital for (i) describing data; (ii) formulating a model; (iii) Choosing appropriate
analysis.

2.4 Transformations

May be better to analyse say /X; or log X;

WHY? — (a) To stabilise variance; (b) To make seasonal effect additive; (c) To make data normal.
Unfortunately these requirements may conflict.

HOW? Box-Cox transformation

X0 _ (X} =1/X A#0
-
IOgXt A=0

My preference is generally to analyse raw data except when growth is exponential. Then take
logs to make it additive (i.e. %age increases are of interest).

2.5 Trend

Difficult to define — “Long-term” change in level per unit time.

Perception of trend may depend on length of series. Trend or low-frequency variation?

Is trend linear or non-linear?

Contrast global or deterministic linear trend — y; = a + bt — generally unrealistic?

with local linear trend — pu; = a; + byt

Econometricians distinguish between trend-stationary — deviations from a deterministic trend
are stationary — and difference-stationary series where stationarity can be induced by first dif-
ferencing, so a ‘unit root’ is present: X; — X;_1 = (1 — B)X;, where B denotes the backward
shift operator such that BX; = X;_1.

May want to measure trend, OR remove trend so as to examine local fluctuations.

Can fit a trend curve such as a polynomial function of time (t), or a Gompertz curve — exp(a—brt),
where 0 < r < 1, or a logistic curve — a/(1 + be™).

Can measure or remove trend with a linear filter, (e.g. Henderson moving average), of general

form
Yt = Z ArTitr

If > a =1 — measure trend

If> a, =0 — remove trend



Differencing is a special type of trend removal
Yyt = ¢ — x4—1 = VI, where V is the first differencing operator.

Problem: No unique decomposition into trend and seasonality.

2.6 Seasonal Models
Xy = my + S; + ¢ — additive
X = mySt + €, — multiplicative seasonality but additive error
X; = m;Siey — both multiplicative
— log X; = log m; + log St + log ¢ — additive

Normalize? Y. Sy = 0 — additive OR  Av(S;) = 1 — multiplicative

Mized seasonal: Xy = my(1+4 5;) + o + &

Various ways of measuring and/or removing seasonality. e.g. seasonal differencing for monthly
data — y = x4 — 112 = V121, where Vo is the seasonal differencing operator for data with
period 12. Henderson moving average used in X-11 (US Census Bureau) and in X-11-ARIMA
(Canada). X-12-ARIMA (Enhanced X-11; e.g. deals with holiday effects) is now available. OR
use Maravall’s TRAMO/SEATS — stands for ‘Time-Series Regression with ARIMA noise/Signal
Extraction in ARIMA Time Series’.

Important comment. The treatment of (i) Outliers (ii) Missing observations (iii) Calendar or
Trading Day or Holiday effects (e.g. Easter in March or April; 4 or 5 Sundays in a month;
etc) can be more crucial than other aspects of TSA. More important than choice of model or

forecasting method.

2.7 The Correlogram
An important tool for assessing the behaviour and properties of a time series.

Measures correlation between observations at different distances apart.

Revision. Given N pairs of obs. on z and y, say (z1,v1), (2,92),-..,(ZN,yn), then
N
r=3 (zi—2)(y — 9)/VIQ_ (& — 7)Y (v — 9)°]
=1
Applying to TS. Given series z1,Za, ..., zN, can form (N—1) pairs of obs. (z1,z9), (z2,23),-..,(ZN_1,ZN)-

Then calculate correlation between z; and ;41 by

N-1 N
Ty Z (xt — Z)(xp41 — )/ Z(xt —7)?
t=1 t=1



= (auto)correlation at lag 1

More generally to assess correlation between obs. k steps apart:

N—k N
re= Y (@ —3)(@en — 1)/ Y (2 — )
t=1 t=1

Plot 7, against kK — correlogram. Note : ry is always 1.
For random series, r; ~ 0 for all k # 0. If random, can show r ~ approx. N(0,1/N).
So values outside +2//N are sig. diff. from zero. For example if N = 100, values outside

+2/,/100 = £0.2 are sig.

3. Probability Models for Time Series
See ATS, Chapter 3. Regard z; as obs. on a random variable X;. Models describe distribution
of X; and relationship with past values of X; (and with other series?).
Stationary if distribution of X; does not depend on ¢
— constant mean — p
— constant variance — o2
— constant autocorrelation function (ac.f.) — p(k) — where p(k) = Correlation (X, X; k)
3.4.1. Purely random process or white noise
Z1,Zs, ... are uncorrelated and have same distribution. Then p(k) = 1 if ¥ = 0 and zero
otherwise. If Z; are normally distributed, then they are also independent. Some writers assume
independence. Need independence for non-linear models. Or use notation {&;}.
3.4.2 Random Walk
X: = Xy 1 + Z; is non-stationary
while (X; — Xi—1) = VX = Z; is stationary.
e.g. share price on day ¢ = share price on day (¢ — 1) + random perturbation.
Then share prices approx. a random walk. First differences of share prices (i.e. change in share
prices) approx. white noise.
3.4.3 Moving Average Process
X =Zy + p1Zi—1 — MA(1)
X =Zi+ 1 Ze—1+ ... BgZi—g — MA(q)
X; and Xy, are independent if £ > q. So p(k) = 0 for k > ¢ and correlogram ‘cuts off’ at lag gq.
Process is stationary for any values of ;.
3.4.4 Autoregressive Process
X:=a1Xe—1+ Zt — AR(1)
Xi=aXp 1 +...+ X p+ Z;, - AR(p).



Like a multiple regression model but AUTO.

Find p(k) decreases exponentially or like a damped sine wave.

For stationarity, must have a’s ‘reasonably small’ e.g. for AR(1) — |a| < 1
3.4.5 Mixed ARMA Process

Xe =Xy 1+ Zi+ f1Z;1 - ARMA (1,1)

3.4.6 Integrated ARIMA Process

to describe non-stationary series.

eg. Let W, =VX, =X, — X; ; and

Wi =oiWi1 + Zs + p1Zi—1

Then Wy is ARMA(1,1) and X; is said to be ARIMA (1,1,1)

General notation — ARIMA (p,d,q) where p = no. of AR terms, d = no. of differences, and ¢ =
no. of MA terms.

Deterministic trend. — Trend-stationary series
Xt =a+bt+ Et

= Xt — X1 =bt+e—e

LHS is (1 — B)X; which has a unit root. But RHS is = b + (1 — B)e; and error term is not
invertible. So don’t take differences when trend stationary.

Difference-stationary series.

Suppose (1 — B)X; is stationary. Then process has a unit root and does not have a deterministic
trend. Then we DO need to take differences and NOT fit a deterministic trend.

Important to identify correct form of trend and correct form of differencing.

Testing for a unit root. Some financial models should contain unit roots under rational
expectations and so a unit root null hypothesis is then reasonable. Can also arise in testing for

co-integration — see later. But not always sensible to take a unit root as null hypothesis.

Time-Series Model-Building (Expansion of Section 4.8 of ATS; See Section 3.5 of TSF)
Some general principles apply in all statistical applications, but there are special problems
with (auto)correlated time-series data. Can be difficult to separate and model effects of trend,
seasonality, lagged explanatory variables, etc.

Books and journals concentrate on details of techniques, BUT we also need to be concerned with
general strategy.

e.g. Problem is usually NOT “How do we fit a particular Box-Jenkins ARIMA model?”, but “Is
an ARIMA model appropriate here?” or “Which particular ARIMA model should we fit”?

10



Objectives: Why model??

1. Description. Describe both (i) the systematic variation; and (ii) the ‘error’ term.
Prediction.
To confirm or refute a priori theory

To facilitate comparisons

o W N

To give physical insight

All models are approximations. The approximation should be adequate for the task in hand, and
should contain as few parameters as necessary to do this (i.e. be parsimonious). The Principle

of Parsimony is sometimes referred to as Occam’s Razor.

Black-Box or Structural Model? Black-Boxz models are also called empirical models. Constructed
from data in fairly mechanical way. Easy to do. But may give little physical insight. Neural
Net (NN) can be extreme example.

Structural models: Account for known theory and specific physical features. Need subject-matter
knowledge to construct intelligent model. Hard to make general comments.

Need both types of model in different applications. Some models in-between. Autoregressive

(AR) models are closer to black-box than Vector AR models.

Stages in Model-Building:
1) Specification of a class of models (Model formulation)
2) Selection of a ‘best’ model.
3) Model-fitting — the easy bit?
— but lectures and books concentrate on estimating model parameters!
4) Model-validation (or model-checking) — usually a residual analysis.
— Is model OK or does it need to be adjusted?
May be several cycles of model-fitting — an iterative, interactive process — as in Box-Jenkins
modelling of time series (Box et al., 1994). Need inductive and deductive reasoning.
Stage 1 of Model-Building: Specification
“All models are wrong but some are useful”!!
Context, costs and objectives are important. Ask questions; Get background information
What variables need to be included? Very important. Don’t include too many but don’t omit
any key variables. Avoid linearly related variables — e.g. if X and Y, then not (X +7Y).
Use known theory; Known limiting behaviour; Known special cases;
Look at data; Look at time plot, correlogram, etc. Should suggest what assumptions are rea-

sonable.
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Strange that we say/teach so little about model-specification. Much more difficult than model-
fitting. Ezperience and inspiration important. Analysts like to think modelling is objective but
subjective judgement is always needed.
Stage 2. Model-Selection. Choose a ‘best’ model from the specified class of models. What
is meant by ‘best’? Best fit? Or best out-of-sample predictions? Or ...7
Various approaches.
a) Use Subjective Judgement. Look at the time plot, the ac.f. and the partial ac.f. of the
observed series and of the differenced series. Use judgement to select a model.
b) Use a Model Selection Statistic Choose a model to optimize a statistic that measures fit in
some way. How do you measure ‘best fit’?
Can’t just minimize residual sum of squares (or maximize R?) as models with more parameters
usually give better fit but not necessarily better out-of-sample predictions.
Always a danger that looking at lots of models (data mining) will give a model with lots of
parameters, which appears to give a good fit, but which gives poor out-of-sample predictions.
Can choose a model to minimize a statistic like Akaike’s Information Criterion (AIC) or the
Bayesian Information Criterion (BIC) which penalize extra parameters in assessing fit.

AIC = —2In(L) +2p

- Fit + complexity of model

where L= max. likelihood and p= no. of (independent) parameters
To a first approximation, BIC replaces 2p with p + plog(N), where N= no. of observations.
When p becomes large compared with IV, better to use bias-corrected version of AIC, denoted
by AIC¢ or AICC, which replaces 2p with 2(p + 1)N/(N —p — 2).
c) Using Tests of Hypotheses to Select a Model.
Hypothesis-testing is standard approach to model selection in experimental design (e.g. 1-way
ANOVA). More controversial in time-series analysis?
Econometricians typically carry out a series of tests for presence of trend, seasonality, autocor-
related residuals, unit roots, constant variance, causal explanatory variables, etc.
But statisticians typically rely more on an initial examination of data and model-selection statis-
tics such as AIC.
Dangerous to overtest a single set of data?
When testing, have to:

1. Specify null hypothesis (Hy)

2. Compute test statistic to show up departures from H,

3. Compute P-value = Prob (more extreme value than one obtained if Hy true) (and power?)

12



4. Reject or fail to reject Hy.
Do not get Prob (Hy true)!!
Ezample. Want to fit ‘best’ Autoregressive (AR) model

Xt = M+C¥1Xt71 + ... —JrCYpXt,p +€t

What is p? Could introduce lagged variables one by one (which order?) and test each in turn.
But doing lots of tests affects P-values and subsequent inferences.

OR choose p to minimize AIC.

Ezample. Testing for unit roots.

ATS Section 13.5.7. Many versions of test. For simplicity consider
X=X 1+ e
OR (]. — d)B)Xt = &t

If ¢ = 1, then the equation (1 — ¢B) = 0 has a unit root (i.e. B = 1 satisfies equation) and
process is non-stationary. Query: Why should ¢ = 1 be Hy? Sometimes sensible economically.
Tests generally have poor power and topic still controversial — see Diebold and Kilian (2000,
JBES)
Prefer to fit a model which allows trend to adapt through time (e.g. as in structural state-space
models) rather than impose a fixed or deterministic structure? Depends on context.
Other Reasons for Preferring Selection to Testing.
1) Get a ranking of models.

e.g. Clear winner? OR Several close competing models?
2) No need to decide what null hypothesis should be.
3) No need to assume true model exists and is in class of candidate models.
4) Valid for comparing non-nested models.

e.g. ARIMA versus Neural nets versus Econometric model
Stage 3. Model-Fitting
Plenty of packages available. Little needs to be said. Some models (e.g. GARCH; Neural
Network (NN); Vector Autoregressive (VAR) ) may require computationally intensive methods.
Which approach to inference? Classical, Bayesian or Decision Theory. Different approaches
relevant to different situations. No need to label ourselves.
Stage 4. Model-Validation
Is fitted model consistent with data? Look at residuals where

DATA = FIT + RESIDUAL

13



In time-series analysis, residual = one-step-ahead forecast error.
Plot residuals against time. Signs of change?
Large residual — outlier? or error?
— or wrong model fitted?
— or genuine extreme obs.? (use robust methods?)
Is systematic part of model OK? 1Is ‘error’ part OK?
If necessary go back and modify model.
Continue to check model while forecasting — Forecast monitoring; Look at residuals. Plot
against time. If things go wrong, revise model.
Some Other Points on Modelling.
a) May not be able to find a model which describes all the data satisfactorily.
b) If trend and seasonal effects present, should we model them explicitly
OR remove by filtering?
c¢) Problems in modelling 50 monthly sales figures very different to modelling 1000 daily share
prices.
d) Univariate or multivariate time-series model? Multivariate harder to fit and forecasts need
not be better, but does provide extra insight and may give better forecasts.

e) In TSA, formulate and fit model to same data — model-selection biases. Model uncertainty.

5. FORECASTING METHODS

See ATS, Chapter 5; TSF, Chapters 4 and 5. There is a rich variety of methods. Cover the
more important ones.

Judgemental Methods: Delphi method; Bold freehand extrapolation (BFE); Manager’s
judgement; etc. Sometimes work well — sometimes not — see for example Armstrong (1985,
Chapter 15); Webby and O’Connor (1996, IJoF).

Not covered in this course as prefer method to be at least partly ‘objective’ and quantitative.
5.2. Some UNIVARIATE Methods

Univariate methods sometimes more relevant to everyday needs of statistician than multivariate
methods — especially when lots of series to forecast.

1) Extrapolation of trend curves (or growth curves).

For long-term forecasting of non-seasonal data. Fit polynomial, Gompertz, or logistic curve,
etc., using:

Xt = f(t) + &

14



2) Exponential Smoothing

.’i‘(N,l) = QTN -|-Ot(1 —Oé).’L‘N_l ‘|‘Oé(1 — a)2xN_2 + ...

— geometric series; easily updated when rewritten as: Z(N,1) = azy + (1 — @)Z(N —1,1) -
recurrence form, or as Z(N, 1) = Z(N, 1) + aey — error-correction form

where ey =zy — (N —1,1)

« is the smoothing parameter such that 0 < a < 1. Often chosen between 0.1 and 0.3. OR
choose to min. SN, 2.

ES is optimal for an ARIMA(0,1,1) model and for several other models (Chatfield et al., 2001).
Gardner (1985, JoF) gives review.

3) The Holt-Winters Method

Xe=Li+ 1 +¢

Where L; = current Level, I; = current Seasonal index, and
Li~Li 1+T

where T; = current Trend. This is the additive seasonality case.
— Update Ly, T3, I; by ES — formulae in ATS
— Easy-to-use. Robust (Chen, 1997, IJoF).
There are now 3 Smoothing Parameters — Choose to min. " e?
Choice of starting values for L, Ty, Iy also important; e.g. Ly = average value in 1st year.
A multiplicative version is also available.
Can be used with automatic or non-automatic approach.

Forecasts in multiplicative case for monthly obs.
Z(N,h) = (Ly + hTN)IN-12+h

for h=1,2,...,12.

4) The Box-Jenkins Forecasting Procedure.

Iterative model-building procedure.

1) Identify appropriate ARIMA model (by looking at correlogram of various differenced series
and partial autocorrelation function etc.) Not easy. Requires experience.

2) Estimate the parameters of the model. Easy using package such as MINITAB, AUTOBOX
etc.

3) Diagnostic checking. Examine residuals from fitted model.

4) Consider alternative models if necessary.

15



Step 1. Difference data until stationary.

e.g. V for non-seasonal data. or V1o or VVys for monthly seasonal data.

Use minimum degree of differencing so that correlogram comes down to zero fairly quickly.
Step 2. Formulate ARMA (or seasonal ARMA) model for the differenced series, by looking at
correlogram, partial autocorrelation function, etc. of differenced series. — see ATS, Chapter 4.
Ex. Suppose X; is non-stationary, but VX is stationary with ‘large’ r; but ‘small’ r otherwise
— ARMA(0,1,1) has p(k) of this form.

Step 3. Estimate the parameters of the chosen ARMA model. Nowadays this is EASY using a
package such as MINITAB, GENSTAT or a specialized package such as AUTOBOX.

Still helpful to understand the procedure. Usually minimize S = 3" e? = Y[z, — (¢t — 1,1)]?
Ex. For AR(1) model, X; = ¢X; 1 + Zs, #(t — 1,1) = ¢z 1, 50 S = 3. (x4 — ¢z _1)?. This nice
analytic function of ¢ can be differentiated to give ¢ = ry.

Ex. For MA(1) model, X; = Z; + 0Z; 1, dS/df cannot be evaluated analytically. So have to
find § in (-1,1) which min. S numerically. Can use hill-climbing.

Step 4. Check model. (Model-validation. Diagnostic checking).

Look at 1-step-ahead ‘errors’ (the residuals). If they are not random, model is not optimal.
More structure waiting to be found.

Step 5. Compute forecasts if model satisfactory.

Easily done by replacing (i) future Z’s with their conditional expectation (zero!), (ii) future X’s
with their forecasted values, (iii) past values of X and Z by their observed values. This gives
the MMSE forecast: X (N, k) = E(Xy1x| Xy, Xn_1,...) = conditional expectation of Xy 4.
Ex. AR(1). X;=¢X; 1+ 7Z;

#(t,1) = B(X411|Xs, Xi—1, ...) = ¢z (or rather du;)

#(t,2) = ¢ (t, 1) = Pz

Ex. MA(1). X, =2, +02Z; 4

&(t,1) = 67, (or rather 03;)

z(t,2) =0

Ex. Independent obs. X; =pu+ 7,

(t,1) = p=x(t, k) for k=2,3,...,

Ex. Random Walk or ARIMA (0,1,0). X; =X, 1+ Z;or VX =7,

z(t,1) = x4 = &(t, k) for k=2,3...,

Ex. ARIMA (1,1,0). VX, =¢VX, 1+ Z;, OR Xy = X 1 + o(Xe1 — Xy 2) + Z4

Then %(t,1) = z; + ¢(xt — T4-1)

etc. — See ATS, Chapters 3,4, & Section 5.2.4.
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Ex. SARIMA (1,0,0)(0,1,1 );5 — see ATS, page 74

Fractional ARIMA models. In ARIMA (p,d, q) model, allow d to be non-integer — Frac-
tional differencing.

If 0 < d < 0.5, model is stationary and an example of a long-memory model (e.g. Beran, 1994),
where ac.f. decreases slowly. Fractional models harder to interpret? Forecast accuracy with real
data is inconclusive (e.g. Crato and Ray, 96, IJoF).

5. Stepwise Autoregression.

6. State-Space and Structural Models

Harvey (1989). ATS Chap 10. — Much current interest. Andrews (1994, JBES) — Comparative
empirical study. Does quite well, especially for long horizons and seasonal data.

Structural models are special case of state-space models. So are Unobserved Compo-
nent Models and the West/Harrison (1997) Dynamic Linear Models.

Use Kalman Filter — a recursive method of signal processing which gives an optimal estimate
of the current state of the system in the presence of noise. (Also used now for estimating
parameters of ARMA model and in other applications). Forecasts can also be produced using
the KF.

The Basic Structural Model (BSM) assumes additive level, trend, seasonal index and error terms.
x; — observation at time t = L; + I; + ny

— the observation equation, where
Li=Li 1 +T4—1 +wiy
Ty =Ty 1 +woy
s—1
I =— Z I j+wsy
i=1

— three transition equations

— Ly, Ty, and I are unobservable state variables and s is number of observations per year.
Similar to additive HW — 3 smoothing parameters <> 0% /02,03 /02, 0%/02.

Basic Structural Modelling.

KF provides local estimates of level, trend and seasonality.

— updating equations are closely related to those of HW but not the same

— more complicated to use and explain

— but based on proper probability model

— 50 can get prediction intervals

— can handle irregularities in data
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— can be extended to incorporate explanatory variables

General Question. Is it better to difference away trend and seasonal as in BJ or use a method
which models them explicitly as in HW and structural modelling? Or seasonally adjust data in
some other way and fit non-seasonal model?

Bayesian Forecasting

West and Harrison (1997); Pole et al. (1994).

Depends on a class of models called Dynamic Linear Models. Really just state-space models.
They derive KF as a way of updating ‘priors’ to get ‘posteriors’ using a Bayesian approach. Is it
different? Recurrence relations are essentially equivalent to KF but Harrison says Bayesian fore-
casting is not based upon KF. Useful for short series when one really does have prior information.
Can also allow multi-process or mizture models.

7. Other Univariate Methods. Many other methods such as: General Exponential Smooth-
ing (GES); Regression on time; ARARMA.

Or Combination of methods — usually more accurate, but no model (e.g. see IJoF, 1989, No.

4).

5.3 MULTIVARIATE Forecasting Methods

Try to improve forecasts of y; by including explanatory variables i, Zo,... in model.

Must identify all relevant variables. So ASK QUESTIONS.

Many types of model. Multivariate (MV) modelling much more difficult. Must model depen-
dence within AND between series (auto- and cross-correlation).

One basic question: Is there a causal relationship between x;’s and y; (i.e. is system open-loop
or closed-loop.)

Are MV forecasts better?

Perhaps YES. But perhaps NO! — though may still improve understanding of inter-relationships.
Some problems:

MYV models much more difficult to identify.

More parameters to estimate — more parameter uncertainty

More variables — more errors and outliers

Some data unsuitable for MV modelling.

May need forecasts of explanatory variables. (Are forecasts genuinely out-of-sample?).

MYV models less robust

Initial Data Analysis.

Look at time plot of each variable.

Compute ac.f. for each variable.
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Compute cross-correlation function for each pair of variables.
rxy (k) = Correlation (Xy, Yii)-
May be difficult to interpret rxy (k) because Variance(rxy (k)) depends on autocorrelations.
Much easier if one series is white noise. So some identification methods aim to transform one
series to white noise.
1. Multiple Regression.
Most commonly used method. Model is: E(y|z1,x2,...) = p+ f1z1 + Bozo + ...
Problems with time-series data, especially economic data. Can often get excellent fit e.g. R? =
0.99; but poor forecasts. Good fit may be spurious if (i) all series correlated with time; (ii)
too many z’s used; (iii) z’s highly correlated - often are with economic data. (‘Independent’
variables usually NOT independent).
Beware of 2’s held more or less constant in past.
Beware of feedback from y to z’s (when x’s not controlled). Single-equation model only suitable
for open-loop data (with uni-directional causality).
M.R. can be helpful but can also be dangerous. The error structure is too simplistic.
Econometricians try to allow for this with Generalized LS and 2-stage LS. Only partially suc-
cessful.
Leading indicators.
x¢ is a leading indicator for y, if

Y =+ Pri—qg + e
where d > 0. Good for forecasting up to d steps ahead. If d small or zero, may have to forecast
x to forecast y!!
Precautions
1) Remove trend and seasonality before regression.
2) Choose explanatory variables carefully. Limit number to say 5.
3) Include appropriate lagged values.
4) Make careful diagnostic checks.
5) Avoid if feedback thought to be present.
2. Transfer function model
Consider MR model. No reason why errors should be uncorrelated. No reason why input should

only have effect at one lag. So consider more general lead-lag relationship.
Yi=unXi+unXia+...=v(B)Xi+m
Here v(B) is called a transfer function while 7, may follow an ARIMA process.
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This is called a Transfer Function or Distributed Lag model.
Here the response variable, Y, is endogenous and input, X;, is exogenous. Good if X; is a leading
indicator. e.g. if

v(B)X; = ki Xy—a+koXeg_1+...

Safer to fit with BJ approach than with variations of MR especially if 7, are correlated (ARIMA).

Rational Distributed Lag Model

May be able to use less parameters if write v(B) as ratio of two polynomials, say w(B)/d(B)
— Rational Distributed Lag Model

Example: Consider Y; = 61Y;_1 + w3X;_3

where §(B) = (1 — 61 B) and w(B) = w3B3.

This is easier to handle than writing Y; in terms of lagged values of X; only, namely
Y: = wsXy—3 + w3b1 Xy—g + w367 Xpo5 + ..

3. Multivariate ARMA (VARMA) models.

where ® and © are matrix polynomials in B of order p, g

Here X; and e; are vectors of the same length.

Difficult to fit even with only 2 or 3 variables. Much current research interest (e.g. Liitkepohl
1991). But interpretation of cross-correlation function not easy.

So approx. with VAR model?

Bayesian vector autoregression shrinks coefficients towards zero.

Or use external knowledge to get sparse matrices (i.e. lots of zeros).

Or look for co-integration. e.g. Xi,Y;, are not stationary, but (X; — kY;) 4s stationary. An
equilibrium relationship. Link with ECM models.

OR generalize to VARX models which include ezxogenous variables. The latter affect the system
but are not affected by it.

Ezample. A bivariate VAR(1) model.

Observe X1 = (X1, Xo:). Suppose

Xt =onuXip 1+ 012Xos 1 +en
Xot = ¢ X1 -1+ Pp2Xo1—1 + €2

where {¢ij} are constants and €14, €9; are uncorrelated white noise. Can rewrite as
X =91 Xy 1 +e
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where e = (e14,€9¢), ®1 = ou 12 ,oras (I —®1B)X; =g
b1 P22
where I = . Then ®(B) = (I — ®;B) is a matrix polynomial of order one in B.
01

Special case: If p19 = 0 — no feedback from Xy to X7 — transfer function model for Xo; in
terms of lagged values of X1;. ®; is a lower diagonal matrix. More generally a TFM is a special
case of VARMA model when ®,(B) and ©,4(B) are lower triangular.

4. Econometric Models.

A set of simultaneous equations. For ‘closed-loop’ data.

e.g. wages depend on prices and prices depend on wages

Build using economic theory and data — Want more cooperation between statisticians and econo-
metricians.

Help to understand economy and evaluate alternative economic proposals, but forecasting per-
formance is mixed, even after incorporating judgement to forecast exogenous variables.

5. Other multivariate methods.

Multivariate versions of structural modelling (Harvey, 1989, Chapters 7,8). An example is
Xt =py+ny

where
B =P +wy

where n;, w; are vectors of innovations with appropriate correlation properties.

— Seemingly Unrelated Time Series Equations (SUTSE).

— Common Trends Model when linear combinations of some components of p, are stationary
— link with co-integration.

For multivariate versions of Bayesian forecasting, see West and Harrison (1997, Chapters 9,16).
6. Intervention Analysis.

can be regarded as an extension of both univariate and multivariate forecasting methods. Let
X; = some model +6;

where J; can take various forms of which the impulse function is perhaps most common, namely
0; = ¢ if t = 1y, but 0 otherwise, if ¢ #£ .

Usually g, the time at which the intervention takes place, is known from context. Then estimate

0 from data. Box et al., 1994, Chapter 11.
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5.2/5.3 Some General Questions and Comments on Forecasting
1. Method or model? — An important distinction.
A model is a mathematical representation of reality.
A forecasting method is a rule or formula for computing a forecast. It may, or may not, depend
on a model.
Ez. Exponential smoothing (ES) is a method. It is optimal for an ARIMA(0,1,1) model. It
may be nearly optimal for various other models, but would not be sensible to use for some other
underlying models.
2. Point or interval forecast?
Forecasts usually given as point forecasts — perhaps with too many significant figures implying
spurious accuracy. This may be OK if forecast user cannot cope with uncertainty. But gives no
idea of accuracy. So usually prefer interval forecasts

— to assess future uncertainty

— enable different strategies to be planned for a range of possible outcomes

— explore different scenarios based on different assumptions
Prediction Intervals. An interval forecast associated with a specified probability. (Better
description than confidence interval). Review in Chatfield (1993, JBES) and TFS, Chapter 7.
Let e;(k) = Xyyx — X (t,k). Find Var[e;(k)]. Then assuming normality and unbiasedness, 95%

Prediction Interval (P.I.) for Xy, is given by
X(t, k) £ 1.96\/(Varle(k)])

Theoretical formulae for Var[e:(k)] can be found for regression, ARIMA and structural models
(comes from Kalman filter), as well as for some methods, such as exponential smoothing and
Holt-Winters, by assuming that the method is optimal.
OR calculate empirically from past fitted ‘forecast’ errors (e.g. Gardner, 1988, Man. Sci.).
OR calculate by simulation, bootstrapping or Monte Carlo methods (computationally intensive)
OR assess subjectively
P.Is often not given because:

1) Literature is unhelpful

2) No general method of computing P.I.s

3) Impossible for some complicated models, especially if non-linearities present.

L

5

)
)
)
4) Resampling methods not widely understood
) ‘Approximate’ methods may be invalid
)

6) Software packages may not produce them

22



P.I.s assume future is like past. But generally too narrow! Because:

a) May fit wrong model; (data mining — overfitting)

b) Model may change in future;

c) Outliers may be present or errors non-normal;

d) Have to estimate parameters; (though can often incorporate correction for parameter un-
certainty, typically of order 1/N.)
Out-of-sample forecast accuracy often much worse than within-sample fit, but difficult to assess
effect of Model uncertainty — see Chatfield (1996b).
— All comparisons of different forecasting methods and models should be made on the basis of
out-of-sample forecast accuracy, not within-sample fit.
3. Must monitor forecasts.
Forecast Monitoring. Check forecasts, and, if things go wrong, revise model and forecasts.
Usually look at 1-step-ahead forecast errors: e; = 4 — #(t — 1,1), and plot them against time.
If, for example, find a series of positive errors, then we consistently under-forecast. Must take
appropriate action.
Is mean error zero? (unbiased forecasts).
Are errors autocorrelated? (then method not optimal).
Are errors normal? (as assumed for symmetric P.1.s)
Can use CUSUM TRACKING SIGNALS — Plot cumulative sum (or cusum) of forecast errors
against time. e.g. Gardner (1983, JoF).
4. Single-period forecast or cumulative forecast?
May want to plan production for a period. Compute by adding single-period forecasts?

5. Must be prepared to improvise in any particular situation. Take account of context.

5.4 Comparison of Forecasting Methods — TSF, Chapter 6.
Which method is best? Answer: It depends!!
What is meant by ‘best’? Univariate or Multivariate? Automatic or non-automatic?
A simple automatic univariate procedure is useful
(i) as a norm
(ii) if lots of items to forecast
(iii) as a preliminary forecast to be adjusted subjectively
(iv) if analyst’s skill is limited

But econometricians do not like them as they do not explain what is going on.
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5.4.1 Forecasting Competitions

Compare accuracy of different methods on different series. Usually compare automatic univariate
and Box-Jenkins. Newbold & Granger (74, JRSS A) suggest BJ better than HW.

BUT different results obtained by Makridakis & Hibon (79, JRSS A) and Makr. et al (82,JoF)
in the M-competition — 1000 series. 24 methods. International panel. Found HW ~ BJ and
seven other methods.

Which conclusions are ‘true’?

M-competition results replicated by Lusk & Neves (84, JoF), Koehler (85, IJoF).

Different answers may be due to i) skill of analyst; (ii) selected sample of series; iii) different
interpretation of methods.

AND comparisons must be genuinely out-of-sample (or ez-ante).

But silly to forecast automatically? Need interaction with client?

Competitions tell something but not everything. (Armstrong and Lusk, 83, JoF; Chatfield,
1988). Need more case studies for assessing multivariate methods and non-automatic univariate
methods.

M2 competition — IJoF 1993 — 29 series from short (n = 33) to long (n = 163) plus additional
information. I took part but found it unsatisfactory. No direct contact with ‘client’.

M3 competition — LJoF 2000 — 3003 series! 24 methods including neural nets. Results not very
clear? Too large?

Choice of an automatic method

Use if there are a large number of series or analyst’s skill is limited. Forecasting competitions
suggest several methods about equally accurate when applied automatically to large numbers of
series. Some are rather complicated or unclear, so use a method that is simple, easily interpreted,
and for which programs are available. I recommend Holt- Winters but several good alternatives.
5.4.2 Choosing a non-automatic method.

If no. of series is small and/or want very accurate forecasts and/or want to use external infor-
mation, then use Judgemental or MV or BJ or non-automatic version of simple method.
Multivariate forecasts (MV) are sometimes worth the extra effort (and MV models usually
give a better fit) but are not necessarily better than univariate forecasts either in theory or in
practice, because:

(i) may have to forecast exogenous variables;

(ii) Economic data are generally observational rather than designed data. Often unsuitable for
fitting MV models because explanatory variables are correlated and feedback between ‘inputs’

and ‘outputs’.
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(iii) Simple is often best. Why? Perhaps univariate methods are more robust to model misspec-
ification or to changes in model.
VARMA models are still quite hard to fit.
Transfer function models worth considering for open-loop data.
Multiple regression — simplest multivariate procedure — beware of correlated explanatory vari-
ables.
Econometric model — to understand economy rather than forecast.
For non-automatic univariate method, gains to be had by being selective. Consider B-1J if
i) analyst is competent
ii) extra cost can be justified
iii) variation not dominated by trend and seasonality
iv) At least 40 observations available
OR consider structural modelling.
Or subjective adjustment of a method such as Holt-Winters. Chatfield (78, App. Stats) demon-
strates possible improvements. Non-automatic Holt- Winters incorporates careful choice of:
1) seasonal or non-seasonal model
2) additive or multiplicative seasonality
3) starting values for trend, seasonals
4) smoothing parameters
5) inclusion, adjustment or exclusion of outliers.
5.4.3 A general non-automatic strategy along the following lines usually works well:
a) Get background info. and define objectives. Point or interval forecast?
Single-period or cumulative forecasts?
b) Plot series. MOST IMPORTANT STEP! Look for trend, seasonality, outliers, discontinuities,
etc.
c¢) ‘Clean’ the data if necessary. Adjust outliers? — Use external knowledge.
Adjust for calendar variation?
Any other adjustments? Consider possibility of transforming data.
d) Decide if seasonal variation is i) non-existent ii) multiplicative iii) additive iv) mixed.
e) Decide if trend is i) non-existent ii) global linear iii) local linear iv) non-linear.
f) Choose appropriate method. 4 types of series -
1. Discontinuities present — Univariate unwise.
2. Trend-and-seasonal — Holt-Winters

3. Short-term correlation — Box-Jenkins
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4. Exponential growth — logs? or include quad. growth term
g) Check model adequacy. In particular study 1-step-ahead forecasts over fit period to see if
improvements can be made.
h) Compute forecasts. Decide if they need subjective adjustment perhaps because of anticipated

changes in external features.

For an alternative general approach, called rule-based forecasting, see Collopy and Armstrong
(1992) and Adya et al. (2001, IJoF).

5.4.4 Summary.

a) Many different types of forecasting problem requiring different treatment.

b) No single ‘best’ method. Accuracy is only one criterion. Also consider cost, ease of use, etc.
Automatic or non-automatic approach? Automatic: Holt-Winters?

Non-automatic: Judgement, or MV or non-automatic univariate?

c) Fitting ‘best’ model to historical data may not give best post-sample forecasts. e.g. complex
methods often no better for forecasting than simple methods.

d) Combination of forecasts often better than forecasts from individual method - but no model.
e) Prediction intervals calculated assuming fitted model is ‘true’ are generally too narrow.

f) Be prepared to improvise.

g) Don’t forget eyeball test. Plot forecasts. Check they look sensible. If not, more work to do!

11. NON-LINEAR MODELS

Most of theory and practice is about linear methods and models (e.g. ARIMA models, ES).
(What is a linear model??!)

Many classes of non-linear time-series model (Tong, 1990). Increasing interest. More difficult
to fit than linear models.

Threshold AR models. Simple example, with zero as threshold:

X VX, 1+ 2, if X, 1>0
t pr—
a@X, 1 +27, if X;_1<0

Good example using economic data in Tiao and Tsay (1994, JoF). Little improvement in fore-
casts, but more insight from modelling process.

Bilinear models. Simple example (last term is the bilinear term):

Xe=aXe 1+ Zi +vZ 1 Xy
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Why do we need NL models?

Some time series exhibit asymmetric behaviour in the time plot (perhaps after careful choice of
scales!).

Series may go faster up than down; There may be more spikes up than down; economic series
behave differently going into, rather than out of, a recession. May observe Limit Cycles when
plotting X; against X;_; May observe changing variance through time.

Ezamples: Sunspots; Lynx trappings; Riverflow data; Chaotic behaviour.

But difficult to tell difference between non-linearity, non-normality and changing variance.

11.3 Models for Changing Variance

Of special interest when studying financial time series, where changes in volatility important.
See Harvey (1993, Chapter 8); Shephard (1996).

GARCH models. Generalized AutoRegressive Conditionally Heteroscedastic. e.g. GARCH(1,1)

X = o0&t

where e; ~ I.1.D.(0,1) and

op = a+ fop +v X7
8 =0— ARCH
Many other models. e.g. regression models with ARCH disturbances; stochastic variance models
where o; follows stochastic process.
Again modelling aspect more important than forecasting? But GARCH models used to forecast
prices of options (derivatives) where estimation of variance is important (assessment of risk).

GARCH models do not affect point forecasts and are hard to compare.

11.4 Neural Nets. What is a neural net (NN)? See ATS, Section 11.4. Inputs (predictor or
lagged variables), outputs (forecasts), plus one or more hidden layer of ‘nodes’. At each node,
calculate linear sum of inputs and apply an ‘activation function’ (e.g. logistic)

Many questions in NN modelling. What architecture? How many hidden layers? How many
nodes? What activation function(s)? How should NN be fitted? There may be many parameters
(weights) to be estimated. Use iteration (e.g. back-propagation) to choose w;; to min. > (z; —
#¢)? over 1st part of series — the training set. Need specialist package. Do not ‘overtrain’ or
may get spuriously good fit but poor forecasts. Prefer BIC to AIC when comparing models, to
penalize the fitting of extra (spurious) parameters.

OR fit using regularization. Minimize (E + v §2) where E is some measure of error, v is a

smoothing parameter, and €2 is a measure of ‘smoothness’. — Usual bias versus variance trade-off.

(c.f. AIC = —2log L + 2p)
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Santa Fe Competition, 1991. Six very long series (e.g. 34,000 obs.!!) Five are clearly non-
linear. Only one economic series. Organisers kept holdout samples for three of them. See
Weigend and Gershenfeld (1994), especially interesting introductory chapter. Little contextual
information for participants. So not me!

Participants chose their own method (e.g. NN; state-space)

Some Findings

1. ‘Failure to use common sense was readily apparent in many of the entries in the competition’.
2. Predictions ‘based solely on visually examining and extrapolating the training data did much
worse than the best techniques, but also much better than the worst’.

3. ‘There was a general failure of simplistic ‘black-box’ approaches — In all successful entries,
exploratory data analysis preceded the algorithm application’.

4. Some non-linear results much better than linear, but there are ‘unprecedented opportunities
for the analysis to go astray’. In particular ‘the best, as well as many of the worst, forecasts of
Data Set A were obtained with neural networks’.

5. The prediction methods that work well for data sets A and D, fail for the exchange rates time
series which is close to pure randomness. Here there is a ‘crucial difference between training set
and test set performance’ and ‘out-of-sample predictions are on average worse than chance’. (So
we are back to our old friend the Random Walk!!).

6. One successful set of predictions for Data set D used 100 hours of computer time!

Other Empirical Evidence. Many comparisons made — see Zhang et al (1998, 1JoF) for
review. Note that some comparisons are not fair or do not make genuine out-of-sample forecasts.
Some selected examples:

Callen et al (1996, IJoF'). 296 series of short (n = 89) accounting series. Linear methods better
than NNs “even when data are financial, seasonal and non-linear”.

Hal White: For many economic series ‘No change’ better than NNs and experts!!

Faraway and Chatfield (1998) show NNs no better than Box-Jenkins for airline data. BIC better
than AIC. Plenty of scope for going badly wrong with NN modelling, so don’t apply in black-box
mode.

Simulations (e.g. Stern, 1996, Technometrics) show linear methods do better than NNs for linear
data. (Of course!?).

Summary of Status of NNs

Empirical evidence unclear, especially given publication bias towards results in favour of a new
method (e.g. Company X suppressed results showing NNs poor).

More empirical evidence is needed to establish when NNs are worth using. Good for long series
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with non-linear characteristics? Poor for linear data. Need several hundred (or thousand?)
observations to feel safe fitting NNs.

A black box approach. No interpretable model to help understanding. And easy to go badly
wrong. The “marketing hype that NNs can be used with no experience and automatically learn
whatever is required ... is nonsense” (W. Sarle).

11.5 Chaos Theory.

Best known example, leading to chaotic behaviour, is the logistic or quadratic map:

xp =kxy 1(1—zy 1) for t =1,2,3,... and 0 < zp < 1.

For small values of k get an obviously deterministic series. But for k near 4, get ‘chaos’. When
k = 4, series has flat spectrum and looks ‘random’ even though it is deterministic. Usual linear
tests, based on second-order properties, indicate randomness. Sensitivity to initial conditions
measured by Lyapunov exponent. Dimension hard to define. Random processes have infinite
dimension.

Can chaotic series be forecasted? Certainly not for long lead times. For short lead times, might
be possible for low-dimensional chaos if we knew model (Berliner, 1991, JASA; Tong, 1990). But
generally don’t. See Granger’s (1992, IJoF) cautionary remarks. Stock market not deterministic

anyway.

COMPUTER SOFTWARE FOR FORECASTING

Difficult to make general remarks. Scene changing rapidly. Sensible use vital.
GARBAGE IN - GARBAGE OUT

is still true!!

Desirable features of good software are:

i) Flexible data entry and editing facilities.

ii) Good facilities for exploring data with summary statistics and graphs.

iii) Technically sound and computationally efficient.

iv) Clear output.

v) Easy-to-learn and easy-to-use with good, clear documentation.

Rycroft (1999, IJoF) reviews 51 packages!

FORECASTING EXAMPLES

Difficult to give flavour of real-life forecasting problems. Textbook examples often artificial and
designed to illustrate a particular technique. Would like to illustrate:

1) Importance of getting background information. Ask questions. Clarify objectives. Find out

how data were collected. Use common sense.
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2) Importance of plotting data clearly

3) Try more than one method.
4) Try to awvoid trouble. Examples in literature usually avoid mentioning problems, mistakes,
blind alleys, etc. — a pity! “Many true stories are tales of woe. But these are where the lessons
are to be learnt.” — Tony Greenfield. Being more positive, we learn from successes and failures.
5) Clear presentation of tables (as well as graphs) is important at all stages of a study, whether
looking at data, or collating and presenting results.

i) Give clear title;

ii) Round numbers as appropriate;

iii) Give row and column averages or totals where appropriate;

(
(
(
(iv) Transpose the whole table?;
(v) Re-order rows and/or columns?;

(vi) Clear spacing and layout;

(6) Must be able to improvise and cope with non-standard data. Use context and common-sense.
Example. Forecasting tyre sales. Legislation on minimum tread led to big increase in sales
before law came into effect.

How do we predict in this one-off situation, both before law is passed and afterwards.

— Simple (univariate) methods inappropriate

— Must take tyre life distribution into account to predict replacements (c.f. forecasting popula-
tion).

Example. Recent consultancy. Short series with one peculiar observation (outlier). Main
problem was what to do about this observation, NOT which forecasting method to choose.

More examples will be given in the course and some can be found in Section 5.5 and Appendix

D of ATS.
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