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ABSTRACT

Computing prediction intervals (P.I.s) is an important part of the forecasting process intended

s

i

to indicate the likely uncertainty in point forecasts. The commonest method of calculating P.I.

s to use theoretical formulae conditional on a best-fitting model. If a normality assumption is

t

o

used, it needs to be checked. Alternative computational procedures that are not so dependen

n a fitted model include the use of empirically based and resampling methods. Some so-

-

s

called approximate formulae should be avoided. P.I.s tend to be too narrow because out-of

ample forecast accuracy is often poorer than would be expected from within-sample fit,

i

particularly for P.I.s calculated conditional on a model fitted to past data. Reasons for this

nclude uncertainty about the model and a changing environment. Ways of overcoming these

m

problems include using a mixture of models with a Bayesian approach and using a forecasting

ethod that is designed to be robust to changes in the underlying model.

;

P

Keywords: Bayesian forecasting; Bootstrapping; Box-Jenkins method; Holt-Winters method

rediction intervals; Resampling
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P

INTRODUCTION

redictions are often expressed as single numbers, called point forecasts, which give no guidance as

t

d

to their likely accuracy. They may even be given with an unreasonably high number of significan

igits implying spurious accuracy! Now point forecasts sometimes appear adequate, as for example

r

u

when a sales manager requests a single ‘target’ figure for demand because he or she is unwilling o

nable to cope with the challenge posed by a prediction expressed as a range of numbers, called an

o

f

interval forecast. In fact the sales manager, whether he or she likes it or not, will typically have t

ace the potentially awkward questions raised by the twin, diametrically opposed risks involved in

o

l

deciding how much stock to manufacture. Too much may result in high inventory costs, while to

ittle may lead to unsatisfied demand and lost profits. Forecast users in other areas often face a

s

w

similar quandary and so most forecasters do realize the importance of providing interval forecasts a

ell as (or instead of) point forecasts so as to enable users to

(

(1) Assess future uncertainty,

2) Plan different strategies for the range of possible outcomes indicated by the interval forecast,

(

(3) Compare forecasts from different methods more thoroughly, and

4) Explore different scenarios based on different assumptions more carefully.

l

f

Before proceeding further, we must define more carefully what is meant by an interva

orecast. An interval forecast usually consists of an upper and a lower limit between which the

f

future value is expected to lie with a prescribed probability. The limits are sometimes called

orecast limits (Wei 1990) or prediction bounds (Brockwell & Davis 1991, p. 182), while the

(

interval is sometimes called a confidence interval (Granger & Newbold 1986) or a forecast region

Hyndman 1995). I prefer the more widely-used term prediction interval, as used by Abraham &

h

b

Ledolter (1983), Bowerman & O’Connell (1987), Chatfield (1996a), and Harvey (1989), bot

ecause it is more descriptive and because the term confidence interval is usually applied to interval

a

estimates for fixed but unknown parameters. In contrast, a prediction interval (henceforth

bbreviated P.I.) is an interval estimate for an (unknown) future value. As a future value can be

f

p

regarded as a random variable at the time the forecast is made, a P.I. involves a different sort o

robability statement from that implied by a confidence interval.

e

h

In this chapter, I restrict attention to computing a P.I. for a single observation at a single tim

orizon. I do not consider the more difficult problem of finding a simultaneous prediction region for

ra set of related future observations, either forecasts for a single variable at different horizons o
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t

s

forecasts for several variables at the same horizon. For example, it is common to want to forecas

ales for each month of the coming year, say, and then find a 95% P.I. for each value independently

e

o

of the rest. However, this tells us nothing about the overall probability that at least one futur

bservation will lie outside its P.I. This combined probability will be (much) greater than five per

2

cent and has to be evaluated using specialized techniques described by Lu
..

tkepohl (1991, Section

.2.3) and Ravishankar, Wu & Glaz (1991).

A

NOTATION

n observed time series, containing n observations, is denoted by x , x , . . . . , x . Suppose we1 2 n

d

v

wish to forecast the value of the series h steps ahead. This means we want to forecast the observe

alue at time (n+h). The integer h is called the lead time or forecasting horizon (h for horizon).

.The point forecast of the value at time (n+h) made using the data up to time n is denoted by x̂ (h)n

g

h

Note that it is essential to specify both the time at which a forecast is made and the forecastin

orizon. When the observed value later becomes available, we can calculate the corresponding

forecast error, denoted by e (h), byn

n n+h ne (h) = x − x̂ (h) . (1)

t

The notation for this forecast error, like that for the point forecast, specifies both the horizon and

he time period when the forecast was made.

S

MODELS AND METHODS

tatisticians customarily regard the data as being observations on an underlying model, which is a

,

t

mathematical representation of reality and is usually approximate rather than exact. In a model

he observation at time t, namely x , is regarded as being an observation on an underlying randomt

t s

f

variable, which is usually denoted by a capital letter, X , in contrast to the use of lower case letter

or observed data. A typical model is the first-order autoregressive model, denoted by AR(1), for

which

X = αX + ε (2)t t−1 t

t e

g

where α denotes a constant (with
�
α � < 1 for stationarity) and ε denotes the error at time t. Mor

enerally a model with additive errors can be represented by

X = µ + ε (3)t t t
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lwhere µ denotes the predictable part of the model. Engineers typically refer to µ as the signat t

a tnd ε as the noise, and I think this terminology can be helpful because the ‘error’ term in the

s

r

mathematical model is not really an error in the usual sense of the word. Statisticians sometime

efer to the error terms as the innovations or use the engineers terminology of noise. The signal in

t

v

Equation (3) could, for example, include a linear trend with time and/or linear multiples of pas

alues (called autoregressive terms) as in Equation (2). The noise could include measurement error

fand natural unpredictable variability. The {ε } are usually assumed to be a sequence ot

ε
2 h

w

independent normally distributed random variables with zero mean and constant variance σ , whic

e write as NID(0,σ ).

I

ε
2

draw a clear distinction between a forecasting method and a model. A forecasting method is

,

a

a rule or formula for computing a point forecast from the observed data. As such, it is not a model

lthough it may be based on a model. For example, exponential smoothing is a method that

t

r

computes a point forecast by forming a weighted average of the latest observation and the mos

ecent point forecast. It can be shown that this method is optimal (meaning that it gives minimum

mean-square error forecasts) for a particular type of model which can be written

X = X + ε + θε , (4)

a

t t−1 t t−1

nd which is customarily denoted as an ARIMA(0,1,1) model (Box, Jenkins & Reinsel 1994).

Thus exponential smoothing is based on a model but is not a model itself.

There is a rich variety of forecasting methods, and the choice among them depends on many

e

r

factors, such as background knowledge, the objectives, and the type of data. Given such a wid

ange of methods, it follows that a variety of approaches will be needed to compute P.I.s. It is

thelpful to categorize forecasting methods as (1) univariate, where x̂ (h) depends only on pasn

nv n n−1alues of the given series, namely x , x , . . . . , (2) multivariate, where x̂ (h) may also depend on

n

a

other explanatory variables, and (3) judgmental. It can also be helpful to distinguish betwee

utomatic methods, requiring no human intervention, and non-automatic methods.

y

m

A further useful distinction is between methods that involve fitting an ‘optimal’ probabilit

odel and those that do not: the latter perhaps more familiar to the operational researcher and the

e

fi

former to the statistician when it is usually possible to compute theoretical P.I.s conditional on th

tted model. However, the practitioner with a large number of series to forecast may decide to use

e

H

the same all-purpose procedure whatever the individual series look like, as for example when th

olt-Winters forecasting procedure is used for a group of series showing trend and seasonal
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ariation. The method does not depend explicitly on any probability model, and no model-

a

identification is involved. This means that forecasts need not be optimal for each individual series

nd it is not so easy to construct P.I.s.

In summary, a forecasting method (i.e., a rule for computing forecasts, such as exponential

,

s

smoothing) may or may not be developed from a model (a mathematical representation of reality

uch as an AR(1) model).

It is also useful to distinguish between the (observed) errors that arise from using a method

y

e

and the (theoretical) errors which form part of a model. The forecast errors in Equation (1), namel

(h), can be described as the observed out-of-sample forecast errors. They are not the same as the

e

n

rrors that form part of the mathematical representation of the model. For example, in Equations

(2) and (3), the ε are theoretical error terms. It is also helpful to understand the distinctiont

n e

o

between the observed out-of-sample forecast errors (the e (h)) and the observed within-sampl

ne-step-ahead ‘forecasting’ errors, namely [ x − x̂ (1) ] for t = 2,3, . . . ,n. When forecasts are

o

t t−1

btained by fitting a model and computing minimum mean-square-error forecasts from the model,

d

then the within-sample ‘forecast’ errors are the residuals from the fitted model, because they are the

ifferences between the observed and the fitted values. Unlike the out-of-sample errors, they are not

f

true ex-ante forecasting errors, because the model is typically determined by estimating parameters

rom all the data up to time n.

If one has found the correct model for the data, and if the model does not change, then one

t

might expect the out-of-sample forecast errors to have properties similar to both the residuals and

he true ‘error’ terms. In practice, these three types of error have rather different properties. First,

t

the out-of-sample forecast errors may be calculated for different horizons, and it can be shown that

hey tend to get larger as the horizon gets longer for nearly all methods and models, because the

e

o

errors at each time interval build up in a cumulative way. Thus it is only reasonable to compare th

ne-step-ahead out-of-sample forecast errors with the residuals. Second, the within-sample residuals

s

u

and the one-step-ahead out-of-sample forecast errors both depend on estimates of the parameter

sed in the forecasting process, rather than on the true values. Because of this, it can be shown that,

d

if a model has been fitted, then the (theoretical) error terms in the model will have properties

ifferent from both the (observed) residuals and the out-of-sample forecast errors. Third, the wrong

o

e

forecasting method or model may be chosen or the underlying model may change, and this helps t

xplain why the out-of-sample forecast errors are typically found to have (much) larger variance

than the residuals.
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G

SOME PROBLEMS

iven their importance, it is regrettable that most companies do not regularly produce P.I.s for their

v

internal forecasts (Dalrymple 1987), and that many economic predictions are still given as a single

alue (though my subjective impression is that this is slowly changing). Several reasons can be

p

suggested for the infrequent provision of interval forecasts and for a lack of trust in their calibration

roperties when they are calculated:

(1) The topic has been rather neglected in the statistical literature. The authors of textbooks on

s

a

time-series analysis and forecasting generally say surprisingly little about interval forecast

nd give little guidance on how to compute them, except perhaps for regression and Box-

j

Jenkins (ARIMA) models. Some relevant papers have appeared in statistical and forecasting

ournals, but they can be mathematically demanding, unhelpful, or even misleading or

r

l

wrong. I focus on the principles for computing P.I.s. and include a summary of my earlie

iterature review (Chatfield 1993) as well as some more recent research, including work on

(

the effects of model uncertainty on P.I.s (Chatfield 1996b).

2) No generally accepted method exists for calculating P.I.s except for forecasts calculated

e

r

conditional on a fitted probability model, for which the variance of forecast errors can b

eadily evaluated.

(3) Theoretical P.I.s are difficult or impossible to evaluate for many econometric models,

r

especially multivariate models that contain many equations or that depend on non-linear

elationships. In any case, when judgmental adjustment is used in the forecasting process

l

c

(e.g., to forecast exogenous variables or to compensate for anticipated changes in externa

onditions), it is not clear how one should make corresponding adjustments to interval

(

forecasts.

4) Analysts sometimes choose a forecasting method for a group of series (e.g. in inventory

,

s

control) by using domain knowledge and the common properties of the various series (e.g.

easonal or non-seasonal), with no attempt to find a probability model for each individual

m

series. Then it is not clear if P.I.s should be based on the model, if any, for which the

ethod is optimal. When a method is not based explicitly, or even implicitly, on a

(

probability model, it is unclear how to proceed.

5) Various ‘approximate’ procedures have been suggested for calculating P.I.s, but there are

justified doubts as to their validity.
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,(6) Researchers have developed some alternative computational methods for calculating P.I.s

called empirically based and resampling methods, that do not rely on exact knowledge of

p

the model, but their properties are not yet fully established and they have been little used in

ractice.

(7) Some software packages do not produce P.I.s at all, partly because of (1) to (4), while

e

t

others produce them for regression and ARIMA models only or use ‘approximate’ formula

hat are invalid.

(8) Empirical evidence suggests that P.I.s will tend to be too narrow on average, particularly for

m

methods based on theoretical formulae, though less so for empirically based and resampling

ethods.

Given all these problems, it is clear that further advice and research are needed to clarify the

S

situation.

OME GENERAL PRINCIPLES FOR COMPUTING P.I.s

g� The importance of P.I.s: It is usually important to supplement point forecasts by computin

interval forecasts.

Three reasons were given in the Introduction to justify this principle, which some readers may find

e

u

self-evident. Of particular importance is the general requirement to provide a measure of th

ncertainty associated with any forecast. As corollaries, it follows that

d

(

(1) Forecasters must have the skills to enable them to compute interval forecasts, an

2) More attention should be given to providing the necessary methodology in the forecasting

�

literature.

The availability of theoretical formulae: Theoretical formulae are available for computing

l

m

P.I.s for various classes of time-series model, including regression, ARIMA, and structura

odels, and also for some forecasting methods (as opposed to models), including various

T

forms of exponential smoothing.

his principle is the source of most P.I.s calculated in practice. The formulae are essentially of the

same general form, namely that a 100(1-α)% P.I. for the value h steps ahead is given by
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x̂ (h) ± z Var[e (h)] (5)n α/2 n√�����������������

w n nhere appropriate formula for x̂ (h) and for Var[e (h)] are found for the method or model which

dis deemed appropriate and z denotes the appropriate (two-tailed) percentage point of a standarα/2

normal distribution.

The interval is symmetric about x̂ (h), so that Equation (5) effectively assumes that the point

f

n

orecast is unbiased. The usual statistic for assessing the uncertainty in forecasts of a single

tvariable is the expected mean square prediction error (abbreviated PMSE), namely E[e (h) ] (bun
2

e

p

note that scale-independent statistics, such as the mean absolute prediction error (MAPE), will b

referred for comparing the accuracy of forecasts made for different variables, especially when

,

E

measured on different scales (Armstrong & Collopy 1992). For an unbiased forecast

[e (h) ] = Var [e (h) ] so that the PMSE is equal to the latter expression. Forecasters generallyn
2

n

n ]

a

assume unbiasedness (explicitly or implicitly) and work with Equation (5), which takes Var [e (h)

s the PMSE. Thus, to apply Equation (5), the forecaster needs to be able to compute Var [e (h) ].n

,

s

Formulae are available for doing this for various classes of model, including regression, ARIMA

tructural (state-space), and VARMA models, and Chatfield (1993, Section 4.2) gives the relevant

s

references. However, theoretical formulae are not available for certain types of model, notably

imultaneous-equation econometric models, especially when non-linearities are involved or when

g

m

point forecasts are judgmentally adjusted. They are also not immediately available for forecastin

ethods that do not depend explicitly on a probability model (but see below).

dIn fact, the formulae for Var [e (h) ] typically given in the literature are what might be callen

‘true-model’ PMSEs, because they assume that there is a true, known model and that the model

t

parameters are known exactly. In practice, the parameters have to be estimated, and it is customary

o substitute estimated values in the theoretical formulae. Does this matter? Chatfield (1993,

u

Section 3) discusses this technical issue in detail. It can be shown that the effect of parameter

ncertainty on the coverage of P.I.s gets smaller as the sample size gets larger (as would intuitively

s

l

be expected; a mathematician would say that the effect is of order 1/n.). Moreover, this effect i

ikely to be of a smaller order of magnitude than some other effects, notably the effects of

l

uncertainty about the structure of the model and the effects of errors and outliers, which I discuss

ater. However for sample sizes smaller than about 50, the effect of parameter uncertainty could be

.

N

non-trivial, especially for models with many parameters used to predict at longer lead times

evertheless, given all other uncertainties, it is usually adequate to compute P.I.s using equation (5)
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.by substituting parameter estimates into the true-model PMSE to get Var [e (h) ]n

n s

c

The above discussion concerns the use of theoretical formulae for Var[e (h)] for variou

lasses of model. A natural follow-up question is whether theoretical formulae can also be found

s

s

for some forecasting methods (as opposed to models). As noted earlier, a forecasting method i

ometimes selected without applying any formal model-identification procedure, although one

e

q

should certainly choose a method appropriate to any trend or seasonality that is present. Th

uestion then arises as to whether P.I.s should be calculated by some computational procedure that

m

does not depend on a model or by assuming that the method is optimal in the sense that the true

odel is the one for which the selected forecasting method is optimal.

r

s

For example exponential smoothing (ES) can be used for series showing no obvious trend o

easonality without necessarily trying to identify the underlying model. Now ES is known to be

r

s

optimal for an ARIMA(0,1,1) model (Equation (4) above) and also for a particular structural (o

tate space) model, and both of these models lead to the same ‘true-model’ PMSE formula (Box,

Jenkins & Reinsel 1994, p.153; Harrison 1967)

Var[e (h)] = [1 + (h−1)α ]σ (6)n
2

e
2

e
2

n -

s

where α denotes the smoothing parameter and σ =Var[e (1)] denotes the variance of the one

tep-ahead forecast errors. Should this formula then be used in conjunction with Equation (5) for

E

ES even though a model has not been formally identified? I suggest that it is reasonable to use

quation (6) provided that the observed one-step-ahead forecast errors show no obvious

m

autocorrelation and provided that no other obvious features of the data (e.g., trend) need to be

odeled. However, there are some alternative P.I. formulae for ES that should be disregarded

because they are based on inappropriate models (Chatfield 1993, Section 4.3).

It is possible to compute P.I.s for some methods without recourse to any model (Chatfield

d

e

1993, Section 4.2). If we assume that the method is optimal in the sense that the one-step-ahea

rrors are uncorrelated, then it may be possible to express e (h) in terms of the intervening one-n

ns ntep-ahead errors and evaluate Var[e (h)] in terms of Var[e (1)]. Then Equation (5) can still be

-

W

used. Yar & Chatfield (1990) and Chatfield & Yar (1991) have applied this approach to the Holt

inters method with additive and multiplicative seasonality respectively. The results in the

emultiplicative case are of particular interest because Var [e (h)] does not necessarily increasn

e

e

monotonically with h. Rather P.I.s tend to be wider near a seasonal peak as might intuitively b

xpected. This sort of behavior is typical of non-linear models (Tong 1990, Chapter 6) and arises
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ecause forecasts from multiplicative Holt-Winters are not a linear combination of past

observations.

The other obvious feature of Equation (5) is that it involves the percentage point of a standard

s

l

normal distribution and so effectively assumes that the forecast errors are normally distributed. Thi

eads on to an important corollary:

Checking normality: When using a symmetric P.I. that utilizes normal percentage points (as in

T

Equation (5)), check that the normality assumption is at least approximately true.

he analyst will typically be concerned about two main types of departure from normality in the

e

c

distribution of the error terms. They are (a) asymmetry and (b) heavy tails. Heavy tails may b

aused, for example, by occasional outliers, and this problem can be tackled by modifying Equation

s(5) by changing z to the appropriate percentage point of an alternative error distribution that iα/2

found either by using the empirical distribution of the residuals or by trying an alternative

s

h

theoretical distribution with heavier tails than the normal. As regards asymmetry, some researcher

ave found evidence of its presence (Williams & Goodman 1971; Makridakis et al., 1987). This is

(

especially true (Armstrong & Collopy 1997) for annual economic variables that are non-negative

i.e., have a natural zero) and show steady growth so that it is the percentage change that is of

r

particular interest. Then typically one finds that the residuals from an additive model fitted to the

aw data are not symmetric but are skewed to the right.

y

t

Transformations. An asymmetric error distribution can usually be made more symmetric b

ransforming the data in some way, most often by taking logarithms. If a model is formulated for

v

the logs and then used to compute point and interval forecasts for future values of the logged

ariable, then these will need to be transformed back to the original units to give forecasts of what

t

f

is really required (Chatfield 1993, Section 4.8). Note that the so-called naive retransformed poin

orecast will not in general be unbiased. In other words, if the analyst takes logs of a variable, finds

t

f

point forecasts of the logs and assumes they are unbiased, and then takes antilogs to get poin

orecasts of the original variable, then the latter forecasts will no longer be unbiased. It is possible

r

t

to correct for this, but the correction is rarely used. Fortunately P.I.s have nicer properties unde

ransformation in that the naive retransformed P.I. will have the correct prescribed probability. What

a

does this mean? Suppose the analyst finds a 95% P.I. for the logarithm of the variable. If one takes

ntilogs of the upper and lower limits of this P.I. to get the retransformed P.I. for the original

lvariable, then it can easily be shown that there will still be a 95% probability that this interval wil
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e

a

include the future value of the original variable. This retransformed P.I. will generally b

symmetric, as it should be to reflect the asymmetry in the errors.

-

l

Non-linear models. The normality assumption also makes Equation (5) unsuitable for many non

inear models where it can be shown that the predictive distribution is generally not normal (e.g.

s

Hyndman 1995). It could for example have two peaks (i.e. be bimodal). In extreme cases, a

ensible P.I. could even comprise two (or more) disjoint intervals and then the term forecast region

l

e

seems more appropriate than P.I. Unfortunately it can be difficult to evaluate conditiona

xpectations more than one step ahead for non-linear models. Moreover the width of P.I.s need not

e

necessarily increase with lead time for such models. This means that there may be no alternative to

valuating the complete predictive distribution (i.e., the complete distribution of future values that

d

might result) at different lead times for a non-linear model even though this may be computationally

emanding.

Conditional P.I.s. A more subtle point is that, even for a linear model with normally distributed

n

g

errors, the one-step-ahead forecast error distribution, conditional on the latest value, will not i

eneral be exactly normal when model parameters are estimated from the same data used to

r

l

compute forecasts (Chatfield 1993, Section 4.1). The correction to the normal approximation fo

inear models seems likely to be of a smaller order of magnitude in general than other corrections,

although some authors (e.g., Harvey 1989, p.32) do suggest replacing z in Equation (5) by theα/2

s

i

appropriate percentage point of a t-distribution when model parameters are estimated. However, thi

s not based on general theory and in any case makes little difference except for very short series

)

a

(e.g., less than about 20 observations) where other effects (e.g., model and parameter uncertainty

re likely to be more serious anyway.

For non-linear models, such as GARCH models, the difference between conditional and

a

f

unconditional P.I.s can be much more substantial, and Christoffersen (1998) has proposed

ramework for assessing conditional forecast evaluation. The basic idea is that P.I.s should be

S

relatively narrow in times of stability but wider when behavior is more volatile.

ummary. Equation (5) is widely used for computing P.I.s for various models and methods, but

,

a

should preferably be used only after checking that the underlying assumptions, especially normality

re at least reasonably valid.
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e� Beware so-called approximate formulae: It is generally unwise to base P.I.s on one of th

various so-called approximate formulae that have been suggested for calculating Var [e (h)].n

d

a

When theoretical formulae are not available, (and even when they are), some writers have suggeste

variety of simplistic ‘approximate’ formulae for calculating Var [e (h)] for use with Equation (5).n

n

4

This is unfortunate given that the approximations are often (very) poor as Chatfield (1993, Sectio

.4) demonstrates. The best known example is the general ‘approximate’ formula that

)Var [e (h)] = h σ (7n e
2

w e
2

nhere σ = Var [e (1)] denotes the variance of the one-step-ahead forecast errors. In fact

s

Equation (7) is true only for a random walk model; for other methods and models it can be

eriously in error and should not be used. When theoretical formulae are not available, it will still

w

usually be possible to use empirically based or resampling methods and so there is no real reason

hy the ‘approximate’ formulae should ever be used.

r� Availability of computational alternatives: When using a model of doubtful validity or fo

which the theoretical PMSE formula is not available, be aware that alternative

:

(

computationally intensive approaches to the construction of P.I.s are available. They include

1) empirically based P.I.s that rely on the properties of the observed distribution of residuals

m

(rather than on an assumption that the model is true), and (2) simulation and resampling

ethods, which involve generating possible future paths for a series, either by simulating

n

s

future random variables from the fitted model or by resampling the distribution of ‘errors’ i

ome way.

These methods generally require fewer (or even no) assumptions about the underlying model, have

much promise, and are starting to be used.

Chatfield (1993, Section 4.5) reviews the use of empirically based P.I.s. The simplest type of

‘

procedure involves applying the forecasting method to past data, finding the within-sample

forecast’ errors (i.e., the residuals) at 1, 2, 3, ... steps ahead for forecasts made from all available

t

s

time origins in the period of fit, and then finding the variance of these errors at each lead time. Le

denote the standard deviation of the h-steps-ahead errors. Then an approximate empiricale ,h

n+h n α 2 e ,h/ y

w

100 (1−α)% P.I. for X is given by x̂ (h) ± z s . The approach often works reasonabl

ell and gives results comparable to theoretical formulae when the latter are available. However,

the values of s tend to be unreliable, especially for small n and large h, and, even with ae ,h
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t

m

reasonably long series, one may find that the values do not increase monotonically with h. Thus i

ay be wise to smooth the values in some way, perhaps by averaging them over adjacent values of

t

t

h, though I am not aware that advice on this has actually appeared in print. Another problem is tha

he values of s are based on model-fitting errors rather than on post-sample forecast errors. There

i

e ,h

s empirical evidence that the characteristics of the distributions of these two types of error are

e

(

generally not the same. In particular, out-of-sample forecast errors tend to have larger varianc

e.g., Makridakis & Winkler 1989; Chatfield 1996b). Thus P.I.s produced in this way tend to be too

narrow (as are theoretical formulae).

In an earlier related proposal, Williams & Goodman (1971) suggested splitting the past data

p

into two parts, fitting the method or model to the first part and making predictions about the second

art. The resulting prediction errors are more like true forecast errors. One then refits the model

s

with one additional observation in the first part and one less in the second part; and so on. For

ome monthly data on numbers of business telephone lines in service, Williams and Goodman

n

a

found that the distribution of forecast errors tended to approximate a gamma distribution rather tha

normal distribution. They constructed P.I.s using the percentage points of the empirical

m

distribution, thereby avoiding any distributional assumptions, and obtained promising results. The

ethod has been little used in practice, presumably because the heavy computational demands were

beyond the resources of the early 1970s, but is now due for reassessment.

Simulation and resampling methods provide an alternative to empirically based P.I.s. Given a

a

probability time-series model, it is possible to simulate both past and future behavior by generating

n appropriate series of random error terms from some assumed parametric distribution (e.g. a

s

p

normal distribution) and hence constructing a sequence of possible past and future values. Thi

rocess can be repeated many times, and this makes it possible to evaluate P.I.s at different

v

horizons by simply finding the interval within which the required percentage of simulated future

alues lies. Alternatively, instead of sampling the errors from an assumed parametric distribution, it

c

is possible to sample from the empirical distribution of past residuals (the fitted errors). This is

alled resampling (or bootstrapping in the statistical literature) and is a distribution-free approach.

i

Again the idea is to generate a sequence of possible future values and find appropriate P.I.s by

nspection. Chatfield (1993, Section 4.6) reviews the literature in this area. Veall (1989) suggests

a

that resampling methods are particularly helpful in dealing with the shortcomings of asymptotic and

nalytic approaches in econometrics, especially when models are very complex, or non-linear or

data sets are small.
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Statisticians generally use the term bootstrapping in quite a different way from that used by

f

i

judgmental researchers, to describe the process of taking a random sample of size n from a set o

ndependent observations of size n where observations are taken with replacement. This means that

s

some observations from the original recorded sample will occur more than once in the bootstrap

ample and some not at all. In a time-series context, this type of sampling would make no sense

s

because the observations are not independent but are ordered through time. This explains why

tatisticians usually bootstrap time-series data by resampling the fitted errors (which are hopefully

t

i

close to independence) rather than the actual observations, but this does not disguise the fact that i

s generally more difficult to resample correlated data, such as time series, than to resample

e

d

independent observations. Furthermore, resampling fitted errors makes the procedure mor

ependent on the fitted model. Several writers (e.g., Thombs & Schucany 1990) give much more

.

M

information as to how to carry out resampling for time-series data and I do not give details here

cCullough (1994; 1996) describes some recent work on bootstrapping autoregressive and multiple

.

S

regression models. While it is very much an ‘in’ method, bootstrapping does not always work

adly practitioners tend to suppress poor results when they happen. Meade & Islam (1995) report

m

one example where bootstrapping gave poor results in regard to finding P.I.s for growth curve

odels. This is a tricky problem, largely neglected in the literature, because a model such as a

e

e

Gompertz curve is non-linear in the parameters and in addition it is not obvious how to specify th

rror structure. Meade & Islam (1995, especially p. 427) investigate three possible methods for

	

computing growth curve P.I.s and find those based on bootstrapping are "far too narrow".

Consider a Bayesian approach: A Bayesian approach may make it possible to find the

l

f

complete predictive distribution for a future value and hence compute Bayesian interva

orecasts. The Bayesian approach may also make it feasible to use a mixture of models, rather

B

than a single model.

ayesian methods have been attractive to some statisticians for many years because of the

e

t

philosophical coherence of the general approach, but they have often proved difficult or impossibl

o implement in practice. However, recent advances in computational methods have meant that

l

w

many problems can now be solved with a Bayesian approach, albeit with quite extensive numerica

ork in most cases. In forecasting, the Bayesian multi-period ahead predictive density does not

a

have a convenient closed form for many models, and so Bayesian statisticians will need to consider

lternatives. Some sort of approximation may be possible to compute interval forecasts (Thompson
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Miller 1986, Section 3), or it may be possible to simulate the predictive distribution rather than

o

d

try to obtain or approximate its analytic form. The phrase ‘Bayesian forecasting’ is often used t

escribe a particular approach based on a class of models called dynamic linear models (West &

Harrison 1997). Chatfield (1993, Section 4.7) gives a brief review of the literature up to 1993.

A Bayesian approach may also seem natural when the analyst decides to rely, not on a single

f

m

‘best’ model (which may be wrongly identified or may change through time), but on a mixture o

odels. It is well known that combining forecasts from different sources generally gives more

t

accurate point forecasts on average (Clemen 1989) than any single point forecast. Unfortunately

here is no simple analytic way of computing the corresponding P.I.s to go with a combined

,

a

forecast of this type, although it may be possible to use some sort of resampling method. However

Bayesian formulation may enable the analyst to compute P.I.s for a combined forecast from a set

B

of models that appear to be plausible for a given set of data. To do this, one uses a technique called

ayesian Model Averaging (Draper 1995) which is too large a topic to cover here. Draper’s (1995)

t

Example 6.1 is particularly instructive in motivating the use of model averaging by demonstrating

hat conditioning on a single model can seriously underestimate the effect of model uncertainty. He

d

assessed 10 possible econometric models that were proposed for predicting the price of oil from

ata up to 1980. The point and interval forecasts of the price in 1990 produced by the different

.

A

models were often very different, but none of the intervals included the actual value which resulted

model uncertainty audit suggested that only about 20% of the overall predictive variance could be

t

attributed to uncertainty about the future conditional on the selected model and yet that is normally

he only uncertainty that the analyst takes into account.

y

t

Although computational advances have been impressive, Bayesian methods are still not eas

o implement. Recently analysts have begun to explore the use of a complex general-purpose

,simulation tool called Markov Chain Monte Carlo (abbreviated MCMC or MC ) methods (e.g.2

a

m

Barnett, Kohn & Sheather, 1996; 1997) and the use of MCMC may enable the analyst to select

odel, estimate parameters, and detect outliers all at the same time, yielding P.I.s that allow for

a

model uncertainty and parameter estimation error. I have no practical experience with this procedure

nd will not attempt to comment on its potential.


 Judgmental P.I.s: Judgment may be used to produce P.I.s, but empirical evidence suggests

that they will generally be too narrow.
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n

b

Generally speaking, analysts are overconfident about their ability in judgmental forecasting and i

ehavioral decision theory (Armstrong 1985, pp. 138-145; O’Connor & Lawrence, 1989; 1992).

"

Recently Wright, Lawrence & Collopy (1996) summarized past empirical findings by saying that

the evidence on the accuracy and calibration of judgmental P.I.s is not very encouraging". This is

I

w

disappointing. Because the topic is outside the scope of this chapter with its quantitative emphasis,

ill not pursue the topic here, but refer the reader to Arkes (1998).

y

a

Choosing a method to compute P.I.s: Choosing an appropriate method for computing P.I.s ma

ppear difficult after reading about the many different possible approaches. In practice, the choice is

o

often determined by the choice of forecasting method, which depends in turn on such factors as the

bjectives and type of data.

Theoretical P.I. formulae are available for many models. When the analyst chooses a

a

forecasting method based on a particular model, the theoretical formulae are easy to implement and

re widely used. However, such formulae are not available for some complex or non-linear models.

p

Moreover the formulae are appropriate only if the fitted model is correctly identified, and the

ossibility that the model may be misspecified or may change in the forecast period is a serious

r

e

problem. This is why it is essential to carry out appropriate diagnostic checks on the model, fo

xample, to check that the residuals (the one-step-ahead forecast errors) are approximately

uncorrelated.

When there are many series to forecast, the analyst usually chooses a simple automatic method

n

t

and will then also need a simple method for computing P.I.s. Formulae based on the assumptio

hat the method is optimal are widely used, but, as for model-based procedures, it is important to

carry out appropriate diagnostic checks to make sure that the method really is sensible.

When a forecasting method or model is chosen for which the PMSE is not available or for

e

which there are doubts about the underlying assumptions (if any), it may be necessary to use

mpirically based or resampling methods, which are nearly always available and which require

t

p

fewer assumptions. They can be computationally demanding (especially resampling) but have grea

romise, and should arguably be used more than they are.

I

� P.I.s are generally too narrow on average.

n practice, analysts typically find, for example, that more than five percent of future observations

will fall outside 95% P.I.s on average, especially when calculated using Equation (5) in genuine
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d

s

out-of-sample mode. Chatfield (1993, Section 5) reviews the empirical evidence for this an

uggests the following possible reasons, not all of which need apply in any particular situation.

(

They include

1) The error distribution may not be normal. It may be asymmetric or heavy-tailed (perhaps due

t

‘

to occasional outliers); there may also be errors in the data that will contaminate the apparen

error’ distribution;

(2) Multivariate forecasts may require forecasts of exogenous variables;

;

(

(3) The ‘true’ model (if one exists) may not have been identified correctly

4) Even when the true model is correctly identified, the model parameters are unknown and have

(

to be estimated;

5) The underlying model may change through time, during the period of fit or in the future.

-

n

I discussed problem (1) earlier in regard to the ‘Checking Normality’ corollary. If non

ormality is present, one can use an alternative parametric distribution for the errors or rely on the

r

d

empirical distribution of the residuals. Outliers and errors will not only affect the perceived erro

istribution but also complicate model identification. Moreover, when an outlier is near the forecast

a

origin, it is well known that it can have a disproportionate effect on point forecasts and on

ssociated P.I.s (Ledolter 1989),

Problem (2) partly explains why multivariate forecasts need not be as accurate as univariate

forecasts, contrary to many people’s intuition (Ashley 1988).

As regards problem (3), it is always tempting to search for the ‘true’ model by (over)fitting

e

s

the data with more and more complicated models to improve the fit. However, empirical evidenc

uggests that more complicated models, which give a better fit, do not necessarily give better out-

m

of-sample forecasts. This has certainly been my experience using Box-Jenkins and neural network

odels (Faraway & Chatfield, 1998). The analyst effectively admits ignorance as to what the ‘true’

.

I

model is when he/she searches for the best-fitting model over what may be a wide class of models

t is therefore illogical that analysts then typically ignore model uncertainty and make forecasts as if

r

e

the fitted model were known to be true in the first place (Chatfield 1996b). It is well known, fo

xample, that (a) least-squares theory does not apply when the same data are used to both

s

b

formulate and fit a model as typically happens in time-series analysis, and (b) when a model ha

een selected as the best-fitting model, the resulting parameter estimates will be biased and the fit

will appear to be better than it really is. Picard & Cook (1984) call this the optimism principle.
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When formulating a model, the use of appropriate diagnostic checks seems likely to lead to a

-

J

fitted model that is at least a good approximation. Model checking is an integral part of the Box

enkins model-identification process (Box, Jenkins & Reinsel 1994, Chapter 8) and has come to be

t

d

part of time-series modelling more generally. Even when using a forecasting method that does no

epend explicitly on a probability model, one should still make checks on the one-step-ahead

forecast errors to ensure, for example, that they are approximately uncorrelated.

Problem (4) can sometimes be dealt with by using PMSE formulae incorporating correction

s

i

terms for parameter uncertainty. However the corrections are typically of order 1/n and of les

mportance than other factors (except perhaps for short series).

g

s

As regards (5), a model may change through time either because of a slowly changin

tructure or because of a sudden shift or turning point, such as the sudden changes to many

f

c

economic variables that resulted from the 1973 oil crisis and the 1990 Gulf war. The prediction o

hange points is a topic of much current interest. It is notoriously difficult to do; Makridakis (1988,

e

p. 479) asserts that "empirical evidence has shown that predicting cyclical turning points is

xtremely difficult or impossible".

These reasons help to explain why post-sample forecast errors tend to have larger variance

.

C

than model-fitting errors as found empirically, for example, by Makridakis & Winkler (1989)

hatfield (1996b, Example 2) provides a recent demonstration adapted from the results of Faraway

e

d

& Chatfield (1998), who fitted various neural networks to a set of data usually called the airlin

ata. They found that the standard deviation of the one-step-ahead prediction errors in the test set

t

s

(out-of-sample) was typically about twice the corresponding value in the training set (the fi

ample), but this ratio was even larger for more complicated models (with more parameters) which

gave a better fit but poorer out-of-sample performance.

Various modifications to Equation (5) have been suggested so as to make P.I.s realistically

e

t

wide (Gardner 1988). However, for a 95% probability, they may become so embarassingly wid

hat they are of little practical use other than to indicate the high degree of future uncertainty.

c

Granger (1996) suggest using 50%, rather than 95%, P.I.s because this gives intervals that are better

alibrated in regard to their robustness to outliers and to departures from model assumptions. Such

e

i

intervals will be narrower but imply that a future value has only a 50% chance of lying inside th

nterval. This seems undesirable. So what should be done?
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espite the above problems, I generally prefer, on grounds of simplicity, to use a theoretical

i

formula that incorporates a normality assumption, as in Equation (5), provided that such a formula

s available. As a compromise, I would use 90% (or perhaps 80%) intervals, rather than 95% (or

s

50%) intervals, to avoid ‘tail’ problems. When a series is reasonably well-behaved, this approach

eems to work well enough. I also recommend stating explicitly that the use of Equation (5)

a

assumes (1) the future is like the past with all the dangers this entails, and (2) the errors are

pproximately symmetric (if not, then a log transformation may be necessary). Alternative

e

c

approaches may give somewhat better calibration in general but are generally much mor

omplicated and not necessarily worth the extra effort. Major problems with Equation (5) generally

g

p

arise because of a sudden change in the underlying structure, and then no method of computin

oint or interval forecasts is likely to be successful.

Whatever checks are made and whatever precautions are taken, it is still impossible to be

e

p

certain that one has fitted the correct model or to rule out the possibility of structural change in th

resent or the future. Chatfield (1993, Section 7) gives one example that illustrates the overriding

g

a

importance of good model identification. In this example, the point forecasts for the variable bein

nalysed were generally poor because of a large, and perhaps unforeseeable, increase towards the

.

H

end of the data. Two models were fitted to the same data. Both were plausible in terms of their fit

owever the P.I.s for the non-stationary ARIMA(1,1,0) process were much wider than those for the

,

e

alternative stationary AR(2) process. Analysts sometimes see wide P.I.s as indicating ‘failure’

ither to fit the right model or to get a usable interval, but here the wider P.I.s resulting from the

a

n

non-stationary process were more realistic in allowing for higher uncertainty. Clearly getting

arrower interval is not necessarily better. The difference between the widths of the P.I.s from the

e

s

two models is much larger than that resulting from parameter uncertainty, and helps emphasize th

pecial importance of model identification, particularly in regard to deciding whether the data are

stationary or not.

Given the difficulty of identifying the ‘true’ model, even if there is one, the analyst should

s

n

consider using a mixture of models, rather than a single model, or use a forecasting method that i

ot model based but is deliberately designed to be adaptive and robust. Researchers have done

a

much work on such methods, exemplified by some successful results using the Kalman filtering

pproach based on state-space models.
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T

IMPLICATIONS FOR PRACTITIONERS

he computation of interval forecasts can be of vital importance in planning and decision making.

g

A variety of approaches to computing P.I.s are available, and I give some general principles to

uide the practitioner in deciding which approach to use and how.

n

a

A theoretically satisfying way of computing P.I.s is to formulate a model that provides a

dequate approximation to the given time series data, to evaluate the resulting prediction mean

a

c

square error (PMSE), and then to use Equation (5). Although it may be possible to incorporate

orrection term in the PMSE to allow for parameter uncertainty, this is usually of order 1/n and is

u

often small compared with other uncertainties. Thus it is usually omitted (rightly or wrongly). By

sing a theoretical formula based on a model, one assumes that there is a true model and that it has

s

been correctly identified. This identification must be correct not only in regard to the primary

tructure of the model, as for example which lagged variables are to be incorporated in an

t

t

autoregressive model, but also in regard to the (secondary) error assumptions, as for example tha

he errors are normally distributed. When theoretical formulae are not available or there are doubts

a

about model assumptions, the use of empirically based or resampling methods should be considered

s a general-purpose alternative.

The practitioner should bear in mind the distinction between a forecasting method (an

f

r

algorithm for computing a forecast) and a forecasting model (a mathematical representation o

eality). A method may or may not depend explicitly or implicitly on a model. Thus for large

t

groups of series, practitioners sometimes choose a forecasting method to use with all the series in

he group. Then, for simplicity, P.I. formulae are usually based on the model for which the method

e

o

is optimal, but the decision to do so should be supported by carrying out appropriate checks on th

ne-step-ahead forecasting errors, for example, to ensure that they are approximately uncorrelated.

,

b

Perhaps my main message in this chapter is that the analyst should normally compute P.I.s

ut that he or she should not trust the results blindly. P.I.s tend to be too narrow in practice for a

t

variety of reasons, not all of which can be foreseen. There is no general method for dealing with

his. I prefer to compute P.I.s based on the usual assumptions but to spell out these assumptions

n

clearly for the forecast user. For example, I would explicitly state that errors are assumed to be

ormally distributed and that the fitted model has been identified correctly. As such assumptions

m

are hard to verify or may not be true, all comparisons of forecasting methods and models should be

ade on the basis of out-of-sample forecasts rather than on measures of fit.
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e need more research on empirically based and resampling methods to give theoretical and

d

m

practical guidance to forecasters. In particular, for an empirically based approach, we need to fin

ethods for smoothing the values of the h-steps-ahead forecast error standard deviations, s . We

also need clearer guidance on how to bootstrap (correlated) time series data.

e ,h

Given that P.I.s are generally too narrow, we need more empirical evidence to see how this

o

effect is related to the type of data (monthly, quarterly or annual) and to the context (e.g., presence

r absence of domain knowledge). We need more research to see how P.I.s constructed conditional

a

on a ‘best-fit’ model can be widened to allow for model uncertainty. Out-of-sample forecasting

ccuracy is typically much worse than in-sample fit, and we need more empirical evidence to

e

e

describe such differences. At the same time, we need some general theoretical guidance on th

ffects of model uncertainty if possible.

We need more empirical guidance on the form of the distribution of errors to see what error

-

n

assumptions are sensible in general and when appropriate action may be needed to cope with non

ormality. For example, it would be helpful to know what sort of data are typically non-normal

and whether the resulting problems can be overcome by taking logs of the data.

Finally, we need to investigate further the possibility of using a mixture of models, perhaps

via Bayesian model averaging, rather than relying on a single model.
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