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es, University of BathClaverton Down, Bath BA2 7AY, U.K.February 4, 20021 Introdu
tionThis set of le
ture notes provides an introdu
tion to the numeri
al solution of bifur
ation prob-lems. The theory is given for �nite dimensional problems { so we shall require only matrixtheory, �nite dimensional 
al
ulus, et
. Only the basi
 prin
iples for three of the most 
ommonbifur
ations will be dis
ussed, but the hope is that after reading these notes a student should beable to ta
kle the original journal papers. Almost all the results extend to in�nite dimensionaloperators de�ned in an appropriate setting, e.g. Bana
h or Hilbert Spa
es.There are many books on bifur
ation theory { for example Chow & Hale [2℄ gives an all-round treatment, Vanderbauwhede [48℄ gives an early a

ount of bifur
ation in the presen
e ofsymmetries, and the important books by Golubitsky & S
hae�er [9℄, and Golubitsky, Stewart& S
hae�er [10℄ look at multiparameter bifur
ation problems using singularity theory. An early
onferen
e pro
eedings is Rabinowitz [37℄, whi
h 
ontains one of the �rst papers on the numeri
alanalysis (as 
ompared with numeri
al methods) for bifur
ation problems written by H. B. Keller[25℄. As might be expe
ted, early books about the numeri
al analysis of bifur
ations were
onferen
e pro
eedings, see Mittelmann & Weber [32℄, K�upper et.al. [28℄, K�upper et.al. [29℄,Roose et.al.[40℄ and Seydel et.al. [46℄.H.B. Keller's book [26℄ is a published version of le
tures on Numeri
al Methods in Bifur
ationProblems delivered at the Indian Institute of S
ien
e, Bangalore. Rheinboldt's book [39℄ is a
olle
tion of his papers and also gives information and listing of the 
ode PITCON for numeri
al
ontinuation of parameter dependent nonlinear problems. The 
ode AUTO, developed by Doedel1



[7℄, but with re
ent extensions by several others, is now the leading pie
e of software for nonlinearsystems, and 
an handle steady and time dependent problems, and dis
retized boundary valueproblems. Seydel [45℄ 
ontains dis
ussion of numeri
al methods and many interesting examples.A 
omprehensive treatment, in
luding a full dis
ussion of numeri
al methods using singularitytheory, is in the re
ent book by Govaerts [13℄. Beyn [1℄ gives a survey on numeri
al methods fordynami
al systems, in
luding methods for homo
lini
 and hetero
lini
 orbits. In fa
t, AUTOnow has an option to 
ompute and follow paths of these orbits.The plan of these notes is as follows. Se
tion 2 
ontains three generi
 examples, namely afold bifur
ation, a Hopf bifur
ation, and bifur
ation from the trivial solution. Se
tion 3 
ontainsan a

ount of Newton's method and the Impli
it Fun
tion Theorem. Se
tion 4 dis
usses theideas behind Keller's pseudo-ar
length numeri
al 
ontinuation algorithm [25℄. Se
tions 5, 6 and8 provide an introdu
tion to the numeri
al analysis of the three types of bifur
ation phenomenaintrodu
ed in Se
tion 2. Se
tion 7 dis
usses bifur
ation theory in nonlinear ODEs using resultsin Se
tions 5 and 6.There are many phenomena not 
onsidered here, for example, bifur
ation in the presen
eof symmetry (see for example [51℄ and the books [9℄, [10℄, [48℄) and high order singularities inmultiparameter problems (see [9℄, [10℄, [13℄, [23℄).2 ExamplesBifur
ation is the study of nonlinear problems with parameters, with the main interest beingthe determination of 
hanges in solution behaviour as a parameter varies. In parti
ular, interest
entres on how to dete
t, 
al
ulate and 
lassify points where there is a 
hange in the typeof solution of the nonlinear problem. This se
tion 
ontains some examples of some typi
albifur
ation phenomena.In these notes we shall 
onsider systems of the formF (x; �) = 0 (2.1)where F : Rn+1 ! Rn , x 2 Rn is the state variable, and � 2 R is a parameter. We shall studythe behaviour of x as � varies, in fa
t, loosely speaking, � may be thought of as the independentvariable and x as the dependent variable.Problems like (2.1) arise when studying autonomous systems of ordinary di�erential equa-2
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Figure 2.1:tions dxdt = F (x; �); x(0) given, x(t) 2 Rn . (2.2)Steady states (equilibria) of (2.2) are given by dxdt = 0, and hen
e satisfy (2.1). An importanttopi
 in the study of systems like (2.2) is the analysis of how the solutions 
hange as � variesand the determination of 
hanges in stability. Often a �rst step is to �nd the steady states bysolving (2.1) for a range of � values and then determine any 
hanges in stability of these steadystates. This theme is des
ribed in the �rst example.Example 2.1 Consider f : R2 ! R de�ned byf(x; �) = �� x2 = 0:For � < 0 there are no real solutions; for � = 0, x = 0 (twi
e); and for � > 0 there are twosolutions, x = �p�. The steady solutions are shown by the solid line in �gure 2.1. Considernow the solutions of the ODE xt = �� x2; x(t) 2 R; x(0) given:If �� x(0)2 < 0, then initially xt < 0 and x de
reases in time. If �� x(0)2 > 0 then xt > 0 andx in
reases in time. The traje
tories (dashed lines) for 4 di�erent initial values (denoted Æ) areshown in Figure 2.1. Thus for � > 0; x = p� is a stable equilibrium, and for x = p�� is anunstable equilibrium. 23



It is 
lear that even in this simple example, knowledge of the zeros of f(x; �) = 0 helps usunderstand the behaviour of solutions of xt = f(x; �). It is instru
tive before reading on to
arry out a similar analysis for xt = �x� x3.The type of solution behaviour exhibited in Example 2.1 o

urs in many physi
al examples.The point (x; �) = (0; 0) is 
alled a fold point (turning point or, in the dynami
al systemsliterature, a saddle node) and we return to this kind of phenomenon in Se
tion 5.A very 
lear a

ount of the stability of nonlinear systems is given in Chapter 9 of [20℄,where it is proved (p.187) that if x is a stable steady state for a given �, then the Ja
obianmatrix Fx(x; �) (i.e. the matrix with the (i; j)th 
omponent �Fi�xj (x; �)) has no eigenvalues withpositive real part. Hen
e stability of a steady state of (2.2) is lost when one or more eigenvaluesof Fx(x; �) moves into the right half-plane as � varies. It is an instru
tive exer
ise to see inExample 2.1 how the eigenvalue of the (1�1) Ja
obian matrix 
hanges along the path of steadystate solutions.In Example 2.1 it was trivial to �nd the path of steady states analyti
ally. In general thesolutions to a nonlinear problem F (x; �) = 0 will not be known analyti
ally. In the followingse
tions we shall des
ribe how to 
ompute su
h solution paths and re
ognise the parametervalues at whi
h the number of solutions 
hanges.The following example is two dimensional, and it is more 
onvenient to use (x; y) rather thanx.Example 2.2 Consider the pair of ODEs0� xtyt 1A = 0� � 1�1 � 1A0� xy 1A� (x2 + y2)0� xy 1A :Clearly (x(t); y(t)) = 0 is a solution for any � 2 R. For any � > 0 ea
h (x(t); y(t))T satisfyingx(t) = p� sin t; y(t) = p� 
os t; is a nontrivial periodi
 solution. The Ja
obian of the right handside is 0� � 1�1 � 1A�0� 3x2 + y2 2xy2xy x2 + 3y2 1A :At (x; y) = (0; 0) the eigenvalues of this matrix are �� i and so the trivial solution is stable for� < 0 and unstable for � > 0. On the other hand a short 
al
ulation shows that the eigenvaluesof this matrix on the above nontrivial solution are �� � p�2 � 1, whi
h always have negativereal part when � > 0 and so the periodi
 solution is stable. (See also x1 in [26℄.)4
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Figure 2.2:In summary: As � passes through zero there is a birth of periodi
 orbits in (2.2). Theeigenvalues of 0� � 1�1 � 1A are �� i, and these are purely imaginary at � = 0. This is a simpleexample of a Hopf bifur
ation. We dis
uss this topi
 in Chapter 8. 2Example 2.3 Consider the di�erential equationd2ydt2 + � sin y = 0 (2.3)where � > 0 is given and y(t) is to be found on t 2 [0; l℄ subje
t to the boundary 
onditionsdydt (0) = 0 = dydt (l) : (2.4)This models the behaviour of an elasti
 rod o

upying 0 � t � l whi
h is �xed at ea
h end andsubje
t to a for
e � in the dire
tion of the rod (see [2℄, Chap. 1 for a �gure and more detaileddis
ussion).Here y(t) represents the angle the tangent to the rod at a distan
e t along the rod makes tothe horizontal. Physi
ally, as � in
reases the rod 
an bu
kle. Obviously the trivial solution y � 0solves (2.3), (2.4) for all �. The interesting solution is the bu
kled state y 6� 0. The di�erentialequation is tra
table to theoreti
al analysis (the �rst step is to multiply (2.3) by dydt and inte-grate) and it is shown in [2℄ that nontrivial solutions emanate from (y; �) = (0;m2�2=l2); m =1; 2; 3; : : : as shown in Figure 2.3. (The value of y(0) is plotted on the verti
al axis). The5
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y(0)y(0) = �
�2l2 4�2l2 9�2l2Figure 2.3:nontrivial bran
hes 
orrespond to bu
kled states. This is 
lassi
al \bifur
ation from the trivialsolution" and it was the analysis of this and similar bu
kling problems that prompted the initialstudies in bifur
ation theory.In pra
tise we may 
ompute bu
kled states by approximating (2.3), (2.4). One way to dothis is to set h = l=n (n 2 Z) and introdu
e the meshti = ih ; i = 0; � � � ; nof equally spa
ed points on [0; l℄. Then set yi = y(ti) and approximated2ydt2 (ti) by 1h2 fyi�1 � 2yi + yi+1g :Substituting in (2.3) and for
ing equality gives the approximation1h2 fYi�1 � 2Yi + Yi+1g+ � sinYi = 0; i = 1; : : : ; (n� 1); (2.5)where Yi ' y(ti). We 
an approximate (2.4) byY1 � Y0h = 0 = Yn � Yn�1h : (2.6)Now using (2.5) for i = 1; ::; (n� 1) together with (2.6) yields the (n� 1) dimensional nonlinear

6



system F (Y ; �) = AY + � sin(Y );
= 1h2 26666666664

�1 11 �2 11 �2 11 �1
37777777775
26666666664

Y1
Yn�1

37777777775+ �26666666664
sinY1
sinYn�1

37777777775 = 0: (2.7)
Clearly Y = 0 is always a solution. It is of interest to �nd out (i) For what � do nontrivial Yexist? (ii) Do they approximate the � given by the ordinary di�erential equation theory outlinedabove? (iii) What is the 
orresponding Y ? (iv) How would we 
ompute Y as � varies? 22.1 Some Multivariate Cal
ulusFor x;y 2 Rn ; xTy = Xi=1n xiyi; jjxjj = fxTxg 12 . For r > 0 de�neB(x; r) = fy 2 Rn : jjx� yjj < rg open ballB(x; r) = fy 2 Rn : jjx� yjj � rg 
losed ball :If D is an open subset of Rn , then F : D ! Rn is 
ontinuous at x 2 D if 8" > 0 9Æ > 0 s.t.y 2 B(x; Æ) =) F (y) 2 B(F (x); ").A fun
tion f : D � Rn ! R is 
alled 
ontinuously di�erentiable at x if �f�xi exists and is
ontinuous at x for ea
h i = 1; � � � ; n.If F : D � Rn ! Rn and F (x) = (f1(x); � � � ; fn(x))T then the Ja
obian of F is the matrix Fxwhi
h is de�ned 8x 2 D by (Fx(x))ij = �fi�xj (x).(F is 
alled 
ontinuously di�erentiable at x if �fi�xj exists and is 
ontinuous at x for ea
h i; j.De�nition A sequen
e of ve
tors fxkg1k=1 � Rn is said to 
onverge to x� 2 Rn if jjxk�x�jj ! 0for some ve
tor norm jj � jj on Rn .Remark Sin
e all norms on Rn are equivalent, the 
hoi
e of norm in this de�nition is arbitrary.De�nition If a sequen
e of approximate solutions fxkg � Rn are 
onverging to a solutionx� 2 Rn we say the 
onvergen
e is order p ifjjx� � xk+1jj � Cjjx� � xkjjp; 8k � o ;with C independent of k. 7



If p = 1 
onvergen
e is 
alled linear.If p = 2 
onvergen
e is 
alled quadrati
.3 Newton's Method and the Impli
it Fun
tion TheoremThe main 
omputational tool to solve systems like (2.1) is Newton's method, whi
h we dis
uss inx3.1. The main theoreti
al tool, whi
h also has important numeri
al impli
ations is the Impli
itFun
tion Theorem whi
h we dis
uss in x3.2. Two appli
ations of the Impli
it Fun
tion Theoremare dis
ussed in x3.3.Re
all that if G : D � Rn ! Rn , and k � k denotes a norm on Rn then G is 
alled Lips
hitz
ontinuous (with respe
t to k � k) if there exists 
 2 R, su
h that for all x;y 2 DkG(x)�G(y)k � 
kx� yk; (3.1)and we write G 2 Lip
(D). Throughout these le
tures k � k will denote the Eu
lidean normkxk = fxTxg1=2 on Rn and also the matrix norm indu
ed by the Eu
lidean norm. With respe
tto this norm, B(x; r) will denote the open ball in Rn with 
entre x and radius r, while �B(x; r)denotes its 
losure.3.1 Newton's Method for SystemsA very ni
e treatment of Newton's method for systems of nonlinear equations is given in [6℄. To�nd a root, x0 say, of F (x) = 0, Newton's method for a given starting guess x0 isxk+1 = xk + dk; where Fx(xk)dk = �F (xk); k � 0: (3.2)Theorem 3.1 Assume(a) F : Rn ! Rn is 
ontinuously di�erentiable in an open 
onvex set D � Rn , and Fx 2Lip
(B(x0; r)), for some r > 0,(b) Fx(x0) is nonsingular.Then provided x0 satis�es x0 2 B(x0; �), for small enough � > 0, Newton's method is wellde�ned and xk ! x0 quadrati
ally. (See [6℄ for a fuller a

ount.)In fa
t � 
an be given expli
itly as minfr; 1=2�
g, where � = k(Fx(x0))�1k, and thisapproa
hes 0 as r ! 0 or � !1 or 
 !1. 8



It is interesting to formulate the matrix eigenvalue problem as a system of (n+1) equationsin (n+ 1) unknowns, as is done in the following example.Example 3.2 Let A be a real symmetri
 matrix, with simple eigenvalue �0 and 
orrespondingeigenve
tor �0 satisfying �T0 �0 = 1. Consider the problem of 
omputing (�0; �0) by Newton'smethod. De�ne F : Rn+1 ! Rn+1 byF (y) = 0� A�� ���T�� 1 1A = 0; where y = 0� �� 1A 2 Rn+1 : (3.3)If we apply Newton's method to 
ompute the eigenpair (�T ; �)T then the �rst step in verifying the
onvergen
e would be to 
he
k that the Ja
obian matrix Fy is nonsingular. A simple 
al
ulationshows Fy(y) = 0� A� �I ��2�T 0 1A :The proof that this is nonsingular at yT0 = (�T0 ; �0) may be obtained dire
tly or by appli
ationof 
ase (ii) of the ABCD Lemma, whi
h we now state.Lemma 3.3 (\ABCD Lemma" (Keller [25℄)) Given an n � n real matrix A, 
, b 2 Rn ,d 2 R, 
onsider the (n+ 1)� (n+ 1) bordered matrixM = 0� A b
T d 1A :(i) If A is nonsingular then M is nonsingular if and only if d� 
TA�1b 6= 0.(ii) If rank(A) = n� 1, M is nonsingular if and only if Tb 6= 0 for all  2 ker(AT ) n f0g,and
T� 6= 0 for all � 2 ker(A) n f0g.(iii) If rank(A) � n� 2, then M is singular.Clearly di�erent normalisations for the eigenve
tors are possible. Repla
ing �T� = 1 in(3.3) with eTr � = 1, where er is the unit ve
tor with (er)i = Æir, one 
an show that Newton'smethod applied to the eigenvalue problem 
an be interpreted as a version of inverse iteration(see [47℄ for more details). 9



3.2 The Impli
it Fun
tion TheoremThe Impli
it Fun
tion Theorem is obtained as an appli
ation of the Contra
tion Mapping The-orem to a nonlinear system with a parameter. So, let us �rst re
all the Contra
tion MappingTheorem.Theorem 3.4 (Contra
tion Mapping Theorem) Suppose(i) G 2 Lip�( �B(x0; r)) for some r > 0, with 0 � � < 1;(ii) kx0 �G(x0)k � (1� �)r.Then(a) For all x0 2 �B(x0; r), the sequen
e xk de�ned by xk+1 = G(xk) 
onverges to a limitx? 2 �B(x0; r);(b) x? is the unique �xed point of G in �B(x0; r).The proof is in most books on nonlinear equations. Other versions of this theorem repla
ethe assumption (ii) with the requirement that G( �B(x0; r)) � �B(x0; r). For numeri
al analysispurposes the present version is better sin
e 
he
king (ii) requires only 
he
king that G(x0)should not be too far from x0. The proof of this version of the Contra
tion Mapping Theoremis in [38℄.The 
ontra
tion mapping theorem has many uses. One example of its use is in the analysisof the modi�ed Newton method, given by the �xed point iteration xk+1 = G(xk), whereG(x) = x� Fx(x0)�1F (x): (3.4)Using the Contra
tion Mapping Theorem it 
an be shown that if x0 is suÆ
iently 
lose to asolution x0 of F (x) = 0 then xk ! x0 linearly as k !1.Another example of its use is in the proof of the Impli
it Fun
tion Theorem. Consider theparameter dependent problem F (x; �) = 0;for (x; �) 2 D, where F : D � Rn+1 ! Rn . Let S be the solution setS = f(x; �) 2 D : F (x; �) = 0g:10



It is natural to ask the following question. If (x0; �0) 2 S and � is near �0, is there a 
orre-sponding unique x(�) su
h that (x(�); �) 2 S and x(�0) = x0? If so, we say x is parametrisedby � near (x0; �0), written \x = x(�) near (x0; �0)". The Impli
it Fun
tion Theorem providesthe answer, but �rst 
onsider a simple example.Example 3.5 Consider f(x; �) = x2 + �2 � 1:Clearly if jx0j < 1 and (x0; �0) 2 S then x = x(�) near (x0; �0).Sin
e F now depends on x and �, we use the notation Fx to mean the n� n matrix with(i; j)th element �Fi�xj , and by F � we mean the n� 1 ve
tor with elements �Fi�� : If (x0; �0) 2 Dwe write F 0 = F (x0; �0); F 0x = Fx(x0; �0);F 0� = F �(x0; �0); et
 :The Impli
it Fun
tion TheoremIn the proof of this theorem we assume that for all (x; �); (x; �); (y; �) 2 D,(A1) kF (x; �)� F (x; �)k � �2j�� �j(A2) kFx(x; �)� Fx(y; �)k � 
1kx� yk(A3) kFx(x; �)� Fx(x; �)k � 
2j�� �j:Clearly (A1{A3) hold if F has two 
ontinuous derivatives with respe
t to (x; �) 2 D. In manyappli
ations in fa
t F will be in�nitely 
ontinuously di�erentiable on D, whi
h we write asF 2 C1(D).Theorem 3.6 (Impli
it Fun
tion Theorem) Suppose (A1{A3) hold and suppose there exists(x0; �0) 2 D su
h that(A4) F (x0; �0) = 0,(A5) Fx(x0; �0) is nonsingular.Then there exist neighbourhoods B(�0; "�); B(x0; "x) of �0; x0 su
h that for all � 2 B(�0; "�)there exists x(�) 2 B(x0; "x) with 11



(a) F (x(�); �) = 0,(b) x(�) is the unique solution of F (x; �) = 0 in B(x0; "x),(
) x(�0) = x0,(d) Fx(x(�); �) is nonsingular for all � 2 B(�0; "�),(e) x(�) is 
ontinuous with respe
t to � 2 B(�0; "�).Remark If F 2 C1(D) then (e) 
an be repla
ed by x 2 C1(B(�0; "�)).Proof The proof of (a),(b) and (
) uses the Contra
tion Mapping Theorem applied toK(x; �) := x � �F 0x��1 F (x; �), whi
h is very like the form of the mapping G used in thetheory of the modi�ed Newton method (3.4). (d) follows using 3.1.4 in [6℄, and (e) by standardmanipulation. 2With respe
t to the parameter dependent problem we make the following de�nition.De�nition 3.7 (x0; �0) 2 S is 
alled a regular point of S if F 0x is nonsingular. The Impli
itFun
tion Theorem 
an then be applied to show x = x(�) near (x0; �0). If a point (x0; �0) 2 Sis not regular it is 
alled a singular point.Example 3.8 Consider F (x; �) = 24 x21 + x22 � �x22 � 2x1 + 1 35 :It is 
lear that the solution set S is the interse
tion of the 
ir
le 
entred on the origin withradius p�, and a parabola. (It is helpful to draw a sket
h.) Clearly F 2 C1(Rn+1 ) andFx = 24 2x1 2x2�2 2x2 35. Consider (x0; �0) := (0:73; 0:68; 1). Then (x0; �0) 2 S and det(F 0x) =4(x0)1(x0)2+4(x0)2 6= 0: So (x0; �0) is a regular point and the Impli
it Fun
tion Theorem showsthat x = x(�) near (x0; �0). Consider instead (x0; �0) = (1=2; 0; 1=4) 2 S. Then F 0x is found tobe singular. So (x0; �0) is a singular point and we 
annot 
on
lude that x = x(�) near (x0; �0).(Plotting the path of solutions x(�) against � shows why not.) The diÆ
ulty here is simply thatthe solution set turns around at � = �0 = 14 .This is a spe
ial type of singular point 
alled a fold or turning point.De�nition 3.9 If (x0; �0) 2 S is a singular point and if Rank(F 0x) = n � 1 then (x0; �) is
alled a fold point (or turning point) if F 0� =2 Image (F 0x). In this 
ase the n�(n+1) augmented12



Ja
obian [F 0xjF 0�℄ must have rank n and hen
e has a subset of n linearly independent 
olumns.By sele
ting the variables 
orresponding to these 
olumns as the dependent variables we 
an stillapply the Impli
it Fun
tion Theorem.Example 3.10 Consider again Example 3.8. (x0; �0) = (1=2; 0; 1=4), and hen
e[F 0xjF 0�℄ = 24 1 0 �1�2 0 0 35 ;whi
h has full rank. The �rst and third 
olumns are linearly independent so if we writeG(y; x2) = 24 x21 � �+ x22�2x1 + 1 + x22 35 :The solution set for G = 0 is identi
al to the solution of F = 0 but x2 is now 
onsidered to bea parameter and y = (x1; �). Then Gy = 24 2x1 �1�2 0 35 ; whi
h is nonsingular at (y0; (x2)0) =(12 ; 14 ; 0) so the Impli
it Fun
tion Theorem shows that y = y(x2) near (y0; (x2)0). 2This example shows that 
hange of parametrisation 
an remove the problems of a fold point.If a singular point is not a fold point, further analysis is required (see x6).3.3 Two ExamplesWe now give two examplesExample 3.11 (See Example 2.3) Consider the n � 1 dimensional nonlinear system with F :Rn ! Rn�1 given in (2.7). Clearly (Y 0; �0) := (0; �0) 2 S; for all �0 2 R, and[FY jF �℄ = [A� �diag(
osY )j sinY ℄= [A� �0Ij0℄ at (Y 0; �0):Now A has the (n�1) eigenvalues �k = n2l2 �2� 2 
os k�(n�1)�, (with 
orresponding eigenfun
tionsxk, with xkj = 
os(k�(2j�1)=2(n�1))) for k = 0; :::; (n�2), whi
h are distin
t and hen
e simple.So if �0 6= ��k for any k then (Y 0; �0) is a regular point, and so near �0 we have Y = Y (�).But if �0 = �k, then Rank(A � �0I) = n � 2, so (Y 0; �0) is a singular point. In additionF 0� = 0 2 Image(A� �0I) = Image(F 0Y ), so (Y 0; �0) is not a fold point either.13



Example 3.12 (Perturbation theory for algebrai
ally simple eigenvalues.)Let A be a real n � n matrix with a simple eigenvalue �0 (i.e. algebrai
 multipli
ity is 1) and
orresponding eigenve
tor �0. If A is perturbed to A+ �B, one question is to �nd the dominantterm in the perturbation of �0.Start the perturbation theory by 
onsidering the nonlinear system (
f Example 3.2 but withoutthe assumption that A is symmetri
)F (y; �) := 0� (A+ �B)�� ���T�� 1 1A = 0� 00 1A ; y = 0� �� 1A : (3.5)Clearly with y0 = (�T0 ; �0)T , F (y0; 0) = 0, and Fy(y0; 0) is nonsingular. (This is provedusing part (ii) of Lemma 3.3, though note that the 
ondition of algebrai
 simpli
ity is neededsin
e A is no longer assumed symmetri
.) Thus using the Impli
it Fun
tion Theorem, for smallj�j there exists a unique y(�) su
h that F (y(�); �) = 0 and Fy(y(�); �) is nonsingular. The latterresult ensures that �(�) is simple. Sin
e �(�) 2 C1(R) we 
an write �(�) = �0+ ��0(0) +O(�2).To �nd the dominant term in the error we need to �nd �0(0). To do this we di�erentiate(A+ �B)�(�) = �(�)�(�) with respe
t to �, set � = 0, and multiply on the left by  0 2 ker((A��0I)T ) n f0g. This leads to �0(0) =  T0B�0= T0 �0:(Note that  T0 �0 6= 0. If  T0 �0 = 0, then �0 2 Image(A��0I) and dim(ker(A��0I)2) > 1, 
on-tradi
ting the assumption of algebrai
 simpli
ity.) If A is symmetri
 then �0(0) = �T0B�0=�T0 �0.4 Computation of solution pathsIn this se
tion we 
onsider the general problemF (x; �) = 0; (4.1)where F : Rn+1 ! Rn ; F 2 C1(Rn+1 ). SetS = f(x; �) 2 Rn+1 : F (x; �) = 0g: (4.2)Often in appli
ations one is interested in 
omputing the whole set S or a 
ontinuous portion ofit. For example in 
uid dynami
s x may represent the velo
ity and pressure of a 
ow, whereas �is some physi
al parameter su
h as the Reynolds number. In pra
ti
e S is 
omputed by �nding14



a dis
rete set of points on S and then using some graphi
s pa
kage to interpolate. So the basi
numeri
al question to 
onsider is: Given a point (x0; �0) 2 S how would we 
ompute a nearbypoint on S? Throughout we use the notation F 0 = F (x0; �0); F 0x = Fx(x0; �0), et
.If F 0x is nonsingular then the Impli
it Fun
tion Theorem implies that for � near �0 thesolutions of F (x; �) = 0 satisfy x = x(�) with Fx(x(�); �) nonsingular. Hen
e Theorem 3.1implies that Newton's method for �nding the solution x(�) of F (x(�); �) = 0 with startingvalue x0 will 
onverge in some ball 
entred on x(�) for small enough �� �0.A simple strategy for 
omputing a point of S near (x0; �0) is to 
hoose a steplength ��, set�1 = �0 +�� and solve F (x; �1) = 0by Newton's method with starting guess x0 = x0. We then know this will work if �� issuÆ
iently small. However this method will fail (or at best require repeated redu
tion of step��) as a turning point is approa
hed. For this reason the pseudo-ar
length method des
ribedin the next se
tion was introdu
ed.4.1 Keller's pseudo-ar
length 
ontinuation [25℄Ideally we would like a method that has no diÆ
ulties near, or passing round, a fold point. Thisisn't unreasonable sin
e at a fold point there is nothing geometri
ally \wrong" with the 
urve,though � is the wrong parameter to use to des
ribe the 
urve. In this se
tion we shall assumethat there is an ar
 of S su
h that at all points in the ar
Rank [FxjF �℄ = n; (4.3)and so any point in the ar
 is either a regular or fold point of S. The Impli
it Fun
tion Theoremthus implies that the ar
 is a smooth 
urve in Rn+1 , and so there is a unique tangent dire
tionat ea
h point of the ar
.Let t denote any parameter used to des
ribe the ar
. Then along the ar
 (x; �) = (x(t); �(t)).Suppose (x0; �0) = (x(t0); �(t0)) and denote the tangent at (x0; �0) by � 0 = ( _x0; _�0) where_x = dxdt ; _� = d�dt ;_x0 = _x(t0); _�0 = _�(t0):The tangent � 0 is well de�ned even if (x0; �0) is a fold point and 
an be 
omputed in pra
ti
eusing the following result. 15



Lemma 4.1 Assume (4.3). Then the tangent at (x0; �0) 2 S satis�es� 0 2 ker [F 0xjF 0�℄: (4.4)Proof Sin
e F (x(t); �(t)) = 0, di�erentiating with respe
t to t givesFx(x(t); �(t)) _x(t) + F �(x(t); �(t)) _�(t) = 0:Put t = t0 and we have 24 _x0_�0 35 2 ker [F 0xjF 0�℄ and so the result follows. 2Suppose now that � 0 = [s0; �0℄ denotes the unit tangent i.e. �T0 � 0 = 1. We 
an use thisve
tor to devise an extended system whi
h 
an be solved by Newton's method without fail fora point (x1; �1) on S near (x0; �0). The appropriate extended system isH(y; t) = 0 (4.5)where y = (x; �) 2 Rn+1 and H : Rn+2 ! Rn+1 . is given byH(y; t) = 24 F (x; �)sT0 (x� x0) + �0(�� �0)� (t� t0) 35 : (4.6)The last equation in system (4.5) is the equation of the plane perpendi
ular to � 0 a distan
e�t = (t�t0) from t0 (see Figure 4.1). So in (4.5) we in fa
t implement a spe
i�
 parametrisationlo
al to (x0; �0), namely parametrisation by the length of the proje
tion of (x; �) onto thetangent dire
tion at (x0; �0).With y0 = (x0; �0), we have H(y0; t0) = 0 andHy(y0; t0) = 24 F 0x F 0�sT0 �0 35. Sin
e (sT0 ; �0)Tis orthogonal to ea
h of the rows of [F 0x;F 0�℄, the matrix Hy(y0; t0) is nonsingular and so bythe Impli
it Fun
tion Theorem solutions of (4.5) satisfy y = (x; �) = (x(t); �(t)) for t near t0.For t1 = t0 + �t and �t suÆ
iently small we know that F (y; t1) = 0 has a unique solutiony = y(t1) = (x1; �1) andHy(y(t1); t1) is nonsingular. Thus Newton's method will 
onverge forsmall enough �t. If we take as starting guess y0 = y0 = (x0; �0), it is a straightforward exer
iseto show, (i) y1, the �rst Newton iterate, is given by y1 = (x0; �0) +�t(s0; �0), that is, the �rstiterate \steps out" along the tangent, as one might expe
t, and (ii) �T0 (yk�y0) = �t 8 k � 1,whi
h means that all the Newton iterates lie in the plane shown in �gure 4.1.Sin
e length along the tangent at (x0; �0) is used as parameter this te
hnique is 
alledpseudo-ar
length 
ontinuation ([25℄). 16
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Figure 4.1:Another interpretation Sin
e we know that solutions of (4.5) satisfy y = y(t), t near t0,where t is pseudo-ar
length, we have H(y(t); t) = 0 and we 
an di�erentiate with respe
t to tto get Hy(y(t); t) _y(t) +H t(y(t); t) = 0: Sin
e Hy is nonsingular for t near t0,_y(t) = �Hy(y(t); t)�1Ht(y(t); t); (4.7)whi
h is an ordinary di�erential equation for y(t) with initial 
onditiony(t0) = y0: (4.8)We 
an use Euler's method to solve (4.7), (4.8) in whi
h 
ase the �rst step isy1Euler = y0 ��t[H0y℄�1H0t : (4.9)Sin
e H0t = 24 0�1 35, (4.9) is equivalent toy1Euler = y0 + 24 F 0x F 0�sT0 �0 35�1 24 0�t 35= y0 +�t24 s0�0 35 :So the �rst step of Newton's method for (4.5) is equivalent to one step of Euler's methodapplied to (4.7), (4.8). We 
an think of this as using Euler's method to provide a \predi
tedguess" for y(t1) = (x1; �1). Then 
ontinuing with Newton's method 
an be thought of as\
orre
ting" this initial guess. 17



The 
hoi
e of an appropriate step 
ontrol strategy for �t seems to be harder than in the ODE
ase, perhaps be
ause the real problem is F (x(t); �(t)) = 0 and not the di�erential equationderived from it. This topi
 is dis
ussed in x4.6 of [45℄ or x7.4 of [39℄ but experien
e indi
atesthat simple te
hniques often work just as well as sophisti
ated approa
hes.Pra
ti
al implementation of pseudo-ar
length 
ontinuationThe following is a suggested algorithm for implementing the pseudo-ar
length 
ontinuationmethod introdu
ed above.Step 1 Suppose F 0x is nonsingular, solveF 0xz0 = �F 0� (4.10)for z0. Then set 24 s0�0 35 = 1(zT0 z0 + 1)1=2 24 z01 35.Step 2 (Euler predi
tor) Choose a step length �t and set24 x1�1 35 = 24 x0�0 35+�t24 s0�0 35 : (4.11)Step 3 (Newton's method) For k � 1 iterate24 xk+1�k+1 35 = 24 xk�k 35+ 24 dkÆk 35with 24 F kx F k�sT0 �0 3524 dkÆk 35 = �24 F ksT0 (xk � x0) + �0(�k � �0)��t 35 (4.12)Note that if F 0x is singular then the 
ontinuation method will still work provided the 
onditionRank [F 0xjF 0�℄ = n holds, but Step 1 will fail to �nd the tangent ve
tor. In pra
tise this problemusually does not arise sin
e F 0x only be
omes singular at isolated points on the solution set Sand e�e
tively the probability of landing pre
isely on su
h a point is 0. However, 
are is neededwhen F 0x is nearly singular as is dis
ussed in the next subse
tion. As a further pre
aution many
ontinuation methods monitor the determinant of F 0x.If the tangent at a singular point is required then the null ve
tor z0 of F 0x 
an be 
omputed(say, by the inverse power method) and then the tangent ve
tor 
an be taken as24 s0�0 35 = 1(zT0 z0)1=2 0� z00 1A :18



4.2 Blo
k EliminationAs seen in (4.12) it is repeatedly ne
essary to solve \bordered systems" with 
oeÆ
ient matrixMk = 24 F kx F k�sT0 �0 35 :In many appli
ations, where F (x; �) arises from a solution of a di�erential equation, F kx mayhave some spe
ial stru
ture (e.g. tridiagonal, banded, sparse) whi
h makes systems with matrixF kx easy to solve, but this stru
ture is not present in Mk. Then the \blo
k elimination method"(see [25℄) is useful for qui
kly solving su
h systems.\Blo
k elimination" is merely Gaussian Elimination performed blo
kwise. If A is an n � nmatrix, b; 
 2 Rn and d 2 R then the blo
k matrixM := 0� A b
t d 1A = 0� I 0lTn 1 1A0� A b0T un+1 1A ; (4.13)where ln = 
TA�1, un+1 = d� 
TA�1b. If ln+1 and un+1 are 
omputed, then the system0� A b
T d 1A0� xy 1A = 0� fg 1A (4.14)is readily solved using blo
k forward and ba
k substitution. One algorithm to a

omplish thisis (i) Solve Az = b, and Aw = f , and then set(ii) y = (g � 
Tw)=(d � 
T z); x = w � yz.If A and M are both well 
onditioned then this algorithm for (4.14) works well, but if A ispoorly 
onditioned, as o

urs in pseudo-ar
length 
ontinuation near a fold point, then it mayfail to produ
e reliable results (in linear algebra terms, the algorithm is not \ba
kward stable").A 
omplete analysis of why the algorithm fails in the latter 
ase was �rst given by Moore [34℄using a de
ation argument. The a

ount by Govaerts [11℄ avoids de
ation but provides a stablealgorithm based on 
ombining the de
omposition (4.13) with the alternative de
omposition0� A b
T d 1A = 0� A 0
T ln+1 1A0� In un0T 1 1A : (4.15)Roughly speaking the improved algorithm of Govaerts uses an iterative re�nement approa
h.The idea is as follows. In a
tual 
al
ulation the step (ii) above produ
es a good approximation,19



ŷ say, for y, but the approximation for x is often worthless. So the x approximation is dis
arded.To 
ompute the residual after the �rst solve the approximate solution (x0; y0) = (0; ŷ) is used.Then the approximation is 
orre
ted using the blo
k LU de
omposition (4.15) in a se
ond solve.The analysis of why this works is fairly te
hni
al [11℄. The main work in the resulting stablealgorithm involves two solves with A and one solve with AT . Moore [34℄ provides a stablealgorithm also using only 3 solves (see quoted papers for analysis and algorithmi
 details).5 The 
omputation of fold (turning) pointsLet (x0; �0) be a point on S satisfyingF 0x is singular, rank[F 0xjF 0�℄ = n: (5.1)Su
h a point is a fold point (see Example 2.1 and De�nition 3.9). In a general one parameterproblem F (x; �) = 0, fold points are the generi
 singular points and there are many examplesof their o

urren
e in appli
ations. It is important to understand this type of nonlinear phe-nomenon in its own right, but also be
ause the theoreti
al analysis and numeri
al methods formore 
ompli
ated singularities are often extensions of fold point te
hniques.Before attempting a dis
ussion of the n-dimensional 
ase in x5.1 it is a useful exer
ise toanalyse �rst the s
alar 
ase: this is the subje
t of the following example.Example 5.1 Assume f : R2 ! R with f 2 C1(R2) and set S = f(x; �) 2 R2 : f(x; �) = 0g.Assume rank[fx; f�℄ = 1 on S (i.e. either fx 6= 0 or f� 6= 0 at all points (x; �) 2 S). (i) Analysethe behaviour of S near a fold point (x0; �0) i.e. where f0x = 0. (ii) Derive a 2 � 2 system forthe a

urate 
al
ulation of a fold point and determine when the fold point is a regular solutionof this system.Sket
h of solution: Re
all the usual notation f0x = fx(x0; �0), et
. By the rank 
ondition,at a fold point f0� 6= 0 and so the Impli
it Fun
tion Theorem implies � = �(x) near x0. Repeateddi�erentiation of f(x; �(x)) = 0 provides �0(x0) = 0, �00(x0) = �f0xx=f0�, and so the �rst threeterms of the Taylor expansion of �(x) 
an be found. (Sket
h �(x) when f0xx 6= 0.) Thus iff0xx 6= 0 we see that �0(x) 
hanges sign at x = x0. To a

urately 
ompute (x0; �0), 
onsider the2� 2 system G(y) = [f; fx℄T = 0 to be solved for y = (x; �). It is easy to show that (x0; �0) isa regular point of G(y) = 0 if and only if f0xx 6= 0.20



We shall see in the following subse
tion that the theory for fold points of the n-dimensionalsystem F (x; �) = 0 is very similar to the one dimensional example above.5.1 Analysis of Fold PointsConsider (4.1) with S as in (4.2). Let (x(t); �(t)) denote a smooth ar
 of S with rank[FxjF �℄ = nand let (x0; �0) = (x(t0); �(t0)) satisfy the fold point 
ondition (5.1). Let�0 2 ker(F 0x) n f0g;  0 2 ker(F 0xT ) n f0g: (5.2)Note that  T0 F 0� 6= 0 (sin
e otherwise  0 2 ker [F 0x;F 0�℄T = f0g). Di�erentiation ofF (x(t); �(t)) = 0 with respe
t to t, evaluation at t = t0, and left multipli
ation by  T0 yields_�(t0) = 0; _x(t0) = ��0; ��(t0) = ��2 T0 (F 0xx�0)�0= T0 F 0�; (5.3)for some � 6= 0, where Fxx�0 denotes the Ja
obian matrix of the n-ve
tor Fx�0.De�nition 5.2 We 
all (x0; �0) a quadrati
 fold point if ��(t0) 6= 0.To 
ompute the fold point it is natural to set up the systemT (y) := 0BBB� F (x; �)Fx(x; �)��T�� 1 1CCCA = 0; to be solved for y = 0BBB� x�� 1CCCA 2 R2n+1 ; (5.4)where T : R2n+1 ! R2n+1 . Here the se
ond and third equations say that Fx has a zeroeigenvalue with 
orresponding normalised eigenve
tor �, (
f. Example 3.2). We shall see in x5.2that there are alternative 
hoi
es of system to 
ompute a fold point, but (5.4) is very 
onvenientfor analysis. In fa
t, the following theorem shows that (5.4) 
hara
terises a quadrati
 fold point.Theorem 5.3 Let (x0; �0) satisfy (5.1).(a) The point (x0;�0; �0) 2 R2n+1 is a regular solution of T (y) = 0 if and only if ��(t0) 6= 0,i.e. (x0; �0) is a quadrati
 fold point.(b) In addition, assume �0 = 0 is an algebrai
ally simple eigenvalue of F 0x. Let �(t) denotethe eigenvalue of Fx(x(t); �(t)) near t = t0 with �(t0) = 0. Then _�(t0) 6= 0 if and only if(x0; �0) is a quadrati
 fold point. 21



The se
ond result says that at a quadrati
 fold point a simple eigenvalue passes smoothlythrough zero. Thus there is a smooth 
hange in sign of det(Fx) through a quadrati
 fold pointand this fa
t is often used in 
ontinuation 
odes.Proof The proof of Theorem 5.3 is straightforward. One way is to 
onsider Ty(y0), givenby Ty(y0) = 26664 F 0x 0 F 0�F 0xx�0 F 0x F 0x��00 2�T0 0 37775and use part (ii) of Keller's ABCD Lemma (Lemma 3.3). In the notation of the lemma, A =0� F 0x 0F 0xx�0 F 0x 1A with 
orresponding 
hoi
es for b and 
. It 
an then be shown that Ty(y0)is nonsingular if and only if  T0 (F 0x�0)�0 6= 0, and part (a) follows from (5.3). The proof ofpart (b) follows by formulating the eigenvalue problem asG(z; t) = 0� Fx(x(t); �(t))� � ���T�� 1 1A = 0; z = 0� �� 1A 2 Rn+1 : (5.5)Now G(z0; t0) = 0 and Gz(z0; t0) is nonsingular (
f. Example 3.2), and the Impli
it Fun
tionTheorem shows that � = �(t) is a simple eigenvalue of Fx(x(t); �(t)) near t = t0. Di�erentiationof Fx(x(t); �(t))�(t) = �(t)�(t), evaluation at t = t0, and left multipli
ation by  T0 provides_�(t0) 6= 0 i� ��(t0) 6= 0. (Note that  T0 �0 6= 0 sin
e zero is an algebrai
ally simple eigenvalue ofF 0x.) 25.2 Numeri
al Cal
ulation of Fold pointsThe system (5.4) 
an easily be used to 
ompute fold points. It was so used by Seydel [44℄, [43℄and by Moore and Spen
e [35℄. It is important to realise that when solving (5.4) by Newton'smethod one need not solve the (2n + 1) � (2n + 1) linear systems dire
tly. In [35℄ an eÆ
ientsolution pro
edure is des
ribed using only solves with an n � n nonsingular matrix, whi
h isformed from F � and n� 1 linearly independent 
olumns of Fx. The details are not given here,but the main work involves 4 linear solves with the same matrix i.e. only one LU fa
torisationof an n� n matrix is needed per Newton step to solve (5.4).The fa
t that the solution of the (2n+1)� (2n+1) linear Ja
obian systems is a

omplishedusing solves of n � n systems has been used many times sin
e, and another example of thiste
hnique is in the 
al
ulation of Hopf bifur
ation points (see x8 and [16℄).22



Griewank and Reddien [17, 18℄ (and with improvements Govaerts [12℄) suggested an alter-native way of 
al
ulating fold points (and other higher order singularities). This involves settingup a \minimal" de�ning systemT (y) = 24 F (x; �)g(x; �) 35 = 0; y 2 Rn+1 ; (5.6)where g(x; �) : Rn � R ! R is impli
itly de�ned through the equationsM(x; �)24 v(x; �)g(x; �) 35 = 24 01 35 ; (5.7)and (wT (x; �); g(x; �))M(x; �) = (0T ; 1); (5.8)where M(x; �) = 24 Fx(x; �) b
T d 35 ; (5.9)for some b; 
 2 Rn , d 2 R. (The fa
t that g(x; �) is de�ned uniquely by both (5.7) and (5.8) maybe seen sin
e both equations imply that g(x; �) = [M�1(x; �)℄n+1;n+1.) Note that M(x; �) is abordering of Fx, as arises in the numeri
al 
ontinuation method (x4). Assuming b; 
, and d are
hosen so that M(x; �) is nonsingular (see the ABCD Lemma 3.3) then g(x; �) and v(x; �) in(5.7) are uniquely de�ned. (Note, if S is parametrised by t near (x0; �0), i.e. (x(t); �(t)) neart = t0, then v = v(x(t); �(t)) and g = g(x(t); �(t)), and these fun
tions may be di�erentiatedwith respe
t to t.) Also, if we apply Cramer's Rule in (5.7) (an idea due to Govaerts) we have(with M(x; �) nonsingular) g(x; �) = det(Fx(x; �))=det(M(x; �)) (5.10)and so g(x; �) = 0 () Fx(x; �) is singular:It is easily shown that quadrati
 fold points are regular solutions of (5.6). To apply Newton'smethod to (5.6) derivatives of g(x; �) are required and these 
an be found by di�erentiation of(5.7). When the details of an eÆ
ient implementation of Newton's method applied to (5.6) areworked out then the main 
ost is two linear solves with M and one with MT . A ni
e summaryof these ideas is given in Beyn [1℄. A 
omplete a

ount is in the forth
oming book by Govaerts[13℄. 23



6 Bifur
ation from the trivial solutionAs usual we 
onsider the problem F (x; �) = 0 and we assume that F 2 C1(Rn+1). We shallalso assume that F (0; �) = 0; for all � 2 R, (6.1)with (0; �) being the path of trivial solutions. (As an example, 
onsider f 2 R2 , f(x; �) =x�� x3.) In this se
tion we use the G0 to denote the value of any fun
tion G at (0; �0).A formal de�nition of bifur
ation from the trivial solution is as follows.De�nition 6.1 A point (0; �) 2 Rn+1 is said to be a bifur
ation point for F (x; �) = 0 ifand only if there exists a sequen
e (xk; �k), with xk ! 0, �k ! �0, as k ! 1; su
h thatF (xk; �k) = 0 and xk 6= 0 for all k.Appli
ation of the Impli
it Fun
tion Theorem shows immediately that if (0; �0) is a bifur-
ation point then F 0x must be singular. We shall assume that F 0x has an algebrai
ally simplezero eigenvalue: that is, there exist �0; 0 2 Rn n f0g su
h thatker(F 0x) = spanf�0g;ker(F 0xT ) = spanf 0g;and  T0 �0 6= 0: (6.2)In x6.1 we shall 
onsider the s
alar 
ase sin
e it is simpler and the s
alar result is used inthe n-dimensional 
ase. We shall see in x7 that the s
alar 
ase is interesting in its own right. Inx6.2 we then dis
uss the n-dimensional 
ase.6.1 S
alar 
aseConsider the problem f(x; �) = 0, with f(0; �) = 0 for all �. Then we have the followingtheorem.Theorem 6.2 Suppose f : D � R � R ! R where D is an open subset of R2 . Supposef 2 C1(D). Let S = f(x; �) 2 D : f(x; �) = 0g, and assume (0; �) 2 S, for all � 2 R. Alsoassume for some �0 2 R(i) f0x = 0,(ii) f0x� 6= 0, 24



(where f0x = fx(0; �0), et
). Then nontrivial solutions bifur
ate from the trivial solution x = 0at (0; �0). Moreover, near �0, �(x) = �0 + xv(x) (6.3)where v(x) is a smooth fun
tion of x with v(0) = �f0xx=2f0x�.Proof Note that f0� = f0�� = f0��� = � � � = 0 sin
e (0; �) 2 S for all �. Thus rank[f0x ; f0� ℄ = 0and the Impli
it Fun
tion Theorem 
annot be applied dire
tly on f(x; �) = 0. However, we 
anintrodu
e a new problem on whi
h the Impli
it Fun
tion Theorem 
an be applied. De�neh(x; v) : R2 ! R by, for x 6= 0,h(x; v) = 1x2 f(x; �); v = (�� �0)=x: (6.4)Expanding f(x; �0+xv) in powers of x using Taylor's theorem, and using f0 = f0x = f0� = f0�� =0, gives, for x 6= 0, h(x; v) = 12! [f0xx + 2f0x�v℄ + x[smooth fun
tion of v℄:De�ne h(x; v) at x = 0 by h(0; v) = 12! [f0xx + 2f0x�v℄: (6.5)Then h is a smooth fun
tion of (x; v). Moreover by settingv0 = �f0xx=2f0x�; (6.6)then, at (x; v) = (0; v0) we have, from (6.5), h0 = h(0; v0) = 0. Moreover, by assumption (ii),h0v 6= 0, and the Impli
it Fun
tion Theorem gives that for jxj suÆ
iently small there exists v(x)su
h that h(x; v(x)) = 0. Using this fun
tion v, re
all (6.4) and de�ne�(x) = �0 + xv(x); (6.7)from whi
h f(x; �(x)) = 0 and the existen
e of nontrivial bifur
ating solutions is proved.Di�erentiating (6.7) and evaluation at x = 0 gives�0(0) = v(0) = v0 = �f0xx=2f0x�; (6.8)whi
h tells us the slope of the tangent to the nontrivial solution bran
h at the bifur
ation point(see Figure 6.1). 225
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Figure 6.1: Here � is the tangent to the bifur
ating bran
hes at (0; �0). The slope of the tangentis (�2f0x�=f0xx).To 
ompute (x; �(x)) near (0; �0) with x 6= 0, 
onsider solving the systemG(y; t) := 0� f(x; �)x� t 1A = 0; y = 0� x� 1A 2 R2 : (6.9)If (y; t) solves (6.9) with suÆ
iently small t 6= 0, then x = t and (x; �) = (t; �(t)) =: y(t).Moreover, det �Gy(y(t); t)� = �f�(t; �(t)) = (�f0x�)t+O(t2)and so the Newton theory (Theorem 5.2.1 in [6℄) shows that 
onvergen
e of Newton's method
an only be guaranteed for starting guesses in a ball of radius O(t). If we take as starting guessthe following point on the tangent � depi
ted in Figure 6.2:0� x0�0 1A = 0� 0�0 1A+ t0� 1�0(0) 1Awith �0(0) given by (6.8), then0� t�(t) 1A�0� x0�0 1A = 0� 0�(t)� �(0) � t�0(0) 1A = O(t2)and one 
an show that Newton's method will 
onverge for suÆ
iently small t. Noti
e that inthis 
ase t is not the pseudo-ar
length parameter.6.2 n-dimensional 
aseFor the general 
ase we have the 
lassi
al theorem by Crandall and Rabinowitz on bifur
ationfrom a simple eigenvalue [4℄ (whi
h holds for general operators on Bana
h spa
es under minimal26
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Figure 6.2: Numeri
al 
ontinuation away from the bifur
ation point. Here x0 = t and in this
ase t is merely the value of the (non-zero) x 
omponent.smoothness requirements).Theorem 6.3 Suppose F 2 C1(Rn+1) and (6.1), (6.2) hold. If T0 F 0x;��0 6= 0; (6.10)then (0; �0) is a bifur
ation point, and there exist smooth fun
tions (x(t); �(t)) parametrised byt near t = 0 su
h that F (x(t); �(t)) = 0 with �(0) = �0, x(0) = 0, and x0(0) = �0.Proof We present a proof whi
h we believe is within the s
ope of a typi
al UK resear
hstudent just starting a PhD. More elegant proofs are given in most text books on bifur
ationtheory. The method of proof is an example of the \Lyapunov-S
hmidt redu
tion" [2℄.We give the proof only under the assumption that F 0x has distin
t real eigenvalues,�0; : : : ; �n�1, with linearly independent eigenve
tors f�0;�1; : : : ;�n�1g, and f 0; 1; : : : ; n�1gthe 
orresponding linearly independent eigenve
tors of (F 0x)T . Re
all that �0 = 0 and all theother eigenvalues of F 0x are nonzero. Also, be
ause the eigenvalues are distin
t and simple, Ti �j = 0, (i 6= j) and  Ti �i 6= 0.Now sin
e the  i span Rn , the equation F (x; �) = 0 
an be written as T0 F (x; �) = 0 (6.11)and  Ti F (x; �) = 0; i = 1; : : : ; (n� 1): (6.12)(The proof of this is an elementary exer
ise.) Also we write x 2 Rn in the formx = x(y; t) = t�0 + V y; (6.13)27



where V is the n� (n�1) matrix with ith 
olumn �i, for i = 1; : : : ; (n�1). Thus we de
omposeRn into Rn = spanf�0g�R, where R = Image(F 0x) = spanf�1; : : : ;�n�1g. Note that  T0 v = 0for all v 2 R. Now 
onsider the n� 1 equations given by (6.12) in the form~F (y; t; �) = 0; ~F : Rn�1 � R � R ! Rn�1 (6.14)where ( ~F (y; t; �))i =  Ti F (t�0 + V y; �): We shall use the Impli
it Fun
tion Theorem toparametrise the solution y of (6.14) as a fun
tion of (t; �). To do this observe that~F (0; 0; �) = 0 2 Rn�1 ;and the matrix ~Fy(0; 0; �) is given byh ~Fy(0; 0; �)ii;j =  Ti Fx(0; �)�j; i; j = 1; : : : ; (n� 1):Thus [ ~Fy(0; 0; �0)℄ij =  Ti F 0x�j = �i Ti �i, and sin
e �i 6= 0, i = 1; : : : ; (n � 1), ~Fy(0; 0; �0)is nonsingular on Rn�1 , and so the Impli
it Fun
tion Theorem (extended to the 
ase of a two-dimensional parameter [2℄) shows that solutions y of (6.14) may be parametrised by (t; �) i.e. y =y(t; �) near (0; �0). Thus ~F (y(t; �); t; �) = 0 for (t; �) near (0; �0) and (by uniqueness) y(0; �) =0. In addition, yt(0; �0) = 0 sin
e ~F t(0; 0; �0) = 0, and y�(0; �) = 0 sin
e ~F �(0; 0; �) = 0.Having solved (6.14) (i.e. the equations (6.12)), we return to equation (6.11) and write it inthe form f(t; �) :=  T0 F (t�0 + V y(t; �); �) = 0: (6.15)This is in the form of a s
alar nonlinear problem, and all that remains to prove the existen
eof nontrivial solutions is to 
he
k the 
onditions of Theorem 6.2. Not surprisingly (6.15) (or(6.11)) is 
alled the bifur
ation equation in the Lyapunov-S
hmidt redu
tion of F (x; �) = 0. Itis essentially a proje
tion of the original n dimensional system into the one dimensional spa
espanned by the null eigenve
tor. Observe thatf(0; �) =  T0 F (V y(0; �); �)=  T0 F (0; �)= 0and ft(0; �0) =  T0 F 0x�0 = 0;28



sin
e �0 2 ker(Fx(0; �0)). Finallyf0t� =  T0 (F 0xx(�0 + V y0t )(V y0�) + F 0x�(�0 + V y0t ) + F 0xV y0t�)=  T0 F 0x��0 6= 0by (6.10). Here we have used y0t = 0;y0� = 0, and V y0t� 2 R to simplify the expression for f0t�.So the 
on
lusions of Theorem 6.2 apply. Hen
e nontrivial solutions of f(t; �) = 0 bifur
ate at� = �0. The 
orresponding x(t) = x(y(t; �); t) = t�0+V y(t; �), with x(0) = 0 and x0(0) = �0,provides the nontrivial solution of F (x; �) = 0. 2Dete
tion of bifur
ation points is relatively easy for this 
ase. We seek points where Fx(0; �)is singular. If �(�) denotes the eigenvalue of Fx(0; �) along the trivial solution path with�(�0) = 0 then it is a simple exer
ise to show that �0(�0) 6= 0 if and only if (6.10) holds.Hen
e (6.10) is another example of a nondegenera
y 
ondition whi
h 
an be interpreted as aneigenvalue going through zero with nonzero speed. Note that det(Fx(0; �)) 
hanges sign at thebifur
ation point as � passes through �0.Example 6.4 In Example 2.3, equation (2.7) isF (Y ; �) = AY + � sin(Y ):(It is an instru
tive exer
ise to go through the proof of Theorem 6.3 for this example.) In this
ase F (0; �) = 0, for all � 2 R, FY (0; �) = (A+ �I), and FY �(0; �) = I. Now A has (n� 1)algebrai
ally simple eigenvalues�k = �h�2(2� 2 
os k�=(n� 1)); k = 0; 1; : : : ; n� 2:The zero eigenvalue is ruled out of the bu
kling example on physi
al grounds, so Theorem 6.3shows that bifur
ation from the trivial solution o

urs at � = ��k, k = 0; : : : ; (n � 2) sin
ethe nondegenera
y 
ondition (6.5) redu
es to the 
ondition that the eigenvalue be algebrai
allysimple. 2If the n-dimensional problem arises from a dis
retization of an ODE or PDE then the eigen-values and eigenfun
tions of the linearisation of the 
ontinuous problem might be known analyt-i
ally. To �nd �0 and �0 in the dis
retized problem a simple inverse iteration approa
h appliedto Fx(0; �) with the exa
t value for � at the bifur
ation point used would almost 
ertainly workvery qui
kly. 29



To move o� the trivial bran
h a te
hnique similar to that in x6.1 may be used. At (0; �0)[F 0xjF 0�℄ has a two dimensional kernel spanned by (�T0 ; 0)T and (0T ; 1)T . It is straightforwardto show that the tangent to the bifur
ating nontrivial bran
h has the form� T0 = ((�2 T0 F 0x��0)�T0 ; T0 (F 0xx�0)�0)(
f. the s
alar 
ase in the previous se
tion). The fa
t that the ordinary pseudo-ar
length methodworks in these 
ir
umstan
es is proved in [22℄. However, the dire
t analogue of the approa
h inx6.1 is merely to set equal to t one 
omponent of x. The best 
omponent to 
hoose is the rth,where (�0)r is the 
omponent of maximum modulus of �0 (see [39℄).Remarks(i) It is important to note that bifur
ation from the trivial solution is a rather spe
ial 
ase butnonetheless a very important 
ase in appli
ations. The trivial solution forms an invariantsubspa
e under the a
tion of F in Rn+1 and bifur
ating nontrivial solutions break thesubspa
e. Werner [49℄ gives a general theory of subspa
e-breaking bifur
ation. A di�erent
ase but with 
omparable results arises when F (x; �) satis�es a symmetry 
ondition (see[48℄, [51℄).(ii) In the absen
e of any spe
ial features (for example, symmetry) a bifur
ation where two(nontrivial) solution 
urves interse
t will not typi
ally arise in a one parameter problemF (x; �) = 0. In this 
ase one needs two parameters to dete
t and 
ompute bifur
ationpoints (see [33℄, [18℄,[23℄).7 Bifur
ation in Nonlinear ODEsThe bifur
ation theory in these notes is given for �nite dimensional problems. However severalof the theoreti
al results on bifur
ation 
an be applied to in�nite dimensional problems involvingnonlinear ODEs by use of the shooting method, whi
h also provides a 
omputational tool. Infa
t Poin
ar�e's analysis of bifur
ation of periodi
 orbits in ODEs using the Poin
ar�e se
tion isthe �rst example of the use of a shooting method to prove analyti
al results. The use of shootingto study steady bifur
ations in nonlinear boundary value problems (BVPs) seems to have been
onsidered �rst by J.B.Keller in 1960. The treatment here is based on Keller's arti
le [27℄. Ana

ount of the numeri
al analysis of shooting methods for nonlinear BVPs is given in [24℄.30



First re
all a standard theorem of existen
e, uniqueness and 
ontinuity with respe
t to initialdata for systems of ordinary di�erential equations (ODEs) of the formu0 = f(t;u); t > a (7.1)with initial 
ondition u(a) = � (7.2)where u(t) 2 Rn is to be found for t > a; f : R �Rn ! Rn is given, � 2 Rn is given, and a 2 Ris given.Theorem 7.1 Suppose f is 
ontinuous on [a; b℄� Rn , and supposekf(t;u)� f(t;v)k � Lku� vk (7.3)for some L > 0 and for t 2 [a; b℄ and all u;v 2 Rn . Then for any � 2 Rn the IVP (7.1), (7.2)has a unique solution u = u(t;�) de�ned for t 2 [a; b℄. Moreover u is Lips
hitz 
ontinuous in�, and in fa
t ku(t;�)� u(t;�)k2 � eL(t�a)k�� �k2for all �;� 2 Rn .Remarks1. In many problems of interest (7.3) will not be true over all u;v 2 Rn , but ratherover all u;v 2 B(�; r) for some � 2 Rn ; r > 0 �xed. In this 
ase a similar theorem holds, butthe solution may exist only for t 2 [a; b0℄ with b0 = minfb; r=Lg.2. The numeri
al solution of (7.1), (7.2) over �nite ranges of t > a is now well understood.Many 
odes exist in whi
h a user spe
i�es f ; a; b and � and a required toleran
e, and theprogram returns the value of u(b) at b or at any intermediate points between a and b. We willassume that (7.1), (7.2) have a unique solution whi
h 
an be found numeri
ally for t 2 [a; b℄,with b > a.7.1 The shooting method for ODEsConsider the se
ond order ODE�y00 � g(t; y; y0) = 0; t 2 [a; b℄ (7.4)31



subje
t to the boundary 
onditions a0y(a)� a1y0(a) = � (7.5)b0y(b) + b1y0(b) = � (7.6)with ja0j + ja1j 6= 0; jb0j + jb1j 6= 0. Here it is assumed that g(t; y1; y2) is 
ontinuous onD := f(t; y1; y2) : t 2 [a; b℄; y21 + y22 <1g and satis�es a uniform Lips
hitz 
ondition in y1 andy2. To solve this BVP 
onsider the asso
iated initial value problem (IVP)�u00 � g(t; u; u0) = 0 (as in (7.4)) (7.7)subje
t to the initial 
onditionsa0u(a)� a1u0(a) = � (as in (7.5)) (7.8)and 
0u(a)� 
1u0(a) = s; (7.9)where s is a parameter whi
h will be determined below. We 
hoose 
0; 
1 s.t.d := a1
0 � a0
1 6= 0: (7.10)Then (7.8), (7.9) are independent initial 
onditions and the matrix 24 a0 �a1
0 �
1 35 is invert-ible. From Theorem 7.1 we know that (7.7){(7.9) has a unique solution, whi
h we denote byu(t; s); t > 0; s 2 R. To solve (7.4){(7.6) we need to �nd s su
h thatf(s) = 0 (7.11)where f(s) is de�ned by the right-hand boundary 
ondition (7.6)f(s) = fb0u(b; s) + b1�u�t (b; s)� �g: (7.12)Thus the solution of (7.4){(7.6) is redu
ed to solving the nonlinear problem (7.11) where f isimpli
itly de�ned in terms of solutions of (7.7){(7.9).The numeri
al analysis of shooting methods for solving (7.4){(7.6) where solutions of (7.7){(7.9) are evaluated numeri
ally is given in [24℄.The equivalen
e of (7.4){(7.6) to (7.11) is given in the following lemma (see [24℄,[27℄).32



Lemma 7.2 (i) If s0 solves (7.11) then y(t) = u(t; s0) solves (7.4){(7.6). If y(t) solves (7.4){(7.6) then s0 = 
0y(a)� 
1y0(a) solves (7.11).(ii) s0 is the unique solution of (7.11) if and only if y(t) is the unique solution of (7.4){(7.6).Proof (i) Suppose f(s0) = 0 then y(t) = u(t; s0) solves (7.4){(7.6). Conversely if y(t) solves(7.4){(7.6) then set s0 = 
0y(a) � 
1y0(a). By uniqueness of solutions to initial value problemsu(t; s0) = y(t) and f(s0) = 0.(ii) See Theorem 2 [27℄ where a more general problem is 
onsidered. 2To analyse and solve (7.7){(7.9) we redu
e to a �rst order system. To do this we set u1 = u,u2 = u0 = u01. Then (7.7) be
omes the 2� 2 system24 u01u02 35 = 24 u2�g(t; u1; u2) 35 =: f(t;u) (7.13)and (7.8), (7.9) be
ome (using (7.10)),24 u1(a)u1(a) 35 = 1d 24 �
1 a1�
0 a0 3524 �s 35 ; (7.14)and so (7.13), (7.14) has a unique solution using Theorem 7.1.To implement Newton's method for (7.11) we need to be able to evaluate not only f(s)but also fs(s) = �b0w(b; s) + b1�w�t (b; s)� where w = �u�s . We obtain an equation for w bydi�erentiating (7.7){(7.9) with respe
t to s to get the IVP�w00 � gu(t; u; u0)w � gu0(t; u; u0)w0 = 0;a0w(a) � a1w0(a) = 0;
0w(a)� 
1w0(a) = 1: 9>>>=>>>; (7.15)(Note 0 always means di�erentiation with respe
t to t.) This system together with (7.7){(7.9)
an be redu
ed to a �rst order system of dimension 4 whi
h we 
an solve using standard ODEsoftware. We illustrate this by means of an example.Example 7.3 Consider the boundary value problem�y00 + ey = 0;y(0) = 0; y(1) = 0; 9=; (7.16)33



and the 
orresponding IVP �u00 + eu = 0;u(0) = 0; u0(0) = s: 9=; (7.17)Denote the solution by u(t; s). The nonlinear problem (7.11) isf(s) := u(1; s) = 0: (7.18)To �nd fs, set w = �u�s , then di�erentiate (7.17) with respe
t to s�w00 + euw = 0;w(0) = 0;w0(0) = 1: 9>>>=>>>; (7.19)From the solution of this we obtain fs(s) = w(1; s).We solve (7.17), (7.19) simultaneously by the substitutionsu1 = u; u2 = u0 = u01;u3 = w; u4 = w0 = u03;to obtain a �rst order system of four equations:26666664 u1u2u3u4
377777750 = 26666664 u2exp(u1)u4exp(u1)u3

37777775with initial 
ondition 26666664 u1u2u3u4
37777775t=0 = 26666664 0s01

37777775 :We solve this system up to t = 1, from whi
h we obtainf(s) = u1(1); fs(s) = u3(1):If s is a guess to the solution of (7.11) then the values of f(s) and fs(s) 
an be used to generatea new guess for s using Newton's method, and this pro
ess 
an be iterated.34



7.2 Analysis of parameter dependent ODEsAs mentioned at the start of this se
tion, the shooting method 
an be used as a te
hnique fortheoreti
al analysis as well as numeri
ally solving problems.Example 7.4 (Re
all Example 2.3). Prove that nontrivial solutions exist for the followingBVP �y00 � � sin y = 0;y0(0) = 0; y0(l) = 0: 9=; (7.20)To prove this we use again the shooting approa
h and 
onsider the IVP�u00 � � sinu = 0;u0(0) = 0; u(0) = s: 9=; (7.21)Note that the solution u depends on t; s and also �, ie. u = u(t; s; �). In view of the right handboundary 
onditions in (7.20), we 
onsiderf(s; �) = �u�t (l; s; �) = 0: (7.22)By uniqueness for the IVP (7.21) we havef(0; �) = 0 for all � 2 R:By Lemma 7.2, (7.22) is equivalent to (7.20), so nontrivial solutions y of (7.20) bifur
ate at� = �0 if and only if nontrivial solutions s of (7.22) bifur
ate at � = �0. To prove the latterassertion we use Theorem 6.2, for whi
h we need fs and fs�. So set w = �u�s and di�erentiate(7.21) with respe
t to s to obtain �w00 � �(
os u)w = 0;w0(0) = 0; w(0) = 1; 9=; (7.23)with solution w = w(t; s; �). Now when s = 0; u = 0 (by uniqueness for (7.21)) and (7.23)implies that w(t) = w(t; 0; �) satis�es the linear 2nd order ODE�w00 � �w = 0: (7.24)Thus w(t) = A sinp�t+B 
osp�t, and to satisfy the boundary 
onditions, we have A = 0; B =1. Then, by (7.22) fs(0; �) = �w�t (l; 0; �) = �p� sin(p�l): (7.25)35



This vanishes for � = �0 = m2�2l2 ; m = 0; 1; 2:::: (In the appli
ation of the bu
kling of a rodthe 
ase � = 0 is ruled out on physi
al grounds.) To 
he
k if bifur
ation o

urs at � = �0, wehave to 
ompute fs�(0; �0). To do this set v = �w�� ;and di�erentiate (7.23) with respe
t to � to get�v00 � (
os u)w + �(sinu)�u��w � �(
os u)v = 0v0(0) = 0; v(0) = 0: 9=; (7.26)At s = 0; u = 0, and so v(t) = v(t; 0; �) satis�es�v00 � �v = wv0(0) = 0; v(0) = 0: 9=; (7.27)Bifur
ation o

urs at �0 if fs�(0; �0) = �v�t (l; 0; �0) 6= 0: (7.28)Suppose (7.28) does not hold. Then v(t) = v(t; 0; �0) satis�es (7.27) with � = �0, together withv0(l) = 0: (7.29)Then (7.27) impliesZ l0 w2 = �Z l0 v00w � �0 Z l0 vw= +Z l0 v0w0 � �0 Z l0 vw by (7.29)= �Z l0 vw00 � �0 Z l0 vw sin
e w0(0) = 0 = w0(l)= Z l0 v(�w00 � �0w) = 0 by (7.24);whi
h is impossible sin
e w(t) = w(t; 0; �0) = p�0 
osp�0t and �0 6= 0. So bifur
ation from thetrivial solution o

urs at � = �0 = m2�2l2 ; m = 1; 2; :::.7.3 Cal
ulation of fold points in ODEs using shootingWe 
onsider this te
hnique via an example. See also Seydel [45℄.
36



Example 7.5 Consider the following nonlinear ODE:�y00 � � exp(y) = 0; y(0) = 0 = y(1):Using the development in Example 7.4 we set up an asso
iated IVP and f(s) := u(1; s; �). To
al
ulate the values of f and its derivatives in the shooting method, we have the three initialvalue problems: �u00 = �euu(0) = 0u0(0) = s �w00 = �euww(0) = 0w0(0) = 1 �v00 = �euv + euv(0) = 0v0(0) = 0Then f(s; �) = u(1; s; �); fs(s; �) = w(1; s; �); f�(s; �) = v(1; s; �):We may follow the solution 
urve of f(s; �) = 0 numeri
ally by 
ontinuation with respe
t to sor �, with a 
he
k on size of jfsj; jf�j. If one of these be
omes small then we use the other as aparameter. If they are not both zero then 
urve has only turning points. Observe also that whens = 0; � = 0 we have u = 0; so f(0; 0) = 0;w = t; so fs(0; 0) = 1;v = �12 t2; so f�(0; 0) = �12 :We may use (0; 0) as the starting point for 
ontinuation. To solve for u; v; w simultaneously, setu1 = u; u2 = u0; u3 = w; u4 = w0; u5 = v; u6 = v0. Then the three problems be
ome:26666666666666664
u1u2u3u4u5u6u7

37777777777777775
0
=
26666666666666664

u2�u7 exp(u1)u4�u7 exp(u1)u3u6�u7 exp(u1)u5 � exp(u1)0
37777777777777775 ; with

26666666666666664
u1u2u3u4u5u6u7

37777777777777775 =
26666666666666664

0s0100�
37777777777777775 at t = 0:

For any (s; �) we solve this system by any numeri
al routine, and thenf(s; �) = u1(1); fs(s; �) = u3(1); f�(s; �) = u5(1): (7.30)These may be used in a 
ontinuation method as des
ribed in x4.37



8 Hopf Bifur
ationAs was seen in Example 2.2, one way a steady state of _x = F (x; �) 
an lose stability as � variesis when a 
omplex pair of eigenvalues of Fx(x; �) 
rosses the imaginary axis. This situation isdes
ribed by the 
lassi
al Hopf bifur
ation theorem [19℄.Theorem 8.1 (Hopf Bifur
ation) Let F 2 C2(Rn+1) and assume(i) F (x0; �0) = 0,(ii) Fx(x0; �0) has a simple, purely imaginary eigenvalue �(�0) = +i�0, �0 6= 0, with eigen-ve
tor �0 + i 0, and no other eigenvalues on the imaginary axis apart from at �i�0,(iii) � dd�Re(�)	 ����=�0 6= 0.Then there exists an a0 > 0 and a parameter a su
h that _x = F (x; �) has a smooth bran
h ofT (a)-periodi
 solutions (x(t; a;�(a)); �(a)) for 0 � t � T (a), for all jaj < a0 with the followingproperties x(t; a;�(a)) = xs(�(a)) + a(
os(�0t)�0 � sin(�0t) 0) +O(a2);�(a) = �0 +O(a2);T (a) = 2��0 +O(a2);where xs(�(a)) denotes the steady solution at � = �(a).The theorem states that at (x0; �0) there is a birth of periodi
 solutions that may beparametrised by the amplitude a. If 
onditions (i),(ii) and (iii) hold then (x0; �0) is 
alleda Hopf bifur
ation point.Note that sin
e F 0x is nonsingular, the Impli
it Fun
tion Theorem ensures that S (thesolution set of the steady problem) may be parametrised by � near � = �0. Using the approa
hin the proof of part (b) of Theorem 5.3 extended to C n+1 shows that a (real or 
omplex) simpleeigenvalue of Fx(x(�); �) is a smooth fun
tion of � near �0. Hen
e we 
an write Re(�) =Re(�(�)).Condition (iii) in Theorem 8.1 is another example of a nondegenera
y 
ondition where aneigenvalue smoothly 
rosses the imaginary axis.Theorem 8.1 is due to Hopf in a famous paper in 1942, though in 1929 Andronov was the�rst to formulate a theorem and Poin
ar�e's work in 1892 
ontained examples of this type of38



bifur
ation. So this phenomenon is now often 
alled Poin
ar�e/Andronov/Hopf bifur
ation. Ani
e treatment of the theory of Hopf bifur
ation with referen
es to the work of Andronov andPoin
ar�e is given in Wiggins [52℄.8.1 Cal
ulation of a Hopf Bifur
ation PointIf a good estimate of the Hopf bifur
ation point is known then it may be 
omputed exa
tlyby setting up and solving an appropriate extended system (
f. the fold point system in (5.4).)Consider the nonlinear system H(y) = 0 (8.1)where H(y) := 0BBBBBBBBB�
F (x; �)Fx(x; �)�� � 
T�� 1Fx(x; �) + ��
T 

1CCCCCCCCCA ; y := 0BBBBBBBBB�
x�� �
1CCCCCCCCCA 2 R3n+2 (8.2)

with H : R3n+2 ! R3n+2 . This is the obvious system to write down as 
an be seen from
onditions (i) and (ii) in Theorem 8.1. There are two 
onditions on the eigenve
tor �+ i sin
ea 
omplex ve
tor requires two real normalisations.The following theorem is readily proved (see [16℄).Theorem 8.2 Let (x0; �0) be a Hopf bifur
ation point (i.e. (i), (ii) and (iii) of Theorem 8.1hold) and assume 
 has non-zero proje
tion on span f�0g. Then y0 := (xT0 ;�T0 ; �0; T0 ; �0)T 2R3n+2 is a regular solution of (8.1).Note that fold points also satisfy (8.1) sin
e if (x0; �0) is a fold point and �0 2ker(Fx(x0; �0)) then y0 = (x0;�0; �0;0; 0) satis�es H(y0) = 0. In fa
t y0 is a regular so-lution if the 
onditions of Theorem 5.3 hold.System (8.1) was �rst introdu
ed by Jepson [21℄ and independently by Griewank and Red-dien [16℄ who showed that the linearisation of (8.1) 
ould be redu
ed to solving systems witha bordered form of F 2x(x; �) + �2I. This is natural sin
e an alternative system for a Hopfbifur
ation 
an be derived by using the fa
t that the se
ond and fourth equations of (8.1) 
anbe written as (Fx(x; �) + �2I)v = 0 with v = � or  .39



To eliminate the possibility of 
omputing a fold point rather than a Hopf bifur
ation point,Werner and Janovsky [50℄ used the systemR(y) = 0 (8.3)where R(y) = 0BBBBBB� F (x; �)(F 2x(x; �) + �I)�
T�
TFx(x; �)�� 1
1CCCCCCA ; y = 0BBBBBB� x���

1CCCCCCA 2 R2n+2 (8.4)in whi
h R : R2n+2 ! R2n+2 , and where 
 is a 
onstant ve
tor. The last equation in (8.3)ensures that the solution 
annot be a fold point. The system R(y) = 0 is 
losely related to asystem derived by Roose and Hlava
ek [41℄, but (8.3) has several advantages when 
omputingpaths of Hopf bifur
ations if a se
ond parameter is varying (see [50℄).The fa
t that (8.1) or (8.3) is regular at a Hopf bifur
ation is important sin
e Newton'smethod (or some variant) will probably be used to solve the system. Just as is the 
ase in x5for the 
omputation of a fold point, there are eÆ
ient ways of solving the Ja
obian systems inNewton's method. In [16℄ an eÆ
ient pro
edure is des
ribed for the solution of the (3n+2)�(3n+2) Ja
obian systems arising from (8.1) by solving systems with a bordering of (F 2x(x; �)+�2I).We do not give the details here. A ni
e summary is given in [1℄.8.2 The Dete
tion of Hopf Bifur
ations in Large SystemsThe extended systems in x8.1 
an only be used when we know we are near a Hopf point. Thefollowing se
tion des
ribes how this might be determined in pra
ti
e.When 
omputing a path of steady solutions of _x = F (x; �) using a numeri
al 
ontinuationmethod it is easy to pass over a Hopf bifur
ation point without \noti
ing" it, sin
e when a
omplex pair of eigenvalues 
rosses the imaginary axis there is no easy dete
tion test based onthe linear algebra of the 
ontinuation method. In parti
ular the sign of the determinant of Fxdoes not 
hange. If n is small then the simplest test is merely to 
ompute all the eigenvaluesof Fx during the 
ontinuation. For large n, say when F arises from a dis
retized PDE, su
han approa
h will usually be out of the question. The eÆ
ient dete
tion of Hopf bifur
ations inlarge systems is an important and, as yet, unsolved problem. The review arti
le [8℄ dis
ussesin detail both 
lassi
al te
hniques from 
omplex analysis and linear algebra-based methods. It40



is natural to try to use 
lassi
al ideas from 
omplex analysis for this problem sin
e then oneseeks an integer, namely the number of eigenvalues in the unstable half-plane, and 
ountingalgorithms are appli
able. This is explored for large systems in [14℄ but there is still work to bedone in this area.The rightmost eigenvalues of Fx(x; �) determine the (linearised) stability of the steadysolutions of _x = F (x; �) and one strategy for the dete
tion of Hopf bifur
ation points is tomonitor a few of the rightmost eigenvalues as the path of steady state solutions is 
omputed.(Note that the rightmost eigenvalue is not a 
ontinuous fun
tion of �, see [36℄.) Standarditerative methods, e.g. Arnoldi's method and simultaneous iteration, 
ompute extremal ordominant eigenvalues, and there is no guarantee that the rightmost eigenvalue will be 
omputedby dire
t appli
ation of these methods to Fx. The approa
h in [8℄ and [3℄ is to �rst transformthe eigenvalue problem using the Generalised Cayley TransformC(A) = (A� �1I)�1(A� �2I); �1; �2 2 R;whi
h has the key property that if � 6= �1 is an eigenvalue of A then � := (�� �1)�1(�� �2) isan eigenvalue of C(A). Also, Re(�) � (�)(�1+�2)=2 if and only if j�j � (�)1. Thus eigenvaluesto the right of the line Re(�) = (�1+�2)=2 are mapped outside the unit 
ir
le and eigenvalues tothe left of the line mapped inside the unit 
ir
le. In [8℄ and [3℄ algorithms based on 
omputingdominant eigenvalues of C(Fx) using Arnoldi or simultaneous iteration are presented, with
onsequent 
al
ulation of rightmost eigenvalues of Fx. These algorithms were tested on a varietyof problems, in
luding systems arising from mixed �nite element dis
retizations of the Navier-Stokes equations. Quite large problems 
an in fa
t be ta
kled. Indeed, in [15℄ the problemof the stability of 
ow over a ba
kward fa
ing step is dis
ussed in detail and the rightmosteigenvalues of a system with over 3 � 105 degrees of freedom are found using the GeneralisedCayley transform allied with simultaneous iteration.However it was later noted (see [31℄) that sin
eC(A) = I + (�1 � �2)(A� �1I)�1;Arnoldi's method applied to C(A) builds the same Krylov subspa
e as Arnoldi's method appliedto the shift-invert transformation (A��1I)�1. Thus if Arnoldi's method is the eigenvalue solverthere is no advantage in using the Cayley transform, whi
h needs two parameters, over thestandard shift-invert transformation (see [31℄).41



One 
an think of the approa
h in [3℄ as the 
omputation of the subspa
e 
ontaining theeigenve
tors 
orresponding to the rightmost eigenvalues of Fx. A similar theme, derived usinga 
ompletely di�erent approa
h, is des
ribed by [42℄ and re�ned by [5℄. In these papers thesubspa
e 
orresponding to a set of (say rightmost) eigenvalues is 
omputed using a hybriditerative pro
ess based on a splitting te
hnique. Roughly speaking a small subspa
e is 
omputedusing a Newton-type method and the solution in the larger 
omplementary spa
e is found usinga Pi
ard (
ontra
tion mapping) approa
h. One advantage is that the Ja
obian matrix Fx neednever be evaluated.When dete
ting Hopf bifur
ations in the Navier-Stokes equations using mixed �nite elements,a generalised eigenvalue problem of the form A� = �B� arises where B is singular. A 
ommonmethod is to apply Arnoldi's method to the shifted-inverted matrix (A � �B)�1B, whi
h issingular sin
e B is singular. In [30℄ it is noted that great 
are is needed here when usingArnoldi's method be
ause of the generation of spurious eigenvalues due to perturbation of thezero eigenvalue. The details are quite te
hni
al and are omitted.Finally we note that 
hapter 5 of [45℄ 
ontains an overview of Hopf dete
tion te
hniques.Referen
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