
Numerial Methods for Bifuration ProblemsAlastair SpeneIvan G. GrahamDepartment of Mathematial Sienes, University of BathClaverton Down, Bath BA2 7AY, U.K.February 4, 20021 IntrodutionThis set of leture notes provides an introdution to the numerial solution of bifuration prob-lems. The theory is given for �nite dimensional problems { so we shall require only matrixtheory, �nite dimensional alulus, et. Only the basi priniples for three of the most ommonbifurations will be disussed, but the hope is that after reading these notes a student should beable to takle the original journal papers. Almost all the results extend to in�nite dimensionaloperators de�ned in an appropriate setting, e.g. Banah or Hilbert Spaes.There are many books on bifuration theory { for example Chow & Hale [2℄ gives an all-round treatment, Vanderbauwhede [48℄ gives an early aount of bifuration in the presene ofsymmetries, and the important books by Golubitsky & Shae�er [9℄, and Golubitsky, Stewart& Shae�er [10℄ look at multiparameter bifuration problems using singularity theory. An earlyonferene proeedings is Rabinowitz [37℄, whih ontains one of the �rst papers on the numerialanalysis (as ompared with numerial methods) for bifuration problems written by H. B. Keller[25℄. As might be expeted, early books about the numerial analysis of bifurations wereonferene proeedings, see Mittelmann & Weber [32℄, K�upper et.al. [28℄, K�upper et.al. [29℄,Roose et.al.[40℄ and Seydel et.al. [46℄.H.B. Keller's book [26℄ is a published version of letures on Numerial Methods in BifurationProblems delivered at the Indian Institute of Siene, Bangalore. Rheinboldt's book [39℄ is aolletion of his papers and also gives information and listing of the ode PITCON for numerialontinuation of parameter dependent nonlinear problems. The ode AUTO, developed by Doedel1



[7℄, but with reent extensions by several others, is now the leading piee of software for nonlinearsystems, and an handle steady and time dependent problems, and disretized boundary valueproblems. Seydel [45℄ ontains disussion of numerial methods and many interesting examples.A omprehensive treatment, inluding a full disussion of numerial methods using singularitytheory, is in the reent book by Govaerts [13℄. Beyn [1℄ gives a survey on numerial methods fordynamial systems, inluding methods for homolini and heterolini orbits. In fat, AUTOnow has an option to ompute and follow paths of these orbits.The plan of these notes is as follows. Setion 2 ontains three generi examples, namely afold bifuration, a Hopf bifuration, and bifuration from the trivial solution. Setion 3 ontainsan aount of Newton's method and the Impliit Funtion Theorem. Setion 4 disusses theideas behind Keller's pseudo-arlength numerial ontinuation algorithm [25℄. Setions 5, 6 and8 provide an introdution to the numerial analysis of the three types of bifuration phenomenaintrodued in Setion 2. Setion 7 disusses bifuration theory in nonlinear ODEs using resultsin Setions 5 and 6.There are many phenomena not onsidered here, for example, bifuration in the preseneof symmetry (see for example [51℄ and the books [9℄, [10℄, [48℄) and high order singularities inmultiparameter problems (see [9℄, [10℄, [13℄, [23℄).2 ExamplesBifuration is the study of nonlinear problems with parameters, with the main interest beingthe determination of hanges in solution behaviour as a parameter varies. In partiular, interestentres on how to detet, alulate and lassify points where there is a hange in the typeof solution of the nonlinear problem. This setion ontains some examples of some typialbifuration phenomena.In these notes we shall onsider systems of the formF (x; �) = 0 (2.1)where F : Rn+1 ! Rn , x 2 Rn is the state variable, and � 2 R is a parameter. We shall studythe behaviour of x as � varies, in fat, loosely speaking, � may be thought of as the independentvariable and x as the dependent variable.Problems like (2.1) arise when studying autonomous systems of ordinary di�erential equa-2
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Figure 2.1:tions dxdt = F (x; �); x(0) given, x(t) 2 Rn . (2.2)Steady states (equilibria) of (2.2) are given by dxdt = 0, and hene satisfy (2.1). An importanttopi in the study of systems like (2.2) is the analysis of how the solutions hange as � variesand the determination of hanges in stability. Often a �rst step is to �nd the steady states bysolving (2.1) for a range of � values and then determine any hanges in stability of these steadystates. This theme is desribed in the �rst example.Example 2.1 Consider f : R2 ! R de�ned byf(x; �) = �� x2 = 0:For � < 0 there are no real solutions; for � = 0, x = 0 (twie); and for � > 0 there are twosolutions, x = �p�. The steady solutions are shown by the solid line in �gure 2.1. Considernow the solutions of the ODE xt = �� x2; x(t) 2 R; x(0) given:If �� x(0)2 < 0, then initially xt < 0 and x dereases in time. If �� x(0)2 > 0 then xt > 0 andx inreases in time. The trajetories (dashed lines) for 4 di�erent initial values (denoted Æ) areshown in Figure 2.1. Thus for � > 0; x = p� is a stable equilibrium, and for x = p�� is anunstable equilibrium. 23



It is lear that even in this simple example, knowledge of the zeros of f(x; �) = 0 helps usunderstand the behaviour of solutions of xt = f(x; �). It is instrutive before reading on toarry out a similar analysis for xt = �x� x3.The type of solution behaviour exhibited in Example 2.1 ours in many physial examples.The point (x; �) = (0; 0) is alled a fold point (turning point or, in the dynamial systemsliterature, a saddle node) and we return to this kind of phenomenon in Setion 5.A very lear aount of the stability of nonlinear systems is given in Chapter 9 of [20℄,where it is proved (p.187) that if x is a stable steady state for a given �, then the Jaobianmatrix Fx(x; �) (i.e. the matrix with the (i; j)th omponent �Fi�xj (x; �)) has no eigenvalues withpositive real part. Hene stability of a steady state of (2.2) is lost when one or more eigenvaluesof Fx(x; �) moves into the right half-plane as � varies. It is an instrutive exerise to see inExample 2.1 how the eigenvalue of the (1�1) Jaobian matrix hanges along the path of steadystate solutions.In Example 2.1 it was trivial to �nd the path of steady states analytially. In general thesolutions to a nonlinear problem F (x; �) = 0 will not be known analytially. In the followingsetions we shall desribe how to ompute suh solution paths and reognise the parametervalues at whih the number of solutions hanges.The following example is two dimensional, and it is more onvenient to use (x; y) rather thanx.Example 2.2 Consider the pair of ODEs0� xtyt 1A = 0� � 1�1 � 1A0� xy 1A� (x2 + y2)0� xy 1A :Clearly (x(t); y(t)) = 0 is a solution for any � 2 R. For any � > 0 eah (x(t); y(t))T satisfyingx(t) = p� sin t; y(t) = p� os t; is a nontrivial periodi solution. The Jaobian of the right handside is 0� � 1�1 � 1A�0� 3x2 + y2 2xy2xy x2 + 3y2 1A :At (x; y) = (0; 0) the eigenvalues of this matrix are �� i and so the trivial solution is stable for� < 0 and unstable for � > 0. On the other hand a short alulation shows that the eigenvaluesof this matrix on the above nontrivial solution are �� � p�2 � 1, whih always have negativereal part when � > 0 and so the periodi solution is stable. (See also x1 in [26℄.)4
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Figure 2.2:In summary: As � passes through zero there is a birth of periodi orbits in (2.2). Theeigenvalues of 0� � 1�1 � 1A are �� i, and these are purely imaginary at � = 0. This is a simpleexample of a Hopf bifuration. We disuss this topi in Chapter 8. 2Example 2.3 Consider the di�erential equationd2ydt2 + � sin y = 0 (2.3)where � > 0 is given and y(t) is to be found on t 2 [0; l℄ subjet to the boundary onditionsdydt (0) = 0 = dydt (l) : (2.4)This models the behaviour of an elasti rod oupying 0 � t � l whih is �xed at eah end andsubjet to a fore � in the diretion of the rod (see [2℄, Chap. 1 for a �gure and more detaileddisussion).Here y(t) represents the angle the tangent to the rod at a distane t along the rod makes tothe horizontal. Physially, as � inreases the rod an bukle. Obviously the trivial solution y � 0solves (2.3), (2.4) for all �. The interesting solution is the bukled state y 6� 0. The di�erentialequation is tratable to theoretial analysis (the �rst step is to multiply (2.3) by dydt and inte-grate) and it is shown in [2℄ that nontrivial solutions emanate from (y; �) = (0;m2�2=l2); m =1; 2; 3; : : : as shown in Figure 2.3. (The value of y(0) is plotted on the vertial axis). The5



PSfrag replaements
�

y(0)y(0) = �
�2l2 4�2l2 9�2l2Figure 2.3:nontrivial branhes orrespond to bukled states. This is lassial \bifuration from the trivialsolution" and it was the analysis of this and similar bukling problems that prompted the initialstudies in bifuration theory.In pratise we may ompute bukled states by approximating (2.3), (2.4). One way to dothis is to set h = l=n (n 2 Z) and introdue the meshti = ih ; i = 0; � � � ; nof equally spaed points on [0; l℄. Then set yi = y(ti) and approximated2ydt2 (ti) by 1h2 fyi�1 � 2yi + yi+1g :Substituting in (2.3) and foring equality gives the approximation1h2 fYi�1 � 2Yi + Yi+1g+ � sinYi = 0; i = 1; : : : ; (n� 1); (2.5)where Yi ' y(ti). We an approximate (2.4) byY1 � Y0h = 0 = Yn � Yn�1h : (2.6)Now using (2.5) for i = 1; ::; (n� 1) together with (2.6) yields the (n� 1) dimensional nonlinear
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system F (Y ; �) = AY + � sin(Y );
= 1h2 26666666664

�1 11 �2 11 �2 11 �1
37777777775
26666666664

Y1
Yn�1

37777777775+ �26666666664
sinY1
sinYn�1

37777777775 = 0: (2.7)
Clearly Y = 0 is always a solution. It is of interest to �nd out (i) For what � do nontrivial Yexist? (ii) Do they approximate the � given by the ordinary di�erential equation theory outlinedabove? (iii) What is the orresponding Y ? (iv) How would we ompute Y as � varies? 22.1 Some Multivariate CalulusFor x;y 2 Rn ; xTy = Xi=1n xiyi; jjxjj = fxTxg 12 . For r > 0 de�neB(x; r) = fy 2 Rn : jjx� yjj < rg open ballB(x; r) = fy 2 Rn : jjx� yjj � rg losed ball :If D is an open subset of Rn , then F : D ! Rn is ontinuous at x 2 D if 8" > 0 9Æ > 0 s.t.y 2 B(x; Æ) =) F (y) 2 B(F (x); ").A funtion f : D � Rn ! R is alled ontinuously di�erentiable at x if �f�xi exists and isontinuous at x for eah i = 1; � � � ; n.If F : D � Rn ! Rn and F (x) = (f1(x); � � � ; fn(x))T then the Jaobian of F is the matrix Fxwhih is de�ned 8x 2 D by (Fx(x))ij = �fi�xj (x).(F is alled ontinuously di�erentiable at x if �fi�xj exists and is ontinuous at x for eah i; j.De�nition A sequene of vetors fxkg1k=1 � Rn is said to onverge to x� 2 Rn if jjxk�x�jj ! 0for some vetor norm jj � jj on Rn .Remark Sine all norms on Rn are equivalent, the hoie of norm in this de�nition is arbitrary.De�nition If a sequene of approximate solutions fxkg � Rn are onverging to a solutionx� 2 Rn we say the onvergene is order p ifjjx� � xk+1jj � Cjjx� � xkjjp; 8k � o ;with C independent of k. 7



If p = 1 onvergene is alled linear.If p = 2 onvergene is alled quadrati.3 Newton's Method and the Impliit Funtion TheoremThe main omputational tool to solve systems like (2.1) is Newton's method, whih we disuss inx3.1. The main theoretial tool, whih also has important numerial impliations is the ImpliitFuntion Theorem whih we disuss in x3.2. Two appliations of the Impliit Funtion Theoremare disussed in x3.3.Reall that if G : D � Rn ! Rn , and k � k denotes a norm on Rn then G is alled Lipshitzontinuous (with respet to k � k) if there exists  2 R, suh that for all x;y 2 DkG(x)�G(y)k � kx� yk; (3.1)and we write G 2 Lip(D). Throughout these letures k � k will denote the Eulidean normkxk = fxTxg1=2 on Rn and also the matrix norm indued by the Eulidean norm. With respetto this norm, B(x; r) will denote the open ball in Rn with entre x and radius r, while �B(x; r)denotes its losure.3.1 Newton's Method for SystemsA very nie treatment of Newton's method for systems of nonlinear equations is given in [6℄. To�nd a root, x0 say, of F (x) = 0, Newton's method for a given starting guess x0 isxk+1 = xk + dk; where Fx(xk)dk = �F (xk); k � 0: (3.2)Theorem 3.1 Assume(a) F : Rn ! Rn is ontinuously di�erentiable in an open onvex set D � Rn , and Fx 2Lip(B(x0; r)), for some r > 0,(b) Fx(x0) is nonsingular.Then provided x0 satis�es x0 2 B(x0; �), for small enough � > 0, Newton's method is wellde�ned and xk ! x0 quadratially. (See [6℄ for a fuller aount.)In fat � an be given expliitly as minfr; 1=2�g, where � = k(Fx(x0))�1k, and thisapproahes 0 as r ! 0 or � !1 or  !1. 8



It is interesting to formulate the matrix eigenvalue problem as a system of (n+1) equationsin (n+ 1) unknowns, as is done in the following example.Example 3.2 Let A be a real symmetri matrix, with simple eigenvalue �0 and orrespondingeigenvetor �0 satisfying �T0 �0 = 1. Consider the problem of omputing (�0; �0) by Newton'smethod. De�ne F : Rn+1 ! Rn+1 byF (y) = 0� A�� ���T�� 1 1A = 0; where y = 0� �� 1A 2 Rn+1 : (3.3)If we apply Newton's method to ompute the eigenpair (�T ; �)T then the �rst step in verifying theonvergene would be to hek that the Jaobian matrix Fy is nonsingular. A simple alulationshows Fy(y) = 0� A� �I ��2�T 0 1A :The proof that this is nonsingular at yT0 = (�T0 ; �0) may be obtained diretly or by appliationof ase (ii) of the ABCD Lemma, whih we now state.Lemma 3.3 (\ABCD Lemma" (Keller [25℄)) Given an n � n real matrix A, , b 2 Rn ,d 2 R, onsider the (n+ 1)� (n+ 1) bordered matrixM = 0� A bT d 1A :(i) If A is nonsingular then M is nonsingular if and only if d� TA�1b 6= 0.(ii) If rank(A) = n� 1, M is nonsingular if and only if Tb 6= 0 for all  2 ker(AT ) n f0g,andT� 6= 0 for all � 2 ker(A) n f0g.(iii) If rank(A) � n� 2, then M is singular.Clearly di�erent normalisations for the eigenvetors are possible. Replaing �T� = 1 in(3.3) with eTr � = 1, where er is the unit vetor with (er)i = Æir, one an show that Newton'smethod applied to the eigenvalue problem an be interpreted as a version of inverse iteration(see [47℄ for more details). 9



3.2 The Impliit Funtion TheoremThe Impliit Funtion Theorem is obtained as an appliation of the Contration Mapping The-orem to a nonlinear system with a parameter. So, let us �rst reall the Contration MappingTheorem.Theorem 3.4 (Contration Mapping Theorem) Suppose(i) G 2 Lip�( �B(x0; r)) for some r > 0, with 0 � � < 1;(ii) kx0 �G(x0)k � (1� �)r.Then(a) For all x0 2 �B(x0; r), the sequene xk de�ned by xk+1 = G(xk) onverges to a limitx? 2 �B(x0; r);(b) x? is the unique �xed point of G in �B(x0; r).The proof is in most books on nonlinear equations. Other versions of this theorem replaethe assumption (ii) with the requirement that G( �B(x0; r)) � �B(x0; r). For numerial analysispurposes the present version is better sine heking (ii) requires only heking that G(x0)should not be too far from x0. The proof of this version of the Contration Mapping Theoremis in [38℄.The ontration mapping theorem has many uses. One example of its use is in the analysisof the modi�ed Newton method, given by the �xed point iteration xk+1 = G(xk), whereG(x) = x� Fx(x0)�1F (x): (3.4)Using the Contration Mapping Theorem it an be shown that if x0 is suÆiently lose to asolution x0 of F (x) = 0 then xk ! x0 linearly as k !1.Another example of its use is in the proof of the Impliit Funtion Theorem. Consider theparameter dependent problem F (x; �) = 0;for (x; �) 2 D, where F : D � Rn+1 ! Rn . Let S be the solution setS = f(x; �) 2 D : F (x; �) = 0g:10



It is natural to ask the following question. If (x0; �0) 2 S and � is near �0, is there a orre-sponding unique x(�) suh that (x(�); �) 2 S and x(�0) = x0? If so, we say x is parametrisedby � near (x0; �0), written \x = x(�) near (x0; �0)". The Impliit Funtion Theorem providesthe answer, but �rst onsider a simple example.Example 3.5 Consider f(x; �) = x2 + �2 � 1:Clearly if jx0j < 1 and (x0; �0) 2 S then x = x(�) near (x0; �0).Sine F now depends on x and �, we use the notation Fx to mean the n� n matrix with(i; j)th element �Fi�xj , and by F � we mean the n� 1 vetor with elements �Fi�� : If (x0; �0) 2 Dwe write F 0 = F (x0; �0); F 0x = Fx(x0; �0);F 0� = F �(x0; �0); et :The Impliit Funtion TheoremIn the proof of this theorem we assume that for all (x; �); (x; �); (y; �) 2 D,(A1) kF (x; �)� F (x; �)k � �2j�� �j(A2) kFx(x; �)� Fx(y; �)k � 1kx� yk(A3) kFx(x; �)� Fx(x; �)k � 2j�� �j:Clearly (A1{A3) hold if F has two ontinuous derivatives with respet to (x; �) 2 D. In manyappliations in fat F will be in�nitely ontinuously di�erentiable on D, whih we write asF 2 C1(D).Theorem 3.6 (Impliit Funtion Theorem) Suppose (A1{A3) hold and suppose there exists(x0; �0) 2 D suh that(A4) F (x0; �0) = 0,(A5) Fx(x0; �0) is nonsingular.Then there exist neighbourhoods B(�0; "�); B(x0; "x) of �0; x0 suh that for all � 2 B(�0; "�)there exists x(�) 2 B(x0; "x) with 11



(a) F (x(�); �) = 0,(b) x(�) is the unique solution of F (x; �) = 0 in B(x0; "x),() x(�0) = x0,(d) Fx(x(�); �) is nonsingular for all � 2 B(�0; "�),(e) x(�) is ontinuous with respet to � 2 B(�0; "�).Remark If F 2 C1(D) then (e) an be replaed by x 2 C1(B(�0; "�)).Proof The proof of (a),(b) and () uses the Contration Mapping Theorem applied toK(x; �) := x � �F 0x��1 F (x; �), whih is very like the form of the mapping G used in thetheory of the modi�ed Newton method (3.4). (d) follows using 3.1.4 in [6℄, and (e) by standardmanipulation. 2With respet to the parameter dependent problem we make the following de�nition.De�nition 3.7 (x0; �0) 2 S is alled a regular point of S if F 0x is nonsingular. The ImpliitFuntion Theorem an then be applied to show x = x(�) near (x0; �0). If a point (x0; �0) 2 Sis not regular it is alled a singular point.Example 3.8 Consider F (x; �) = 24 x21 + x22 � �x22 � 2x1 + 1 35 :It is lear that the solution set S is the intersetion of the irle entred on the origin withradius p�, and a parabola. (It is helpful to draw a sketh.) Clearly F 2 C1(Rn+1 ) andFx = 24 2x1 2x2�2 2x2 35. Consider (x0; �0) := (0:73; 0:68; 1). Then (x0; �0) 2 S and det(F 0x) =4(x0)1(x0)2+4(x0)2 6= 0: So (x0; �0) is a regular point and the Impliit Funtion Theorem showsthat x = x(�) near (x0; �0). Consider instead (x0; �0) = (1=2; 0; 1=4) 2 S. Then F 0x is found tobe singular. So (x0; �0) is a singular point and we annot onlude that x = x(�) near (x0; �0).(Plotting the path of solutions x(�) against � shows why not.) The diÆulty here is simply thatthe solution set turns around at � = �0 = 14 .This is a speial type of singular point alled a fold or turning point.De�nition 3.9 If (x0; �0) 2 S is a singular point and if Rank(F 0x) = n � 1 then (x0; �) isalled a fold point (or turning point) if F 0� =2 Image (F 0x). In this ase the n�(n+1) augmented12



Jaobian [F 0xjF 0�℄ must have rank n and hene has a subset of n linearly independent olumns.By seleting the variables orresponding to these olumns as the dependent variables we an stillapply the Impliit Funtion Theorem.Example 3.10 Consider again Example 3.8. (x0; �0) = (1=2; 0; 1=4), and hene[F 0xjF 0�℄ = 24 1 0 �1�2 0 0 35 ;whih has full rank. The �rst and third olumns are linearly independent so if we writeG(y; x2) = 24 x21 � �+ x22�2x1 + 1 + x22 35 :The solution set for G = 0 is idential to the solution of F = 0 but x2 is now onsidered to bea parameter and y = (x1; �). Then Gy = 24 2x1 �1�2 0 35 ; whih is nonsingular at (y0; (x2)0) =(12 ; 14 ; 0) so the Impliit Funtion Theorem shows that y = y(x2) near (y0; (x2)0). 2This example shows that hange of parametrisation an remove the problems of a fold point.If a singular point is not a fold point, further analysis is required (see x6).3.3 Two ExamplesWe now give two examplesExample 3.11 (See Example 2.3) Consider the n � 1 dimensional nonlinear system with F :Rn ! Rn�1 given in (2.7). Clearly (Y 0; �0) := (0; �0) 2 S; for all �0 2 R, and[FY jF �℄ = [A� �diag(osY )j sinY ℄= [A� �0Ij0℄ at (Y 0; �0):Now A has the (n�1) eigenvalues �k = n2l2 �2� 2 os k�(n�1)�, (with orresponding eigenfuntionsxk, with xkj = os(k�(2j�1)=2(n�1))) for k = 0; :::; (n�2), whih are distint and hene simple.So if �0 6= ��k for any k then (Y 0; �0) is a regular point, and so near �0 we have Y = Y (�).But if �0 = �k, then Rank(A � �0I) = n � 2, so (Y 0; �0) is a singular point. In additionF 0� = 0 2 Image(A� �0I) = Image(F 0Y ), so (Y 0; �0) is not a fold point either.13



Example 3.12 (Perturbation theory for algebraially simple eigenvalues.)Let A be a real n � n matrix with a simple eigenvalue �0 (i.e. algebrai multipliity is 1) andorresponding eigenvetor �0. If A is perturbed to A+ �B, one question is to �nd the dominantterm in the perturbation of �0.Start the perturbation theory by onsidering the nonlinear system (f Example 3.2 but withoutthe assumption that A is symmetri)F (y; �) := 0� (A+ �B)�� ���T�� 1 1A = 0� 00 1A ; y = 0� �� 1A : (3.5)Clearly with y0 = (�T0 ; �0)T , F (y0; 0) = 0, and Fy(y0; 0) is nonsingular. (This is provedusing part (ii) of Lemma 3.3, though note that the ondition of algebrai simpliity is neededsine A is no longer assumed symmetri.) Thus using the Impliit Funtion Theorem, for smallj�j there exists a unique y(�) suh that F (y(�); �) = 0 and Fy(y(�); �) is nonsingular. The latterresult ensures that �(�) is simple. Sine �(�) 2 C1(R) we an write �(�) = �0+ ��0(0) +O(�2).To �nd the dominant term in the error we need to �nd �0(0). To do this we di�erentiate(A+ �B)�(�) = �(�)�(�) with respet to �, set � = 0, and multiply on the left by  0 2 ker((A��0I)T ) n f0g. This leads to �0(0) =  T0B�0= T0 �0:(Note that  T0 �0 6= 0. If  T0 �0 = 0, then �0 2 Image(A��0I) and dim(ker(A��0I)2) > 1, on-traditing the assumption of algebrai simpliity.) If A is symmetri then �0(0) = �T0B�0=�T0 �0.4 Computation of solution pathsIn this setion we onsider the general problemF (x; �) = 0; (4.1)where F : Rn+1 ! Rn ; F 2 C1(Rn+1 ). SetS = f(x; �) 2 Rn+1 : F (x; �) = 0g: (4.2)Often in appliations one is interested in omputing the whole set S or a ontinuous portion ofit. For example in uid dynamis x may represent the veloity and pressure of a ow, whereas �is some physial parameter suh as the Reynolds number. In pratie S is omputed by �nding14



a disrete set of points on S and then using some graphis pakage to interpolate. So the basinumerial question to onsider is: Given a point (x0; �0) 2 S how would we ompute a nearbypoint on S? Throughout we use the notation F 0 = F (x0; �0); F 0x = Fx(x0; �0), et.If F 0x is nonsingular then the Impliit Funtion Theorem implies that for � near �0 thesolutions of F (x; �) = 0 satisfy x = x(�) with Fx(x(�); �) nonsingular. Hene Theorem 3.1implies that Newton's method for �nding the solution x(�) of F (x(�); �) = 0 with startingvalue x0 will onverge in some ball entred on x(�) for small enough �� �0.A simple strategy for omputing a point of S near (x0; �0) is to hoose a steplength ��, set�1 = �0 +�� and solve F (x; �1) = 0by Newton's method with starting guess x0 = x0. We then know this will work if �� issuÆiently small. However this method will fail (or at best require repeated redution of step��) as a turning point is approahed. For this reason the pseudo-arlength method desribedin the next setion was introdued.4.1 Keller's pseudo-arlength ontinuation [25℄Ideally we would like a method that has no diÆulties near, or passing round, a fold point. Thisisn't unreasonable sine at a fold point there is nothing geometrially \wrong" with the urve,though � is the wrong parameter to use to desribe the urve. In this setion we shall assumethat there is an ar of S suh that at all points in the arRank [FxjF �℄ = n; (4.3)and so any point in the ar is either a regular or fold point of S. The Impliit Funtion Theoremthus implies that the ar is a smooth urve in Rn+1 , and so there is a unique tangent diretionat eah point of the ar.Let t denote any parameter used to desribe the ar. Then along the ar (x; �) = (x(t); �(t)).Suppose (x0; �0) = (x(t0); �(t0)) and denote the tangent at (x0; �0) by � 0 = ( _x0; _�0) where_x = dxdt ; _� = d�dt ;_x0 = _x(t0); _�0 = _�(t0):The tangent � 0 is well de�ned even if (x0; �0) is a fold point and an be omputed in pratieusing the following result. 15



Lemma 4.1 Assume (4.3). Then the tangent at (x0; �0) 2 S satis�es� 0 2 ker [F 0xjF 0�℄: (4.4)Proof Sine F (x(t); �(t)) = 0, di�erentiating with respet to t givesFx(x(t); �(t)) _x(t) + F �(x(t); �(t)) _�(t) = 0:Put t = t0 and we have 24 _x0_�0 35 2 ker [F 0xjF 0�℄ and so the result follows. 2Suppose now that � 0 = [s0; �0℄ denotes the unit tangent i.e. �T0 � 0 = 1. We an use thisvetor to devise an extended system whih an be solved by Newton's method without fail fora point (x1; �1) on S near (x0; �0). The appropriate extended system isH(y; t) = 0 (4.5)where y = (x; �) 2 Rn+1 and H : Rn+2 ! Rn+1 . is given byH(y; t) = 24 F (x; �)sT0 (x� x0) + �0(�� �0)� (t� t0) 35 : (4.6)The last equation in system (4.5) is the equation of the plane perpendiular to � 0 a distane�t = (t�t0) from t0 (see Figure 4.1). So in (4.5) we in fat implement a spei� parametrisationloal to (x0; �0), namely parametrisation by the length of the projetion of (x; �) onto thetangent diretion at (x0; �0).With y0 = (x0; �0), we have H(y0; t0) = 0 andHy(y0; t0) = 24 F 0x F 0�sT0 �0 35. Sine (sT0 ; �0)Tis orthogonal to eah of the rows of [F 0x;F 0�℄, the matrix Hy(y0; t0) is nonsingular and so bythe Impliit Funtion Theorem solutions of (4.5) satisfy y = (x; �) = (x(t); �(t)) for t near t0.For t1 = t0 + �t and �t suÆiently small we know that F (y; t1) = 0 has a unique solutiony = y(t1) = (x1; �1) andHy(y(t1); t1) is nonsingular. Thus Newton's method will onverge forsmall enough �t. If we take as starting guess y0 = y0 = (x0; �0), it is a straightforward exeriseto show, (i) y1, the �rst Newton iterate, is given by y1 = (x0; �0) +�t(s0; �0), that is, the �rstiterate \steps out" along the tangent, as one might expet, and (ii) �T0 (yk�y0) = �t 8 k � 1,whih means that all the Newton iterates lie in the plane shown in �gure 4.1.Sine length along the tangent at (x0; �0) is used as parameter this tehnique is alledpseudo-arlength ontinuation ([25℄). 16
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Figure 4.1:Another interpretation Sine we know that solutions of (4.5) satisfy y = y(t), t near t0,where t is pseudo-arlength, we have H(y(t); t) = 0 and we an di�erentiate with respet to tto get Hy(y(t); t) _y(t) +H t(y(t); t) = 0: Sine Hy is nonsingular for t near t0,_y(t) = �Hy(y(t); t)�1Ht(y(t); t); (4.7)whih is an ordinary di�erential equation for y(t) with initial onditiony(t0) = y0: (4.8)We an use Euler's method to solve (4.7), (4.8) in whih ase the �rst step isy1Euler = y0 ��t[H0y℄�1H0t : (4.9)Sine H0t = 24 0�1 35, (4.9) is equivalent toy1Euler = y0 + 24 F 0x F 0�sT0 �0 35�1 24 0�t 35= y0 +�t24 s0�0 35 :So the �rst step of Newton's method for (4.5) is equivalent to one step of Euler's methodapplied to (4.7), (4.8). We an think of this as using Euler's method to provide a \preditedguess" for y(t1) = (x1; �1). Then ontinuing with Newton's method an be thought of as\orreting" this initial guess. 17



The hoie of an appropriate step ontrol strategy for �t seems to be harder than in the ODEase, perhaps beause the real problem is F (x(t); �(t)) = 0 and not the di�erential equationderived from it. This topi is disussed in x4.6 of [45℄ or x7.4 of [39℄ but experiene indiatesthat simple tehniques often work just as well as sophistiated approahes.Pratial implementation of pseudo-arlength ontinuationThe following is a suggested algorithm for implementing the pseudo-arlength ontinuationmethod introdued above.Step 1 Suppose F 0x is nonsingular, solveF 0xz0 = �F 0� (4.10)for z0. Then set 24 s0�0 35 = 1(zT0 z0 + 1)1=2 24 z01 35.Step 2 (Euler preditor) Choose a step length �t and set24 x1�1 35 = 24 x0�0 35+�t24 s0�0 35 : (4.11)Step 3 (Newton's method) For k � 1 iterate24 xk+1�k+1 35 = 24 xk�k 35+ 24 dkÆk 35with 24 F kx F k�sT0 �0 3524 dkÆk 35 = �24 F ksT0 (xk � x0) + �0(�k � �0)��t 35 (4.12)Note that if F 0x is singular then the ontinuation method will still work provided the onditionRank [F 0xjF 0�℄ = n holds, but Step 1 will fail to �nd the tangent vetor. In pratise this problemusually does not arise sine F 0x only beomes singular at isolated points on the solution set Sand e�etively the probability of landing preisely on suh a point is 0. However, are is neededwhen F 0x is nearly singular as is disussed in the next subsetion. As a further preaution manyontinuation methods monitor the determinant of F 0x.If the tangent at a singular point is required then the null vetor z0 of F 0x an be omputed(say, by the inverse power method) and then the tangent vetor an be taken as24 s0�0 35 = 1(zT0 z0)1=2 0� z00 1A :18



4.2 Blok EliminationAs seen in (4.12) it is repeatedly neessary to solve \bordered systems" with oeÆient matrixMk = 24 F kx F k�sT0 �0 35 :In many appliations, where F (x; �) arises from a solution of a di�erential equation, F kx mayhave some speial struture (e.g. tridiagonal, banded, sparse) whih makes systems with matrixF kx easy to solve, but this struture is not present in Mk. Then the \blok elimination method"(see [25℄) is useful for quikly solving suh systems.\Blok elimination" is merely Gaussian Elimination performed blokwise. If A is an n � nmatrix, b;  2 Rn and d 2 R then the blok matrixM := 0� A bt d 1A = 0� I 0lTn 1 1A0� A b0T un+1 1A ; (4.13)where ln = TA�1, un+1 = d� TA�1b. If ln+1 and un+1 are omputed, then the system0� A bT d 1A0� xy 1A = 0� fg 1A (4.14)is readily solved using blok forward and bak substitution. One algorithm to aomplish thisis (i) Solve Az = b, and Aw = f , and then set(ii) y = (g � Tw)=(d � T z); x = w � yz.If A and M are both well onditioned then this algorithm for (4.14) works well, but if A ispoorly onditioned, as ours in pseudo-arlength ontinuation near a fold point, then it mayfail to produe reliable results (in linear algebra terms, the algorithm is not \bakward stable").A omplete analysis of why the algorithm fails in the latter ase was �rst given by Moore [34℄using a deation argument. The aount by Govaerts [11℄ avoids deation but provides a stablealgorithm based on ombining the deomposition (4.13) with the alternative deomposition0� A bT d 1A = 0� A 0T ln+1 1A0� In un0T 1 1A : (4.15)Roughly speaking the improved algorithm of Govaerts uses an iterative re�nement approah.The idea is as follows. In atual alulation the step (ii) above produes a good approximation,19



ŷ say, for y, but the approximation for x is often worthless. So the x approximation is disarded.To ompute the residual after the �rst solve the approximate solution (x0; y0) = (0; ŷ) is used.Then the approximation is orreted using the blok LU deomposition (4.15) in a seond solve.The analysis of why this works is fairly tehnial [11℄. The main work in the resulting stablealgorithm involves two solves with A and one solve with AT . Moore [34℄ provides a stablealgorithm also using only 3 solves (see quoted papers for analysis and algorithmi details).5 The omputation of fold (turning) pointsLet (x0; �0) be a point on S satisfyingF 0x is singular, rank[F 0xjF 0�℄ = n: (5.1)Suh a point is a fold point (see Example 2.1 and De�nition 3.9). In a general one parameterproblem F (x; �) = 0, fold points are the generi singular points and there are many examplesof their ourrene in appliations. It is important to understand this type of nonlinear phe-nomenon in its own right, but also beause the theoretial analysis and numerial methods formore ompliated singularities are often extensions of fold point tehniques.Before attempting a disussion of the n-dimensional ase in x5.1 it is a useful exerise toanalyse �rst the salar ase: this is the subjet of the following example.Example 5.1 Assume f : R2 ! R with f 2 C1(R2) and set S = f(x; �) 2 R2 : f(x; �) = 0g.Assume rank[fx; f�℄ = 1 on S (i.e. either fx 6= 0 or f� 6= 0 at all points (x; �) 2 S). (i) Analysethe behaviour of S near a fold point (x0; �0) i.e. where f0x = 0. (ii) Derive a 2 � 2 system forthe aurate alulation of a fold point and determine when the fold point is a regular solutionof this system.Sketh of solution: Reall the usual notation f0x = fx(x0; �0), et. By the rank ondition,at a fold point f0� 6= 0 and so the Impliit Funtion Theorem implies � = �(x) near x0. Repeateddi�erentiation of f(x; �(x)) = 0 provides �0(x0) = 0, �00(x0) = �f0xx=f0�, and so the �rst threeterms of the Taylor expansion of �(x) an be found. (Sketh �(x) when f0xx 6= 0.) Thus iff0xx 6= 0 we see that �0(x) hanges sign at x = x0. To aurately ompute (x0; �0), onsider the2� 2 system G(y) = [f; fx℄T = 0 to be solved for y = (x; �). It is easy to show that (x0; �0) isa regular point of G(y) = 0 if and only if f0xx 6= 0.20



We shall see in the following subsetion that the theory for fold points of the n-dimensionalsystem F (x; �) = 0 is very similar to the one dimensional example above.5.1 Analysis of Fold PointsConsider (4.1) with S as in (4.2). Let (x(t); �(t)) denote a smooth ar of S with rank[FxjF �℄ = nand let (x0; �0) = (x(t0); �(t0)) satisfy the fold point ondition (5.1). Let�0 2 ker(F 0x) n f0g;  0 2 ker(F 0xT ) n f0g: (5.2)Note that  T0 F 0� 6= 0 (sine otherwise  0 2 ker [F 0x;F 0�℄T = f0g). Di�erentiation ofF (x(t); �(t)) = 0 with respet to t, evaluation at t = t0, and left multipliation by  T0 yields_�(t0) = 0; _x(t0) = ��0; ��(t0) = ��2 T0 (F 0xx�0)�0= T0 F 0�; (5.3)for some � 6= 0, where Fxx�0 denotes the Jaobian matrix of the n-vetor Fx�0.De�nition 5.2 We all (x0; �0) a quadrati fold point if ��(t0) 6= 0.To ompute the fold point it is natural to set up the systemT (y) := 0BBB� F (x; �)Fx(x; �)��T�� 1 1CCCA = 0; to be solved for y = 0BBB� x�� 1CCCA 2 R2n+1 ; (5.4)where T : R2n+1 ! R2n+1 . Here the seond and third equations say that Fx has a zeroeigenvalue with orresponding normalised eigenvetor �, (f. Example 3.2). We shall see in x5.2that there are alternative hoies of system to ompute a fold point, but (5.4) is very onvenientfor analysis. In fat, the following theorem shows that (5.4) haraterises a quadrati fold point.Theorem 5.3 Let (x0; �0) satisfy (5.1).(a) The point (x0;�0; �0) 2 R2n+1 is a regular solution of T (y) = 0 if and only if ��(t0) 6= 0,i.e. (x0; �0) is a quadrati fold point.(b) In addition, assume �0 = 0 is an algebraially simple eigenvalue of F 0x. Let �(t) denotethe eigenvalue of Fx(x(t); �(t)) near t = t0 with �(t0) = 0. Then _�(t0) 6= 0 if and only if(x0; �0) is a quadrati fold point. 21



The seond result says that at a quadrati fold point a simple eigenvalue passes smoothlythrough zero. Thus there is a smooth hange in sign of det(Fx) through a quadrati fold pointand this fat is often used in ontinuation odes.Proof The proof of Theorem 5.3 is straightforward. One way is to onsider Ty(y0), givenby Ty(y0) = 26664 F 0x 0 F 0�F 0xx�0 F 0x F 0x��00 2�T0 0 37775and use part (ii) of Keller's ABCD Lemma (Lemma 3.3). In the notation of the lemma, A =0� F 0x 0F 0xx�0 F 0x 1A with orresponding hoies for b and . It an then be shown that Ty(y0)is nonsingular if and only if  T0 (F 0x�0)�0 6= 0, and part (a) follows from (5.3). The proof ofpart (b) follows by formulating the eigenvalue problem asG(z; t) = 0� Fx(x(t); �(t))� � ���T�� 1 1A = 0; z = 0� �� 1A 2 Rn+1 : (5.5)Now G(z0; t0) = 0 and Gz(z0; t0) is nonsingular (f. Example 3.2), and the Impliit FuntionTheorem shows that � = �(t) is a simple eigenvalue of Fx(x(t); �(t)) near t = t0. Di�erentiationof Fx(x(t); �(t))�(t) = �(t)�(t), evaluation at t = t0, and left multipliation by  T0 provides_�(t0) 6= 0 i� ��(t0) 6= 0. (Note that  T0 �0 6= 0 sine zero is an algebraially simple eigenvalue ofF 0x.) 25.2 Numerial Calulation of Fold pointsThe system (5.4) an easily be used to ompute fold points. It was so used by Seydel [44℄, [43℄and by Moore and Spene [35℄. It is important to realise that when solving (5.4) by Newton'smethod one need not solve the (2n + 1) � (2n + 1) linear systems diretly. In [35℄ an eÆientsolution proedure is desribed using only solves with an n � n nonsingular matrix, whih isformed from F � and n� 1 linearly independent olumns of Fx. The details are not given here,but the main work involves 4 linear solves with the same matrix i.e. only one LU fatorisationof an n� n matrix is needed per Newton step to solve (5.4).The fat that the solution of the (2n+1)� (2n+1) linear Jaobian systems is aomplishedusing solves of n � n systems has been used many times sine, and another example of thistehnique is in the alulation of Hopf bifuration points (see x8 and [16℄).22



Griewank and Reddien [17, 18℄ (and with improvements Govaerts [12℄) suggested an alter-native way of alulating fold points (and other higher order singularities). This involves settingup a \minimal" de�ning systemT (y) = 24 F (x; �)g(x; �) 35 = 0; y 2 Rn+1 ; (5.6)where g(x; �) : Rn � R ! R is impliitly de�ned through the equationsM(x; �)24 v(x; �)g(x; �) 35 = 24 01 35 ; (5.7)and (wT (x; �); g(x; �))M(x; �) = (0T ; 1); (5.8)where M(x; �) = 24 Fx(x; �) bT d 35 ; (5.9)for some b;  2 Rn , d 2 R. (The fat that g(x; �) is de�ned uniquely by both (5.7) and (5.8) maybe seen sine both equations imply that g(x; �) = [M�1(x; �)℄n+1;n+1.) Note that M(x; �) is abordering of Fx, as arises in the numerial ontinuation method (x4). Assuming b; , and d arehosen so that M(x; �) is nonsingular (see the ABCD Lemma 3.3) then g(x; �) and v(x; �) in(5.7) are uniquely de�ned. (Note, if S is parametrised by t near (x0; �0), i.e. (x(t); �(t)) neart = t0, then v = v(x(t); �(t)) and g = g(x(t); �(t)), and these funtions may be di�erentiatedwith respet to t.) Also, if we apply Cramer's Rule in (5.7) (an idea due to Govaerts) we have(with M(x; �) nonsingular) g(x; �) = det(Fx(x; �))=det(M(x; �)) (5.10)and so g(x; �) = 0 () Fx(x; �) is singular:It is easily shown that quadrati fold points are regular solutions of (5.6). To apply Newton'smethod to (5.6) derivatives of g(x; �) are required and these an be found by di�erentiation of(5.7). When the details of an eÆient implementation of Newton's method applied to (5.6) areworked out then the main ost is two linear solves with M and one with MT . A nie summaryof these ideas is given in Beyn [1℄. A omplete aount is in the forthoming book by Govaerts[13℄. 23



6 Bifuration from the trivial solutionAs usual we onsider the problem F (x; �) = 0 and we assume that F 2 C1(Rn+1). We shallalso assume that F (0; �) = 0; for all � 2 R, (6.1)with (0; �) being the path of trivial solutions. (As an example, onsider f 2 R2 , f(x; �) =x�� x3.) In this setion we use the G0 to denote the value of any funtion G at (0; �0).A formal de�nition of bifuration from the trivial solution is as follows.De�nition 6.1 A point (0; �) 2 Rn+1 is said to be a bifuration point for F (x; �) = 0 ifand only if there exists a sequene (xk; �k), with xk ! 0, �k ! �0, as k ! 1; suh thatF (xk; �k) = 0 and xk 6= 0 for all k.Appliation of the Impliit Funtion Theorem shows immediately that if (0; �0) is a bifur-ation point then F 0x must be singular. We shall assume that F 0x has an algebraially simplezero eigenvalue: that is, there exist �0; 0 2 Rn n f0g suh thatker(F 0x) = spanf�0g;ker(F 0xT ) = spanf 0g;and  T0 �0 6= 0: (6.2)In x6.1 we shall onsider the salar ase sine it is simpler and the salar result is used inthe n-dimensional ase. We shall see in x7 that the salar ase is interesting in its own right. Inx6.2 we then disuss the n-dimensional ase.6.1 Salar aseConsider the problem f(x; �) = 0, with f(0; �) = 0 for all �. Then we have the followingtheorem.Theorem 6.2 Suppose f : D � R � R ! R where D is an open subset of R2 . Supposef 2 C1(D). Let S = f(x; �) 2 D : f(x; �) = 0g, and assume (0; �) 2 S, for all � 2 R. Alsoassume for some �0 2 R(i) f0x = 0,(ii) f0x� 6= 0, 24



(where f0x = fx(0; �0), et). Then nontrivial solutions bifurate from the trivial solution x = 0at (0; �0). Moreover, near �0, �(x) = �0 + xv(x) (6.3)where v(x) is a smooth funtion of x with v(0) = �f0xx=2f0x�.Proof Note that f0� = f0�� = f0��� = � � � = 0 sine (0; �) 2 S for all �. Thus rank[f0x ; f0� ℄ = 0and the Impliit Funtion Theorem annot be applied diretly on f(x; �) = 0. However, we anintrodue a new problem on whih the Impliit Funtion Theorem an be applied. De�neh(x; v) : R2 ! R by, for x 6= 0,h(x; v) = 1x2 f(x; �); v = (�� �0)=x: (6.4)Expanding f(x; �0+xv) in powers of x using Taylor's theorem, and using f0 = f0x = f0� = f0�� =0, gives, for x 6= 0, h(x; v) = 12! [f0xx + 2f0x�v℄ + x[smooth funtion of v℄:De�ne h(x; v) at x = 0 by h(0; v) = 12! [f0xx + 2f0x�v℄: (6.5)Then h is a smooth funtion of (x; v). Moreover by settingv0 = �f0xx=2f0x�; (6.6)then, at (x; v) = (0; v0) we have, from (6.5), h0 = h(0; v0) = 0. Moreover, by assumption (ii),h0v 6= 0, and the Impliit Funtion Theorem gives that for jxj suÆiently small there exists v(x)suh that h(x; v(x)) = 0. Using this funtion v, reall (6.4) and de�ne�(x) = �0 + xv(x); (6.7)from whih f(x; �(x)) = 0 and the existene of nontrivial bifurating solutions is proved.Di�erentiating (6.7) and evaluation at x = 0 gives�0(0) = v(0) = v0 = �f0xx=2f0x�; (6.8)whih tells us the slope of the tangent to the nontrivial solution branh at the bifuration point(see Figure 6.1). 225
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Figure 6.1: Here � is the tangent to the bifurating branhes at (0; �0). The slope of the tangentis (�2f0x�=f0xx).To ompute (x; �(x)) near (0; �0) with x 6= 0, onsider solving the systemG(y; t) := 0� f(x; �)x� t 1A = 0; y = 0� x� 1A 2 R2 : (6.9)If (y; t) solves (6.9) with suÆiently small t 6= 0, then x = t and (x; �) = (t; �(t)) =: y(t).Moreover, det �Gy(y(t); t)� = �f�(t; �(t)) = (�f0x�)t+O(t2)and so the Newton theory (Theorem 5.2.1 in [6℄) shows that onvergene of Newton's methodan only be guaranteed for starting guesses in a ball of radius O(t). If we take as starting guessthe following point on the tangent � depited in Figure 6.2:0� x0�0 1A = 0� 0�0 1A+ t0� 1�0(0) 1Awith �0(0) given by (6.8), then0� t�(t) 1A�0� x0�0 1A = 0� 0�(t)� �(0) � t�0(0) 1A = O(t2)and one an show that Newton's method will onverge for suÆiently small t. Notie that inthis ase t is not the pseudo-arlength parameter.6.2 n-dimensional aseFor the general ase we have the lassial theorem by Crandall and Rabinowitz on bifurationfrom a simple eigenvalue [4℄ (whih holds for general operators on Banah spaes under minimal26
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Figure 6.2: Numerial ontinuation away from the bifuration point. Here x0 = t and in thisase t is merely the value of the (non-zero) x omponent.smoothness requirements).Theorem 6.3 Suppose F 2 C1(Rn+1) and (6.1), (6.2) hold. If T0 F 0x;��0 6= 0; (6.10)then (0; �0) is a bifuration point, and there exist smooth funtions (x(t); �(t)) parametrised byt near t = 0 suh that F (x(t); �(t)) = 0 with �(0) = �0, x(0) = 0, and x0(0) = �0.Proof We present a proof whih we believe is within the sope of a typial UK researhstudent just starting a PhD. More elegant proofs are given in most text books on bifurationtheory. The method of proof is an example of the \Lyapunov-Shmidt redution" [2℄.We give the proof only under the assumption that F 0x has distint real eigenvalues,�0; : : : ; �n�1, with linearly independent eigenvetors f�0;�1; : : : ;�n�1g, and f 0; 1; : : : ; n�1gthe orresponding linearly independent eigenvetors of (F 0x)T . Reall that �0 = 0 and all theother eigenvalues of F 0x are nonzero. Also, beause the eigenvalues are distint and simple, Ti �j = 0, (i 6= j) and  Ti �i 6= 0.Now sine the  i span Rn , the equation F (x; �) = 0 an be written as T0 F (x; �) = 0 (6.11)and  Ti F (x; �) = 0; i = 1; : : : ; (n� 1): (6.12)(The proof of this is an elementary exerise.) Also we write x 2 Rn in the formx = x(y; t) = t�0 + V y; (6.13)27



where V is the n� (n�1) matrix with ith olumn �i, for i = 1; : : : ; (n�1). Thus we deomposeRn into Rn = spanf�0g�R, where R = Image(F 0x) = spanf�1; : : : ;�n�1g. Note that  T0 v = 0for all v 2 R. Now onsider the n� 1 equations given by (6.12) in the form~F (y; t; �) = 0; ~F : Rn�1 � R � R ! Rn�1 (6.14)where ( ~F (y; t; �))i =  Ti F (t�0 + V y; �): We shall use the Impliit Funtion Theorem toparametrise the solution y of (6.14) as a funtion of (t; �). To do this observe that~F (0; 0; �) = 0 2 Rn�1 ;and the matrix ~Fy(0; 0; �) is given byh ~Fy(0; 0; �)ii;j =  Ti Fx(0; �)�j; i; j = 1; : : : ; (n� 1):Thus [ ~Fy(0; 0; �0)℄ij =  Ti F 0x�j = �i Ti �i, and sine �i 6= 0, i = 1; : : : ; (n � 1), ~Fy(0; 0; �0)is nonsingular on Rn�1 , and so the Impliit Funtion Theorem (extended to the ase of a two-dimensional parameter [2℄) shows that solutions y of (6.14) may be parametrised by (t; �) i.e. y =y(t; �) near (0; �0). Thus ~F (y(t; �); t; �) = 0 for (t; �) near (0; �0) and (by uniqueness) y(0; �) =0. In addition, yt(0; �0) = 0 sine ~F t(0; 0; �0) = 0, and y�(0; �) = 0 sine ~F �(0; 0; �) = 0.Having solved (6.14) (i.e. the equations (6.12)), we return to equation (6.11) and write it inthe form f(t; �) :=  T0 F (t�0 + V y(t; �); �) = 0: (6.15)This is in the form of a salar nonlinear problem, and all that remains to prove the existeneof nontrivial solutions is to hek the onditions of Theorem 6.2. Not surprisingly (6.15) (or(6.11)) is alled the bifuration equation in the Lyapunov-Shmidt redution of F (x; �) = 0. Itis essentially a projetion of the original n dimensional system into the one dimensional spaespanned by the null eigenvetor. Observe thatf(0; �) =  T0 F (V y(0; �); �)=  T0 F (0; �)= 0and ft(0; �0) =  T0 F 0x�0 = 0;28



sine �0 2 ker(Fx(0; �0)). Finallyf0t� =  T0 (F 0xx(�0 + V y0t )(V y0�) + F 0x�(�0 + V y0t ) + F 0xV y0t�)=  T0 F 0x��0 6= 0by (6.10). Here we have used y0t = 0;y0� = 0, and V y0t� 2 R to simplify the expression for f0t�.So the onlusions of Theorem 6.2 apply. Hene nontrivial solutions of f(t; �) = 0 bifurate at� = �0. The orresponding x(t) = x(y(t; �); t) = t�0+V y(t; �), with x(0) = 0 and x0(0) = �0,provides the nontrivial solution of F (x; �) = 0. 2Detetion of bifuration points is relatively easy for this ase. We seek points where Fx(0; �)is singular. If �(�) denotes the eigenvalue of Fx(0; �) along the trivial solution path with�(�0) = 0 then it is a simple exerise to show that �0(�0) 6= 0 if and only if (6.10) holds.Hene (6.10) is another example of a nondegeneray ondition whih an be interpreted as aneigenvalue going through zero with nonzero speed. Note that det(Fx(0; �)) hanges sign at thebifuration point as � passes through �0.Example 6.4 In Example 2.3, equation (2.7) isF (Y ; �) = AY + � sin(Y ):(It is an instrutive exerise to go through the proof of Theorem 6.3 for this example.) In thisase F (0; �) = 0, for all � 2 R, FY (0; �) = (A+ �I), and FY �(0; �) = I. Now A has (n� 1)algebraially simple eigenvalues�k = �h�2(2� 2 os k�=(n� 1)); k = 0; 1; : : : ; n� 2:The zero eigenvalue is ruled out of the bukling example on physial grounds, so Theorem 6.3shows that bifuration from the trivial solution ours at � = ��k, k = 0; : : : ; (n � 2) sinethe nondegeneray ondition (6.5) redues to the ondition that the eigenvalue be algebraiallysimple. 2If the n-dimensional problem arises from a disretization of an ODE or PDE then the eigen-values and eigenfuntions of the linearisation of the ontinuous problem might be known analyt-ially. To �nd �0 and �0 in the disretized problem a simple inverse iteration approah appliedto Fx(0; �) with the exat value for � at the bifuration point used would almost ertainly workvery quikly. 29



To move o� the trivial branh a tehnique similar to that in x6.1 may be used. At (0; �0)[F 0xjF 0�℄ has a two dimensional kernel spanned by (�T0 ; 0)T and (0T ; 1)T . It is straightforwardto show that the tangent to the bifurating nontrivial branh has the form� T0 = ((�2 T0 F 0x��0)�T0 ; T0 (F 0xx�0)�0)(f. the salar ase in the previous setion). The fat that the ordinary pseudo-arlength methodworks in these irumstanes is proved in [22℄. However, the diret analogue of the approah inx6.1 is merely to set equal to t one omponent of x. The best omponent to hoose is the rth,where (�0)r is the omponent of maximum modulus of �0 (see [39℄).Remarks(i) It is important to note that bifuration from the trivial solution is a rather speial ase butnonetheless a very important ase in appliations. The trivial solution forms an invariantsubspae under the ation of F in Rn+1 and bifurating nontrivial solutions break thesubspae. Werner [49℄ gives a general theory of subspae-breaking bifuration. A di�erentase but with omparable results arises when F (x; �) satis�es a symmetry ondition (see[48℄, [51℄).(ii) In the absene of any speial features (for example, symmetry) a bifuration where two(nontrivial) solution urves interset will not typially arise in a one parameter problemF (x; �) = 0. In this ase one needs two parameters to detet and ompute bifurationpoints (see [33℄, [18℄,[23℄).7 Bifuration in Nonlinear ODEsThe bifuration theory in these notes is given for �nite dimensional problems. However severalof the theoretial results on bifuration an be applied to in�nite dimensional problems involvingnonlinear ODEs by use of the shooting method, whih also provides a omputational tool. Infat Poinar�e's analysis of bifuration of periodi orbits in ODEs using the Poinar�e setion isthe �rst example of the use of a shooting method to prove analytial results. The use of shootingto study steady bifurations in nonlinear boundary value problems (BVPs) seems to have beenonsidered �rst by J.B.Keller in 1960. The treatment here is based on Keller's artile [27℄. Anaount of the numerial analysis of shooting methods for nonlinear BVPs is given in [24℄.30



First reall a standard theorem of existene, uniqueness and ontinuity with respet to initialdata for systems of ordinary di�erential equations (ODEs) of the formu0 = f(t;u); t > a (7.1)with initial ondition u(a) = � (7.2)where u(t) 2 Rn is to be found for t > a; f : R �Rn ! Rn is given, � 2 Rn is given, and a 2 Ris given.Theorem 7.1 Suppose f is ontinuous on [a; b℄� Rn , and supposekf(t;u)� f(t;v)k � Lku� vk (7.3)for some L > 0 and for t 2 [a; b℄ and all u;v 2 Rn . Then for any � 2 Rn the IVP (7.1), (7.2)has a unique solution u = u(t;�) de�ned for t 2 [a; b℄. Moreover u is Lipshitz ontinuous in�, and in fat ku(t;�)� u(t;�)k2 � eL(t�a)k�� �k2for all �;� 2 Rn .Remarks1. In many problems of interest (7.3) will not be true over all u;v 2 Rn , but ratherover all u;v 2 B(�; r) for some � 2 Rn ; r > 0 �xed. In this ase a similar theorem holds, butthe solution may exist only for t 2 [a; b0℄ with b0 = minfb; r=Lg.2. The numerial solution of (7.1), (7.2) over �nite ranges of t > a is now well understood.Many odes exist in whih a user spei�es f ; a; b and � and a required tolerane, and theprogram returns the value of u(b) at b or at any intermediate points between a and b. We willassume that (7.1), (7.2) have a unique solution whih an be found numerially for t 2 [a; b℄,with b > a.7.1 The shooting method for ODEsConsider the seond order ODE�y00 � g(t; y; y0) = 0; t 2 [a; b℄ (7.4)31



subjet to the boundary onditions a0y(a)� a1y0(a) = � (7.5)b0y(b) + b1y0(b) = � (7.6)with ja0j + ja1j 6= 0; jb0j + jb1j 6= 0. Here it is assumed that g(t; y1; y2) is ontinuous onD := f(t; y1; y2) : t 2 [a; b℄; y21 + y22 <1g and satis�es a uniform Lipshitz ondition in y1 andy2. To solve this BVP onsider the assoiated initial value problem (IVP)�u00 � g(t; u; u0) = 0 (as in (7.4)) (7.7)subjet to the initial onditionsa0u(a)� a1u0(a) = � (as in (7.5)) (7.8)and 0u(a)� 1u0(a) = s; (7.9)where s is a parameter whih will be determined below. We hoose 0; 1 s.t.d := a10 � a01 6= 0: (7.10)Then (7.8), (7.9) are independent initial onditions and the matrix 24 a0 �a10 �1 35 is invert-ible. From Theorem 7.1 we know that (7.7){(7.9) has a unique solution, whih we denote byu(t; s); t > 0; s 2 R. To solve (7.4){(7.6) we need to �nd s suh thatf(s) = 0 (7.11)where f(s) is de�ned by the right-hand boundary ondition (7.6)f(s) = fb0u(b; s) + b1�u�t (b; s)� �g: (7.12)Thus the solution of (7.4){(7.6) is redued to solving the nonlinear problem (7.11) where f isimpliitly de�ned in terms of solutions of (7.7){(7.9).The numerial analysis of shooting methods for solving (7.4){(7.6) where solutions of (7.7){(7.9) are evaluated numerially is given in [24℄.The equivalene of (7.4){(7.6) to (7.11) is given in the following lemma (see [24℄,[27℄).32



Lemma 7.2 (i) If s0 solves (7.11) then y(t) = u(t; s0) solves (7.4){(7.6). If y(t) solves (7.4){(7.6) then s0 = 0y(a)� 1y0(a) solves (7.11).(ii) s0 is the unique solution of (7.11) if and only if y(t) is the unique solution of (7.4){(7.6).Proof (i) Suppose f(s0) = 0 then y(t) = u(t; s0) solves (7.4){(7.6). Conversely if y(t) solves(7.4){(7.6) then set s0 = 0y(a) � 1y0(a). By uniqueness of solutions to initial value problemsu(t; s0) = y(t) and f(s0) = 0.(ii) See Theorem 2 [27℄ where a more general problem is onsidered. 2To analyse and solve (7.7){(7.9) we redue to a �rst order system. To do this we set u1 = u,u2 = u0 = u01. Then (7.7) beomes the 2� 2 system24 u01u02 35 = 24 u2�g(t; u1; u2) 35 =: f(t;u) (7.13)and (7.8), (7.9) beome (using (7.10)),24 u1(a)u1(a) 35 = 1d 24 �1 a1�0 a0 3524 �s 35 ; (7.14)and so (7.13), (7.14) has a unique solution using Theorem 7.1.To implement Newton's method for (7.11) we need to be able to evaluate not only f(s)but also fs(s) = �b0w(b; s) + b1�w�t (b; s)� where w = �u�s . We obtain an equation for w bydi�erentiating (7.7){(7.9) with respet to s to get the IVP�w00 � gu(t; u; u0)w � gu0(t; u; u0)w0 = 0;a0w(a) � a1w0(a) = 0;0w(a)� 1w0(a) = 1: 9>>>=>>>; (7.15)(Note 0 always means di�erentiation with respet to t.) This system together with (7.7){(7.9)an be redued to a �rst order system of dimension 4 whih we an solve using standard ODEsoftware. We illustrate this by means of an example.Example 7.3 Consider the boundary value problem�y00 + ey = 0;y(0) = 0; y(1) = 0; 9=; (7.16)33



and the orresponding IVP �u00 + eu = 0;u(0) = 0; u0(0) = s: 9=; (7.17)Denote the solution by u(t; s). The nonlinear problem (7.11) isf(s) := u(1; s) = 0: (7.18)To �nd fs, set w = �u�s , then di�erentiate (7.17) with respet to s�w00 + euw = 0;w(0) = 0;w0(0) = 1: 9>>>=>>>; (7.19)From the solution of this we obtain fs(s) = w(1; s).We solve (7.17), (7.19) simultaneously by the substitutionsu1 = u; u2 = u0 = u01;u3 = w; u4 = w0 = u03;to obtain a �rst order system of four equations:26666664 u1u2u3u4
377777750 = 26666664 u2exp(u1)u4exp(u1)u3

37777775with initial ondition 26666664 u1u2u3u4
37777775t=0 = 26666664 0s01

37777775 :We solve this system up to t = 1, from whih we obtainf(s) = u1(1); fs(s) = u3(1):If s is a guess to the solution of (7.11) then the values of f(s) and fs(s) an be used to generatea new guess for s using Newton's method, and this proess an be iterated.34



7.2 Analysis of parameter dependent ODEsAs mentioned at the start of this setion, the shooting method an be used as a tehnique fortheoretial analysis as well as numerially solving problems.Example 7.4 (Reall Example 2.3). Prove that nontrivial solutions exist for the followingBVP �y00 � � sin y = 0;y0(0) = 0; y0(l) = 0: 9=; (7.20)To prove this we use again the shooting approah and onsider the IVP�u00 � � sinu = 0;u0(0) = 0; u(0) = s: 9=; (7.21)Note that the solution u depends on t; s and also �, ie. u = u(t; s; �). In view of the right handboundary onditions in (7.20), we onsiderf(s; �) = �u�t (l; s; �) = 0: (7.22)By uniqueness for the IVP (7.21) we havef(0; �) = 0 for all � 2 R:By Lemma 7.2, (7.22) is equivalent to (7.20), so nontrivial solutions y of (7.20) bifurate at� = �0 if and only if nontrivial solutions s of (7.22) bifurate at � = �0. To prove the latterassertion we use Theorem 6.2, for whih we need fs and fs�. So set w = �u�s and di�erentiate(7.21) with respet to s to obtain �w00 � �(os u)w = 0;w0(0) = 0; w(0) = 1; 9=; (7.23)with solution w = w(t; s; �). Now when s = 0; u = 0 (by uniqueness for (7.21)) and (7.23)implies that w(t) = w(t; 0; �) satis�es the linear 2nd order ODE�w00 � �w = 0: (7.24)Thus w(t) = A sinp�t+B osp�t, and to satisfy the boundary onditions, we have A = 0; B =1. Then, by (7.22) fs(0; �) = �w�t (l; 0; �) = �p� sin(p�l): (7.25)35



This vanishes for � = �0 = m2�2l2 ; m = 0; 1; 2:::: (In the appliation of the bukling of a rodthe ase � = 0 is ruled out on physial grounds.) To hek if bifuration ours at � = �0, wehave to ompute fs�(0; �0). To do this set v = �w�� ;and di�erentiate (7.23) with respet to � to get�v00 � (os u)w + �(sinu)�u��w � �(os u)v = 0v0(0) = 0; v(0) = 0: 9=; (7.26)At s = 0; u = 0, and so v(t) = v(t; 0; �) satis�es�v00 � �v = wv0(0) = 0; v(0) = 0: 9=; (7.27)Bifuration ours at �0 if fs�(0; �0) = �v�t (l; 0; �0) 6= 0: (7.28)Suppose (7.28) does not hold. Then v(t) = v(t; 0; �0) satis�es (7.27) with � = �0, together withv0(l) = 0: (7.29)Then (7.27) impliesZ l0 w2 = �Z l0 v00w � �0 Z l0 vw= +Z l0 v0w0 � �0 Z l0 vw by (7.29)= �Z l0 vw00 � �0 Z l0 vw sine w0(0) = 0 = w0(l)= Z l0 v(�w00 � �0w) = 0 by (7.24);whih is impossible sine w(t) = w(t; 0; �0) = p�0 osp�0t and �0 6= 0. So bifuration from thetrivial solution ours at � = �0 = m2�2l2 ; m = 1; 2; :::.7.3 Calulation of fold points in ODEs using shootingWe onsider this tehnique via an example. See also Seydel [45℄.
36



Example 7.5 Consider the following nonlinear ODE:�y00 � � exp(y) = 0; y(0) = 0 = y(1):Using the development in Example 7.4 we set up an assoiated IVP and f(s) := u(1; s; �). Toalulate the values of f and its derivatives in the shooting method, we have the three initialvalue problems: �u00 = �euu(0) = 0u0(0) = s �w00 = �euww(0) = 0w0(0) = 1 �v00 = �euv + euv(0) = 0v0(0) = 0Then f(s; �) = u(1; s; �); fs(s; �) = w(1; s; �); f�(s; �) = v(1; s; �):We may follow the solution urve of f(s; �) = 0 numerially by ontinuation with respet to sor �, with a hek on size of jfsj; jf�j. If one of these beomes small then we use the other as aparameter. If they are not both zero then urve has only turning points. Observe also that whens = 0; � = 0 we have u = 0; so f(0; 0) = 0;w = t; so fs(0; 0) = 1;v = �12 t2; so f�(0; 0) = �12 :We may use (0; 0) as the starting point for ontinuation. To solve for u; v; w simultaneously, setu1 = u; u2 = u0; u3 = w; u4 = w0; u5 = v; u6 = v0. Then the three problems beome:26666666666666664
u1u2u3u4u5u6u7

37777777777777775
0
=
26666666666666664

u2�u7 exp(u1)u4�u7 exp(u1)u3u6�u7 exp(u1)u5 � exp(u1)0
37777777777777775 ; with

26666666666666664
u1u2u3u4u5u6u7

37777777777777775 =
26666666666666664

0s0100�
37777777777777775 at t = 0:

For any (s; �) we solve this system by any numerial routine, and thenf(s; �) = u1(1); fs(s; �) = u3(1); f�(s; �) = u5(1): (7.30)These may be used in a ontinuation method as desribed in x4.37



8 Hopf BifurationAs was seen in Example 2.2, one way a steady state of _x = F (x; �) an lose stability as � variesis when a omplex pair of eigenvalues of Fx(x; �) rosses the imaginary axis. This situation isdesribed by the lassial Hopf bifuration theorem [19℄.Theorem 8.1 (Hopf Bifuration) Let F 2 C2(Rn+1) and assume(i) F (x0; �0) = 0,(ii) Fx(x0; �0) has a simple, purely imaginary eigenvalue �(�0) = +i�0, �0 6= 0, with eigen-vetor �0 + i 0, and no other eigenvalues on the imaginary axis apart from at �i�0,(iii) � dd�Re(�)	 ����=�0 6= 0.Then there exists an a0 > 0 and a parameter a suh that _x = F (x; �) has a smooth branh ofT (a)-periodi solutions (x(t; a;�(a)); �(a)) for 0 � t � T (a), for all jaj < a0 with the followingproperties x(t; a;�(a)) = xs(�(a)) + a(os(�0t)�0 � sin(�0t) 0) +O(a2);�(a) = �0 +O(a2);T (a) = 2��0 +O(a2);where xs(�(a)) denotes the steady solution at � = �(a).The theorem states that at (x0; �0) there is a birth of periodi solutions that may beparametrised by the amplitude a. If onditions (i),(ii) and (iii) hold then (x0; �0) is alleda Hopf bifuration point.Note that sine F 0x is nonsingular, the Impliit Funtion Theorem ensures that S (thesolution set of the steady problem) may be parametrised by � near � = �0. Using the approahin the proof of part (b) of Theorem 5.3 extended to C n+1 shows that a (real or omplex) simpleeigenvalue of Fx(x(�); �) is a smooth funtion of � near �0. Hene we an write Re(�) =Re(�(�)).Condition (iii) in Theorem 8.1 is another example of a nondegeneray ondition where aneigenvalue smoothly rosses the imaginary axis.Theorem 8.1 is due to Hopf in a famous paper in 1942, though in 1929 Andronov was the�rst to formulate a theorem and Poinar�e's work in 1892 ontained examples of this type of38



bifuration. So this phenomenon is now often alled Poinar�e/Andronov/Hopf bifuration. Anie treatment of the theory of Hopf bifuration with referenes to the work of Andronov andPoinar�e is given in Wiggins [52℄.8.1 Calulation of a Hopf Bifuration PointIf a good estimate of the Hopf bifuration point is known then it may be omputed exatlyby setting up and solving an appropriate extended system (f. the fold point system in (5.4).)Consider the nonlinear system H(y) = 0 (8.1)where H(y) := 0BBBBBBBBB�
F (x; �)Fx(x; �)�� � T�� 1Fx(x; �) + ��T 

1CCCCCCCCCA ; y := 0BBBBBBBBB�
x�� �
1CCCCCCCCCA 2 R3n+2 (8.2)

with H : R3n+2 ! R3n+2 . This is the obvious system to write down as an be seen fromonditions (i) and (ii) in Theorem 8.1. There are two onditions on the eigenvetor �+ i sinea omplex vetor requires two real normalisations.The following theorem is readily proved (see [16℄).Theorem 8.2 Let (x0; �0) be a Hopf bifuration point (i.e. (i), (ii) and (iii) of Theorem 8.1hold) and assume  has non-zero projetion on span f�0g. Then y0 := (xT0 ;�T0 ; �0; T0 ; �0)T 2R3n+2 is a regular solution of (8.1).Note that fold points also satisfy (8.1) sine if (x0; �0) is a fold point and �0 2ker(Fx(x0; �0)) then y0 = (x0;�0; �0;0; 0) satis�es H(y0) = 0. In fat y0 is a regular so-lution if the onditions of Theorem 5.3 hold.System (8.1) was �rst introdued by Jepson [21℄ and independently by Griewank and Red-dien [16℄ who showed that the linearisation of (8.1) ould be redued to solving systems witha bordered form of F 2x(x; �) + �2I. This is natural sine an alternative system for a Hopfbifuration an be derived by using the fat that the seond and fourth equations of (8.1) anbe written as (Fx(x; �) + �2I)v = 0 with v = � or  .39



To eliminate the possibility of omputing a fold point rather than a Hopf bifuration point,Werner and Janovsky [50℄ used the systemR(y) = 0 (8.3)where R(y) = 0BBBBBB� F (x; �)(F 2x(x; �) + �I)�T�TFx(x; �)�� 1
1CCCCCCA ; y = 0BBBBBB� x���

1CCCCCCA 2 R2n+2 (8.4)in whih R : R2n+2 ! R2n+2 , and where  is a onstant vetor. The last equation in (8.3)ensures that the solution annot be a fold point. The system R(y) = 0 is losely related to asystem derived by Roose and Hlavaek [41℄, but (8.3) has several advantages when omputingpaths of Hopf bifurations if a seond parameter is varying (see [50℄).The fat that (8.1) or (8.3) is regular at a Hopf bifuration is important sine Newton'smethod (or some variant) will probably be used to solve the system. Just as is the ase in x5for the omputation of a fold point, there are eÆient ways of solving the Jaobian systems inNewton's method. In [16℄ an eÆient proedure is desribed for the solution of the (3n+2)�(3n+2) Jaobian systems arising from (8.1) by solving systems with a bordering of (F 2x(x; �)+�2I).We do not give the details here. A nie summary is given in [1℄.8.2 The Detetion of Hopf Bifurations in Large SystemsThe extended systems in x8.1 an only be used when we know we are near a Hopf point. Thefollowing setion desribes how this might be determined in pratie.When omputing a path of steady solutions of _x = F (x; �) using a numerial ontinuationmethod it is easy to pass over a Hopf bifuration point without \notiing" it, sine when aomplex pair of eigenvalues rosses the imaginary axis there is no easy detetion test based onthe linear algebra of the ontinuation method. In partiular the sign of the determinant of Fxdoes not hange. If n is small then the simplest test is merely to ompute all the eigenvaluesof Fx during the ontinuation. For large n, say when F arises from a disretized PDE, suhan approah will usually be out of the question. The eÆient detetion of Hopf bifurations inlarge systems is an important and, as yet, unsolved problem. The review artile [8℄ disussesin detail both lassial tehniques from omplex analysis and linear algebra-based methods. It40



is natural to try to use lassial ideas from omplex analysis for this problem sine then oneseeks an integer, namely the number of eigenvalues in the unstable half-plane, and ountingalgorithms are appliable. This is explored for large systems in [14℄ but there is still work to bedone in this area.The rightmost eigenvalues of Fx(x; �) determine the (linearised) stability of the steadysolutions of _x = F (x; �) and one strategy for the detetion of Hopf bifuration points is tomonitor a few of the rightmost eigenvalues as the path of steady state solutions is omputed.(Note that the rightmost eigenvalue is not a ontinuous funtion of �, see [36℄.) Standarditerative methods, e.g. Arnoldi's method and simultaneous iteration, ompute extremal ordominant eigenvalues, and there is no guarantee that the rightmost eigenvalue will be omputedby diret appliation of these methods to Fx. The approah in [8℄ and [3℄ is to �rst transformthe eigenvalue problem using the Generalised Cayley TransformC(A) = (A� �1I)�1(A� �2I); �1; �2 2 R;whih has the key property that if � 6= �1 is an eigenvalue of A then � := (�� �1)�1(�� �2) isan eigenvalue of C(A). Also, Re(�) � (�)(�1+�2)=2 if and only if j�j � (�)1. Thus eigenvaluesto the right of the line Re(�) = (�1+�2)=2 are mapped outside the unit irle and eigenvalues tothe left of the line mapped inside the unit irle. In [8℄ and [3℄ algorithms based on omputingdominant eigenvalues of C(Fx) using Arnoldi or simultaneous iteration are presented, withonsequent alulation of rightmost eigenvalues of Fx. These algorithms were tested on a varietyof problems, inluding systems arising from mixed �nite element disretizations of the Navier-Stokes equations. Quite large problems an in fat be takled. Indeed, in [15℄ the problemof the stability of ow over a bakward faing step is disussed in detail and the rightmosteigenvalues of a system with over 3 � 105 degrees of freedom are found using the GeneralisedCayley transform allied with simultaneous iteration.However it was later noted (see [31℄) that sineC(A) = I + (�1 � �2)(A� �1I)�1;Arnoldi's method applied to C(A) builds the same Krylov subspae as Arnoldi's method appliedto the shift-invert transformation (A��1I)�1. Thus if Arnoldi's method is the eigenvalue solverthere is no advantage in using the Cayley transform, whih needs two parameters, over thestandard shift-invert transformation (see [31℄).41



One an think of the approah in [3℄ as the omputation of the subspae ontaining theeigenvetors orresponding to the rightmost eigenvalues of Fx. A similar theme, derived usinga ompletely di�erent approah, is desribed by [42℄ and re�ned by [5℄. In these papers thesubspae orresponding to a set of (say rightmost) eigenvalues is omputed using a hybriditerative proess based on a splitting tehnique. Roughly speaking a small subspae is omputedusing a Newton-type method and the solution in the larger omplementary spae is found usinga Piard (ontration mapping) approah. One advantage is that the Jaobian matrix Fx neednever be evaluated.When deteting Hopf bifurations in the Navier-Stokes equations using mixed �nite elements,a generalised eigenvalue problem of the form A� = �B� arises where B is singular. A ommonmethod is to apply Arnoldi's method to the shifted-inverted matrix (A � �B)�1B, whih issingular sine B is singular. In [30℄ it is noted that great are is needed here when usingArnoldi's method beause of the generation of spurious eigenvalues due to perturbation of thezero eigenvalue. The details are quite tehnial and are omitted.Finally we note that hapter 5 of [45℄ ontains an overview of Hopf detetion tehniques.Referenes[1℄ W. J. Beyn. Numerial methods for dynamial systems. In W. Light, editor, Advanes inNumerial Analysis, pages 175{227. Clarendon Press, Oxford, 1991.[2℄ S-N. Chow and J. K. Hale. Methods of Bifuration Theory. Springer-Verlag, New York,1982.[3℄ K. A. Cli�e, T. J. Garratt, and A. Spene. Eigenvalues of the disretized Navier-Stokesequation with appliation to the detetion of Hopf bifurations. Advanes in ComputationalMaths., 1:337{356, 1993.[4℄ M. G. Crandall and P. H. Rabinowitz. Bifuration from a simple eigenvalue. J. FuntionalAnalysis, 8:321{340, 1971.[5℄ Bryan D. Davidson. Large-sale ontinuation and numerial bifuration for partial di�er-ential equations. SIAM J. Numer. Anal., 34:2008{2027, Otober 1997.[6℄ J.E Dennis Jr and Robert B. Shnabel. Numerial Methods for Unonstrained Optimizationand Nonlinear Equations. Prentie Hall, New Jersey, 1983.42
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