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1 Introduction

This set of lecture notes provides an introduction to the numerical solution of bifurcation prob-
lems. The theory is given for finite dimensional problems — so we shall require only matrix
theory, finite dimensional calculus, etc. Only the basic principles for three of the most common
bifurcations will be discussed, but the hope is that after reading these notes a student should be
able to tackle the original journal papers. Almost all the results extend to infinite dimensional
operators defined in an appropriate setting, e.g. Banach or Hilbert Spaces.

There are many books on bifurcation theory for example Chow & Hale [2] gives an all-
round treatment, Vanderbauwhede [48] gives an early account of bifurcation in the presence of
symmetries, and the important books by Golubitsky & Schaeffer [9], and Golubitsky, Stewart
& Schaeffer [10] look at multiparameter bifurcation problems using singularity theory. An early
conference proceedings is Rabinowitz [37], which contains one of the first papers on the numerical
analysis (as compared with numerical methods) for bifurcation problems written by H. B. Keller
[25].  As might be expected, early books about the numerical analysis of bifurcations were
conference proceedings, see Mittelmann & Weber [32], Kiipper et.al. [28], Kiipper et.al. [29],
Roose et.al.[40] and Seydel et.al. [46].

H.B. Keller’s book [26] is a published version of lectures on Numerical Methods in Bifurcation
Problems delivered at the Indian Institute of Science, Bangalore. Rheinboldt’s book [39] is a
collection of his papers and also gives information and listing of the code PITCON for numerical

continuation of parameter dependent nonlinear problems. The code AUTO, developed by Doedel



[7], but with recent extensions by several others, is now the leading piece of software for nonlinear
systems, and can handle steady and time dependent problems, and discretized boundary value
problems. Seydel [45] contains discussion of numerical methods and many interesting examples.
A comprehensive treatment, including a full discussion of numerical methods using singularity
theory, is in the recent book by Govaerts [13]. Beyn [1] gives a survey on numerical methods for
dynamical systems, including methods for homoclinic and heteroclinic orbits. In fact, AUTO
now has an option to compute and follow paths of these orbits.

The plan of these notes is as follows. Section 2 contains three generic examples, namely a
fold bifurcation, a Hopf bifurcation, and bifurcation from the trivial solution. Section 3 contains
an account of Newton’s method and the Implicit Function Theorem. Section 4 discusses the
ideas behind Keller’s pseudo-arclength numerical continuation algorithm [25]. Sections 5, 6 and
8 provide an introduction to the numerical analysis of the three types of bifurcation phenomena
introduced in Section 2. Section 7 discusses bifurcation theory in nonlinear ODEs using results
in Sections 5 and 6.

There are many phenomena not considered here, for example, bifurcation in the presence
of symmetry (see for example [51] and the books [9], [10], [48]) and high order singularities in
multiparameter problems (see [9], [10], [13], [23]).

2 Examples

Bifurcation is the study of nonlinear problems with parameters, with the main interest being
the determination of changes in solution behaviour as a parameter varies. In particular, interest
centres on how to detect, calculate and classify points where there is a change in the type
of solution of the nonlinear problem. This section contains some examples of some typical
bifurcation phenomena.

In these notes we shall consider systems of the form
F(z,)\) =0 (2.1)

where F : R**! 5 R", & € R” is the state variable, and A € R is a parameter. We shall study
the behaviour of & as A varies, in fact, loosely speaking, A may be thought of as the independent
variable and x as the dependent variable.

Problems like (2.1) arise when studying autonomous systems of ordinary differential equa-
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Figure 2.1:
tions
dx .
== F(xz,)\), x(0) given, z(t) € R". (2.2)

Steady states (equilibria) of (2.2) are given by % = 0, and hence satisfy (2.1). An important
topic in the study of systems like (2.2) is the analysis of how the solutions change as A\ varies
and the determination of changes in stability. Often a first step is to find the steady states by
solving (2.1) for a range of X values and then determine any changes in stability of these steady

states. This theme is described in the first example.
Example 2.1 Consider f : R? = R defined by
flz,\)=X—22=0.

For A < 0 there are no real solutions; for A\ =0, x = 0 (twice); and for X > 0 there are two
solutions, x = +\V/X. The steady solutions are shown by the solid line in figure 2.1. Consider
now the solutions of the ODE

=\ — 2%, z(t) € R, z(0) given.

If A —2(0)? < 0, then initially x; < 0 and = decreases in time. If X\ — x(0)? > 0 then x; > 0 and
x increases in time. The trajectories (dashed lines) for 4 different initial values (denoted o) are
shown in Figure 2.1. Thus for X > 0, = /X is a stable equilibrium, and for © = /=X is an

unstable equilibrium. O



It is clear that even in this simple example, knowledge of the zeros of f(z,\) = 0 helps us
understand the behaviour of solutions of x; = f(x,A). It is instructive before reading on to
carry out a similar analysis for z; = Az — 3.

The type of solution behaviour exhibited in Example 2.1 occurs in many physical examples.
The point (z,\) = (0,0) is called a fold point (turning point or, in the dynamical systems
literature, a saddle node) and we return to this kind of phenomenon in Section 5.

A very clear account of the stability of nonlinear systems is given in Chapter 9 of [20],

where it is proved (p.187) that if x is a stable steady state for a given A, then the Jacobian

matrix Fg (2, \) (i.e. the matrix with the (4, j)th component gf; (z, \)) has no eigenvalues with
positive real part. Hence stability of a steady state of (2.2) is lost when one or more eigenvalues
of Fg(x,\) moves into the right half-plane as X\ varies. It is an instructive exercise to see in
Example 2.1 how the eigenvalue of the (1 x 1) Jacobian matrix changes along the path of steady
state solutions.

In Example 2.1 it was trivial to find the path of steady states analytically. In general the
solutions to a nonlinear problem F(x,\) = 0 will not be known analytically. In the following
sections we shall describe how to compute such solution paths and recognise the parameter

values at which the number of solutions changes.

The following example is two dimensional, and it is more convenient to use (z,y) rather than

Example 2.2 Consider the pair of ODEs

Ty A1 x x
= - @+
Yt -1 A Y Y
Clearly (z(t),y(t)) = 0 is a solution for any X\ € R. For any X\ > 0 each (z(t),y(t))! satisfying
x(t) = VAsint,y(t) = VAcost, is a nontrivial periodic solution. The Jacobian of the right hand

side 18
A1 322 + y? 2zy

-1 A 2zy 22+ 3y?
At (z,y) = (0,0) the eigenvalues of this matriz are X +i and so the trivial solution is stable for
A < 0 and unstable for A > 0. On the other hand a short calculation shows that the eigenvalues
of this matriz on the above nontrivial solution are —X + /A2 — 1, which always have negative

real part when X\ > 0 and so the periodic solution is stable. (See also §1 in [26].)



Figure 2.2:

In summary: As X passes through zero there is a birth of periodic orbits in (2.2). The

A

ergenvalues of are At 1, and these are purely imaginary at X = 0. This is a simple

-1 A
example of a Hopf bifurcation. We discuss this topic in Chapter 8. O

Example 2.3 Consider the differential equation

2

d
Fg + Asiny =0 (2.3)

where X\ > 0 is given and y(t) is to be found on t € [0,1] subject to the boundary conditions

dy dy
—(0)=0=-=() .
- (0) 0

(2.4)

This models the behaviour of an elastic rod occupying 0 < t < [ which is fized at each end and
subject to a force X in the direction of the rod (see [2], Chap. 1 for a figure and more detailed
discussion,).

Here y(t) represents the angle the tangent to the rod at a distance t along the rod makes to
the horizontal. Physically, as X\ increases the rod can buckle. Obuviously the trivial solution y =0
solves (2.3), (2.4) for all X\. The interesting solution is the buckled state y # 0. The differential
equation is tractable to theoretical analysis (the first step is to multiply (2.3) by % and inte-

grate) and it is shown in [2] that nontrivial solutions emanate from (y,\) = (0, m?72/1?), m =

1,2,3,... as shown in Figure 2.3. (The value of y(0) is plotted on the wvertical axis). The
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nontrivial branches correspond to buckled states. This is classical “bifurcation from the trivial
solution” and it was the analysis of this and similar buckling problems that prompted the initial
studies in bifurcation theory.

In practise we may compute buckled states by approximating (2.3), (2.4). One way to do

this is to set h =1/n (n € Z) and introduce the mesh
ti—ih, i=0,--.n

of equally spaced points on [0,[]. Then set y; = y(¢;) and approximate

d%y 1
W(tz’) by 72 {vi1 —2yi + yira}-

Substituting in (2.3) and forcing equality gives the approximation
1 . )
ﬁ{Yiq—QYi—i—YiH}—i—)\sin:O, i=1,...,(n—1), (2.5)

where Y; ~ y(t;). We can approximate (2.4) by

YY]_YO :OZYn_Ynfl

- - (2.6)

Now using (2.5) for i = 1,..,(n — 1) together with (2.6) yields the (n — 1) dimensional nonlinear



system

F(Y,\) = AY + Xsin(Y),
11 1T vi | [ sinyp |
1 -2 1
1
= Y =0. (2.7)
1 -2 1
L 1 -1 1L Yn,1 ) L SinYn,1 )

Clearly Y = 0 is always a solution. It is of interest to find out (i) For what A do nontrivial Y’
exist? (ii) Do they approximate the A given by the ordinary differential equation theory outlined

above? (iii) What is the corresponding Y7 (iv) How would we compute Y as A varies? O

2.1 Some Multivariate Calculus

For z,y ¢ R, xly = Z xiyi, |x| = {me}% For r > 0 define
i=17
B(z,r) ={y € R" : | — y| < r} open ball
B(x,r) ={y € R* : |& — y| < r} closed ball

If D is an open subset of R, then F' : D — R" is continuous at © € D if Ve > 0 3§ > 0 s.t.
y € B(z,d) = F(y) € B(F(x),¢).
A function f : D C R* — R is called continuously differentiable at x if g—i exists and is
continuous at x for eachi =1, --- ,n.
If F: DCR" - R" and F(z) = (fi(x), -, fu(z))” then the Jacobian of F is the matrix Fyg
which is defined Y& € D by (Fg(x));; = g;j; ().

0

(F' is called continuously differentiable at @ if 5

f; exists and is continuous at @ for each i, j.
J

Definition A sequence of vectors {*}2° | C R" is said to converge to * € R" if |z* — z*| — 0
for some vector norm | - | on R".

Remark Since all norms on R" are equivalent, the choice of norm in this definition is arbitrary.
Definition If a sequence of approximate solutions {#*¥} C R" are converging to a solution

x* € R" we say the convergence is order p if
Ja* — ") < Cla” —a"|?, k>0,

with C' independent of k.



If p = 1 convergence is called linear.

If p = 2 convergence is called quadratic.

3 Newton’s Method and the Implicit Function Theorem

The main computational tool to solve systems like (2.1) is Newton’s method, which we discuss in
§3.1. The main theoretical tool, which also has important numerical implications is the Implicit
Function Theorem which we discuss in §3.2. Two applications of the Implicit Function Theorem
are discussed in §3.3.

Recall that if G: D C R* — R", and || - || denotes a norm on R™ then G is called Lipschitz

continuous (with respect to || - ||) if there exists v € R, such that for all @,y € D

1G(=) — G(y)ll <~llz—yl, (3.1)
and we write G € Lip, (D). Throughout these lectures || - || will denote the Euclidean norm
|| = {x"2}'/? on R" and also the matrix norm induced by the Euclidean norm. With respect

to this norm, B(z,r) will denote the open ball in R" with centre = and radius r, while B(x,r)
denotes its closure.
3.1 Newton’s Method for Systems

A very nice treatment of Newton’s method for systems of nonlinear equations is given in [6]. To

find a root, zq say, of F(x) = 0, Newton’s method for a given starting guess ' is

"t =2k + dF where Fg(2")dF = — F(z"), k> 0. (3.2)
Theorem 3.1 Assume

(a) F : R* — R" is continuously differentiable in an open conver set D C R", and Fg €

Lip, (B(zo,7)), for some r > 0,
(b) Fa(xo) is nonsingular.

Then provided x° satisfies € € B(xg,€), for small enough ¢ > 0, Newton’s method is well

defined and x* — xq quadratically. (See [6] for a fuller account.)

In fact e can be given explicitly as min{r,1/23v}, where 3 = |(Fg(x)) !/, and this

approaches 0 as r — 0 or § — oo or v — oc.



It is interesting to formulate the matrix eigenvalue problem as a system of (n + 1) equations

in (n 4+ 1) unknowns, as is done in the following example.

Example 3.2 Let A be a real symmetric matriz, with simple eigenvalue o and corresponding
eigenvector ¢y satisfying ¢;‘)F¢0 = 1. Consider the problem of computing (g, po) by Newton’s
method. Define F : R"T! — R+ by

Ad —
(y) = ¢ nd =0, where y = ¢ € R+ (3.3)

T
¢ P—1 I
If we apply Newton’s method to compute the eigenpair (qu, p)T then the first step in verifying the
convergence would be to check that the Jacobian matriz Fy is nonsingular. A simple calculation

shows
A—pul —¢
Fy(y) =
207 0
The proof that this is nonsingular at yl = (¢E‘)F,,u0) may be obtained directly or by application

of case (ii) of the ABCD Lemma, which we now state.

Lemma 3.3 (“ABCD Lemma” (Keller [25])) Given an n x n real matriz A, ¢, b € R",
d € R, consider the (n+ 1) x (n + 1) bordered matriz

M:
' d

(i) If A is nonsingular then M is nonsingular if and only if d — ¢ A~ # 0.

(i) If rank(A) =n — 1, M is nonsingular if and only if
Wlb #0 for all ¢ € ker(AT)\ {0},
and

c’¢ #0 for all ¢ € ker(A)\ {0}.

(1) If rank(A) < n — 2, then M is singular.

Clearly different normalisations for the eigenvectors are possible. Replacing ¢'¢p = 1 in
(3.3) with e”'¢ = 1, where e, is the unit vector with (e,); = &, one can show that Newton’s
method applied to the eigenvalue problem can be interpreted as a version of inverse iteration

(see [47] for more details).



3.2 The Implicit Function Theorem

The Implicit Function Theorem is obtained as an application of the Contraction Mapping The-
orem to a nonlinear system with a parameter. So, let us first recall the Contraction Mapping

Theorem.

Theorem 3.4 (Contraction Mapping Theorem) Suppose
(i) G € Lip,(B(xq,7)) for some r >0, with 0 < a < 1;
(i) leo — G(xo)|| < (1 — a)r.

Then

(a) For all 2° € B(xg,r), the sequence x* defined by x**1 = G(x*) converges to a limit

x* € B(xo,1);
(b) x* is the unique fized point of G in B(xzq,r).

The proof is in most books on nonlinear equations. Other versions of this theorem replace
the assumption () with the requirement that G(B(z¢,7)) C B(xg,r). For numerical analysis
purposes the present version is better since checking (i) requires only checking that G(x)
should not be too far from . The proof of this version of the Contraction Mapping Theorem
is in [38].

The contraction mapping theorem has many uses. One example of its use is in the analysis

of the modified Newton method, given by the fixed point iteration x**!' = G(x*), where
Gx)=x— Fg(z) 'F(x). (3.4)

Using the Contraction Mapping Theorem it can be shown that if «° is sufficiently close to a
solution @y of F(x) = 0 then =¥ — x; linearly as k — oco.
Another example of its use is in the proof of the Implicit Function Theorem. Consider the

parameter dependent problem

F(xz,\) =0,

for (x,\) € D, where F: D C R"™! — R". Let S be the solution set

S={(x,\) e D: F(x,\) =0}

10



It is natural to ask the following question. If (g, Ag) € S and X is near Ay, is there a corre-
sponding unique x(A) such that (z(\),\) € S and x(\g) = x¢? If so, we say x is parametrised
by A near (xg, \g), written “@ = x&(\) near (g, A\g)”. The Implicit Function Theorem provides

the answer, but first consider a simple example.
Example 3.5 Consider

flz,)) =2+ X2 — 1.
Clearly if |zo| < 1 and (zo, Xo) € S then x = x(X\) near (xg, \g).

Since F' now depends on & and A, we use the notation Fg to mean the n x n matrix with

(i,7)th element 8—i, and by F'y we mean the n x 1 vector with elements 8—/\1 If (xg,\g) € D
j
we write

F’ = F(zg,\), Fp=Fz(zo \),

F} = Fj(mg, \o), etc.

The Implicit Function Theorem

In the proof of this theorem we assume that for all (x,\), (&, u), (y,\) € D,

(A1) ||F(z,A) = F(z, p)|| < o2/ — pf
(A2)  ||Fg(z, ) — Fg(y, M| < nlz -yl

(A3)  ||Fg(z, A) = Fg(z, pn)|| < 72[A —ul.

Clearly (A1-A3) hold if F has two continuous derivatives with respect to (z,\) € D. In many
applications in fact F' will be infinitely continuously differentiable on D, which we write as

F € C®(D).

Theorem 3.6 (Implicit Function Theorem) Suppose (A1-A3) hold and suppose there exists
(0, Ao) € D such that

(A4) F(zo, o) =0,

(A5) Fg(xg, o) is nonsingular.

Then there exist neighbourhoods B(Xg,e)), B(xo,ez) of Mo, ®g such that for all X € B(\g,e))

there exists x(\) € B(xg,e,) with

11



(a) F(z()),)) =0,

(b) x(N) is the unique solution of F(x,\) =0 in B(xg, &),
(c) @(Xo) =m0,

(d)  Fg(x()\),\) is nonsingular for all X € B(Xg,ey),

(e) x(N) is continuous with respect to X € B(\g,€)).

Remark If F € C*°(D) then (e) can be replaced by @ € C*(B(\g,ex)).

Proof The proof of (a),(b) and (c) uses the Contraction Mapping Theorem applied to
K(z,)\) =z — (Fg})q F(x,)), which is very like the form of the mapping G used in the
theory of the modified Newton method (3.4). (d) follows using 3.1.4 in [6], and (e) by standard
manipulation. O

With respect to the parameter dependent problem we make the following definition.

Definition 3.7 (g, \g) € S is called a reqular point of S if F5, is nonsingular. The Implicit
Function Theorem can then be applied to show x = x(\) near (xg, No). If a point (xg, Ng) € S

18 not reqular it is called a singular point.

Example 3.8 Consider

2?2+ 22—\
F(z, )\ =
x5 —2x1 + 1
It is clear that the solution set S is the intersection of the circle centred on the origin with

radius /X, and a parabola. (It is helpful to draw a sketch.) Clearly F € C®(R"*') and

256] 2562 . 0
Fy = . Consider (xg, A\o) := (0.73,0.68,1). Then (xg, o) € S and det(Fy,) =
—2 2.’1)2

4(x0)1(0)2+4(z0)2 # 0. So (xo, Ao) is a reqular point and the Implicit Function Theorem shows
that © = x(\) near (zg, \o). Consider instead (xg, o) = (1/2,0,1/4) € S. Then FY, is found to
be singular. So (xg, \g) is a singular point and we cannot conclude that € = x(\) near (xg, \o).
(Plotting the path of solutions &(\) against X\ shows why not.) The difficulty here is simply that

the solution set turns around at A = \g = %.
This is a special type of singular point called a fold or turning point.

Definition 3.9 If (zg, \o) € S is a singular point and if Rank(FY) = n — 1 then (g, \) is

called a fold point (or turning point) if F ¢ Image (FY%). In this case the nx (n+1) augmented

12



Jacobian [F9|FS] must have rank n and hence has a subset of n linearly independent columns.
By selecting the variables corresponding to these columns as the dependent variables we can still

apply the Implicit Function Theorem.

Example 3.10 Consider again Ezample 3.8. (xo, o) = (1/2,0,1/4), and hence

IRl
[FOmIFR]—[Q - J

which has full rank. The first and third columns are linearly independent so if we write

2 2
r{ — A+ x5
G(yal‘?) =
-2z + 1+ 23

The solution set for G = 0 1is identical to the solution of F = 0 but x9 is now considered to be

227 -1

a parameter and y = (x1,\). Then Gy = ] , which is nonsingular at (y, (x2)0) =
-2 0

(3.%,0) so the Implicit Punction Theorem shows that y = y(z2) near (yg, (22)0). O

This example shows that change of parametrisation can remove the problems of a fold point.

If a singular point is not a fold point, further analysis is required (see §6).

3.3 Two Examples

We now give two examples

Example 3.11 (See Ezample 2.3) Consider the n — 1 dimensional nonlinear system with F :

R? — R" 1 given in (2.7). Clearly (Yo, ) := (0, ) € S, for all \g € R, and

[Fy |F,] = [A— \diag(cosY)|sinY]

= [A* )\0]‘0] at (Y[],A[]).

Now A has the (n—1) eigenvalues jj, = ’;—; (2 — 2cos %), (with corresponding eigenfunctions
x®, with ’I'I; = cos(km(25—-1)/2(n—1))) for k =0,...,(n—2), which are distinct and hence simple.
So if Ao # —pg for any k then (Yo, Xo) is a reqular point, and so near N\g we have Y =Y ()\).
But if \g = pk, then Rank(A — A\gI) = n — 2, so (Yo, Xo) is a singular point. In addition
F = 0 e Image(A — \oI) = Image(F%,), s0 (Yo, Ao) is not a fold point either.

13



Example 3.12 (Perturbation theory for algebraically simple eigenvalues.)
Let A be a real n X n matriz with a simple eigenvalue po (i.e. algebraic multiplicity is 1) and
corresponding eigenvector ¢q. If A is perturbed to A+ eB, one question is to find the dominant
term in the perturbation of ug.

Start the perturbation theory by considering the nonlinear system (cf Example 8.2 but without

the assumption that A is symmetric)

Flg, e | AEBOme ) (0} [ 2] (3.5)
¢'d—1 0 z
Clearly with yy = (¢4, 10)”, F(yy,0) = 0, and Fy(yg,0) is nonsingular. (This is proved
using part (i1) of Lemma 3.3, though note that the condition of algebraic simplicity is needed
since A is no longer assumed symmetric.) Thus using the Implicit Function Theorem, for small
€| there exists a unique y(e) such that F(y(e),e) = 0 and Fy(y(e),€) is nonsingular. The latter
result ensures that p(e) is simple. Since p(e) € C°(R) we can write pu(e) = o + ep’(0) + O(€2).
To find the dominant term in the error we need to find 1/ (0). To do this we differentiate
(A+ eB)p(e) = u(e)p(e) with respect to €, set € =0, and multiply on the left by 1, € ker((A —
pol)T)\ {0}. This leads to
1 (0) = Bl Beo /ol o

(Note that ¥l ¢y # 0. If L ¢y = 0, then ¢y € Tmage(A — pgl) and dim(ker(A — pgl)?) > 1, con-
tradicting the assumption of algebraic simplicity.) If A is symmetric then p'(0) = ¢t Bdy/ bt by
4 Computation of solution paths
In this section we consider the general problem
F(z,)\) =0, (4.1)
where F : R"t1 5 R* | F € C®(R"*!). Set
S ={(x,\) e R"" . F(xz,)\) = 0}. (4.2)

Often in applications one is interested in computing the whole set S or a continuous portion of
it. For example in fluid dynamics & may represent the velocity and pressure of a flow, whereas A

is some physical parameter such as the Reynolds number. In practice S is computed by finding

14



a discrete set of points on S and then using some graphics package to interpolate. So the basic
numerical question to consider is: Given a point (xg, A\g) € S how would we compute a nearby
point on S? Throughout we use the notation F* = F(xg, \g), F% = Fg(xg, \g), etc.

If FY is nonsingular then the Tmplicit Function Theorem implies that for A near Ay the
solutions of F'(x,\) = 0 satisfy @ = x(\) with Fg(x(\), \) nonsingular. Hence Theorem 3.1
implies that Newton’s method for finding the solution x(\) of F(x(A),\) = 0 with starting
value &y will converge in some ball centred on x(X) for small enough A — A.

A simple strategy for computing a point of S near (g, A\g) is to choose a steplength A\, set
A1 = Ag + A\ and solve

F(zx,)\)=0

by Newton’s method with starting guess £ = x7. We then know this will work if AX is

sufficiently small. However this method will fail (or at best require repeated reduction of step
A)) as a turning point is approached. For this reason the pseudo-arclength method described

in the next section was introduced.

4.1 Keller’s pseudo-arclength continuation [25]

Ideally we would like a method that has no difficulties near, or passing round, a fold point. This
isn’t unreasonable since at a fold point there is nothing geometrically “wrong” with the curve,
though X\ is the wrong parameter to use to describe the curve. In this section we shall assume

that there is an arc of S such that at all points in the arc
Rank [Fz|Fy] = n, (4.3)

and so any point in the arc is either a regular or fold point of S. The Implicit Function Theorem
thus implies that the arc is a smooth curve in R"*!, and so there is a unique tangent direction
at each point of the arc.

Let ¢ denote any parameter used to describe the arc. Then along the arc (&, \) = (x(t), A\(¢)).

Suppose (zg, M) = (z(ty), A(tg)) and denote the tangent at (xg, Ag) by 7o = (0, Ag) where
< dA
- d o
T =, A=

@y = a(to), Ao = Alto).

The tangent 7 is well defined even if (g, Ag) is a fold point and can be computed in practice

using the following result.

15



Lemma 4.1 Assume (4.3). Then the tangent at (xg, \g) € S satisfies
70 € ker [F3|FY]. (4.4)
Proof Since F(x(t), A(t)) = 0, differentiating with respect to ¢ gives

Fa(a(t), Mt)a(t) + Fa(a(t), A(t)A(t) = 0.

xg
Put ¢t =ty and we have | € ker [FY|FS] and so the result follows. 0
Ao
Suppose now that 7o = [sg,0p] denotes the unit tangent i.e. Ti 7y = 1. We can use this
vector to devise an extended system which can be solved by Newton’s method without fail for

a point (x1,A\1) on S near (xg, \g). The appropriate extended system is
H(y,1)=0 (45)

where y = (2, \) € R"*! and H : R*"*2 — R**+!_ is given by

| F 1
Hlw.0) = | sf(@ —@0) + oo(A—2o) — (L —to) | 0

The last equation in system (4.5) is the equation of the plane perpendicular to 7y a distance
At = (t—tg) from ¢y (see Figure 4.1). So in (4.5) we in fact implement a specific parametrisation
local to (xg, A\g), namely parametrisation by the length of the projection of (x,\) onto the

tangent direction at (@, Ag).

| 37 5 O
With y, = (20, \o), we have H(y,,t0) = 0 and Hy(y,,t0) = L - . Since (s, 00)

is orthogonal to each of the rows of [F,, F], the matrix Hy(y,, to) is nonsingular and so by
the Implicit Function Theorem solutions of (4.5) satisfy y = (2, A) = (x(¢), A(t)) for t near t.
For t; = ty + At and At sufficiently small we know that F(y,t;) = 0 has a unique solution
y = y(t1) = (x1, A1) and Hy(y(t1),t1) is nonsingular. Thus Newton’s method will converge for
small enough At. If we take as starting guess y" = y, = (xg, o), it is a straightforward exercise
to show, (i) y', the first Newton iterate, is given by y' = (xq, A\g) + At(sg, 0¢), that is, the first
iterate “steps out” along the tangent, as one might expect, and (ii) 7 (y* —y,) = At V k> 1,
which means that all the Newton iterates lie in the plane shown in figure 4.1.

Since length along the tangent at (axg,A\g) is used as parameter this technique is called

pseudo-arclength continuation ([25]).
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Figure 4.1:

Another interpretation Since we know that solutions of (4.5) satisfy y = y(t), ¢t near ¢,
where ¢ is pseudo-arclength, we have H (y(t),t) = 0 and we can differentiate with respect to ¢

to get Hy(y(t),t)y(t) + Hi(y(t),t) = 0. Since Hy is nonsingular for ¢ near o,

y(t) = —Hy(y(1).1)" Hi(y(1),1), (4.7)

which is an ordinary differential equation for y(¢) with initial condition

y(to) = yo- (4.8)

We can use Euler’s method to solve (4.7), (4.8) in which case the first step is

1 01-1 50
YEuler = Yo — At[Hy] Ht : (49)
Since HY = , (4.9) is equivalent to
-1
o ol
F, F 0
1 x I
YEuler — Yo+ T
S ao At
s
= y'+ At ’
a0

So the first step of Newton’s method for (4.5) is equivalent to one step of Euler’s method
applied to (4.7), (4.8). We can think of this as using Euler’s method to provide a “predicted
guess” for y(t1) = (x1,A\1). Then continuing with Newton’s method can be thought of as

“correcting” this initial guess.
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The choice of an appropriate step control strategy for At seems to be harder than in the ODE
case, perhaps because the real problem is F(x(t), A(t)) = 0 and not the differential equation
derived from it. This topic is discussed in §4.6 of [45] or §7.4 of [39] but experience indicates
that simple techniques often work just as well as sophisticated approaches.

Practical implementation of pseudo-arclength continuation

The following is a suggested algorithm for implementing the pseudo-arclength continuation

method introduced above.

Step 1 Suppose FY is nonsingular, solve

Flzyg=—F% (4.10)

for zo. Then set | ! =
or zo. Then set = .
[ o J (zgzo+1)1/2 | 4

Step 2 (Euler predictor) Choose a step lehgth ‘At and set

11}1 () S0

= + At : (4.11)
)\1 )\0 (o)

Step 3 (Newton’s method) For k£ > 1 iterate
ph+1 k dF
AR+ A o+
with

LSUT (I(]J L&kJ_ [SUT(mk*m[])—FUU(Ak*)\o)*AtJ

Note that if F'9, is singular then the continuation method will still work provided the condition

(s e ][#]_ [ p 1w

Rank [F%|F{] = n holds, but Step 1 will fail to find the tangent vector. In practise this problem
usually does not arise since F'%, only becomes singular at isolated points on the solution set S
and effectively the probability of landing precisely on such a point is 0. However, care is needed
when F'3, is nearly singular as is discussed in the next subsection. As a further precaution many
continuation methods monitor the determinant of FY,.

If the tangent at a singular point is required then the null vector zgy of Fom can be computed

(say, by the inverse power method) and then the tangent vector can be taken as

S0 1 20

(o) B (ZUTZU)I/Q 0
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4.2 Block Elimination

As seen in (4.12) it is repeatedly necessary to solve “bordered systems” with coefficient matrix

k k
ame— | Fz B
Sg; (o]

In many applications, where F'(x, \) arises from a solution of a differential equation, F% may
have some special structure (e.g. tridiagonal, banded, sparse) which makes systems with matrix
Fg; easy to solve, but this structure is not present in M*. Then the “block elimination method”
(see [25]) is useful for quickly solving such systems.

“Block elimination” is merely Gaussian Elimination performed blockwise. If A is an n x n

matrix, b,c € R" and d € R then the block matrix

A b I 0 A b
M := = , (4.13)
¢ d lz 1 o” U1

where I,, = ¢l A1, Upy1 =d — A b, If l, 41 and uy,4q are computed, then the system

b T
= ! (4.14)
c’ d Y g
is readily solved using block forward and back substitution. One algorithm to accomplish this
is
(i) Solve Az = b, and Aw = f, and then set
(i) y = (g — c"w)/(d — " 2), T=w—yYz.

If A and M are both well conditioned then this algorithm for (4.14) works well, but if A is
poorly conditioned, as occurs in pseudo-arclength continuation near a fold point, then it may
fail to produce reliable results (in linear algebra terms, the algorithm is not “backward stable”).
A complete analysis of why the algorithm fails in the latter case was first given by Moore [34]
using a deflation argument. The account by Govaerts [11] avoids deflation but provides a stable

algorithm based on combining the decomposition (4.13) with the alternative decomposition

A b A 0 I, wu,
= . (4.15)
¢’ d el lnt1 0" 1
Roughly speaking the improved algorithm of Govaerts uses an iterative refinement approach.

The idea is as follows. In actual calculation the step (i7) above produces a good approximation,

19



1 say, for y, but the approximation for x is often worthless. So the x approximation is discarded.
To compute the residual after the first solve the approximate solution (g, yo) = (0,9) is used.
Then the approximation is corrected using the block LU decomposition (4.15) in a second solve.
The analysis of why this works is fairly technical [11]. The main work in the resulting stable
algorithm involves two solves with A and one solve with A”. Moore [34] provides a stable

algorithm also using only 3 solves (see quoted papers for analysis and algorithmic details).

5 The computation of fold (turning) points
Let (xg,Ag) be a point on S satisfying
F), is singular, rank|[F|F$] = n. (5.1)

Such a point is a fold point (see Example 2.1 and Definition 3.9). In a general one parameter
problem F'(x,\) = 0, fold points are the generic singular points and there are many examples
of their occurrence in applications. It is important to understand this type of nonlinear phe-
nomenon in its own right, but also because the theoretical analysis and numerical methods for
more complicated singularities are often extensions of fold point techniques.

Before attempting a discussion of the n-dimensional case in §5.1 it is a useful exercise to

analyse first the scalar case: this is the subject of the following example.

Example 5.1 Assume f : R2 — R with f € C*(R?) and set S = {(=,\) € R? : f(z,)\) = 0}.
Assume rank[f,, fa] =1 on S (i.e. either fr # 0 or fn # 0 at all points (z,\) € S). (1) Analyse
the behaviour of S near a fold point (xq,\g) i.e. where fO = 0. (i) Derive a 2 x 2 system for
the accurate calculation of a fold point and determine when the fold point is a regular solution
of this system.

Sketch of solution: Recall the usual notation fO = f.(xo, o), etc. By the rank condition,
at a fold point fg # 0 and so the Implicit Function Theorem implies X\ = \(x) near xy. Repeated
differentiation of f(z,A(z)) = 0 provides X' (xg) = 0, \'(x0) = —f%,/f\, and so the first three
terms of the Taylor expansion of A(z) can be found. (Sketch A(z) when f°, # 0.) Thus if
fO # 0 we see that N (x) changes sign at © = xg. To accurately compute (1o, o), consider the
2 x 2 system G(y) = [f, fz]1 = 0 to be solved for y = (x,)). It is easy to show that (zg, o) is
a regular point of G(y) = 0 if and only if 0, # 0.
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We shall see in the following subsection that the theory for fold points of the n-dimensional

system F'(x,\) = 0 is very similar to the one dimensional example above.

5.1 Analysis of Fold Points

Consider (4.1) with S as in (4.2). Let (x(t), A(f)) denote a smooth arc of S with rank[Fg|Fy] = n
and let (xg, A\g) = (x(to), M(to)) satisfy the fold point condition (5.1). Let

¢y € ker(F%) \ {0}, v, € ker(F%' )\ {0} (5.2)

Note that ! F # 0 (since otherwise 1, € ker [F9, F§]” = {0}). Differentiation of

F(x(t), \(t)) = 0 with respect to , evaluation at t = tq, and left multiplication by 1{ yields
Mto) = 0, @(ty) = agy, A(to) = =’ (Fazdy)bo/vq F3, (5.3)
for some « # 0, where Fgg @, denotes the Jacobian matrix of the n-vector Fge,.

Definition 5.2 We call (9, \o) a quadratic fold point if M(ty) # 0.

To compute the fold point it is natural to set up the system

F(x, ) x
T(y):=| Fg(x,\)¢ | =0, tobesolvedfory=| ¢ | € R2"+L (5.4)
¢'d 1 A

where T : R?"*1 5 R+l Here the second and third equations say that Fz has a zero
eigenvalue with corresponding normalised eigenvector ¢, (cf. Example 3.2). We shall see in §5.2
that there are alternative choices of system to compute a fold point, but (5.4) is very convenient

for analysis. In fact, the following theorem shows that (5.4) characterises a quadratic fold point.

Theorem 5.3 Let (xg, \g) satisfy (5.1).

(a) The point (xq, Py, \o) € R is a regular solution of T'(y) = 0 if and only if /\(fg) #0,

i.e. (xg, Ag) is a quadratic fold point.

(b) In addition, assume oy = 0 is an algebraically simple eigenvalue of FY,. Let u(t) denote
the eigenvalue of Fg(x(t), A(t)) near t = tg with u(ty) = 0. Then fi(ty) # 0 if and only if

(zo, o) is a quadratic fold point.
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The second result says that at a quadratic fold point a simple eigenvalue passes smoothly
through zero. Thus there is a smooth change in sign of det(Fg) through a quadratic fold point
and this fact is often used in continuation codes.

Proof The proof of Theorem 5.3 is straightforward. One way is to consider T'y(y,), given
by

F, 0 F$
Ty(yo) = | Feado Fag Firidy
0 200 0
and use part (i7) of Keller’'s ABCD Lemma (Lemma 3.3). In the notation of the lemma, A =
F, 0

Fozdy Fy
is nonsingular if and only if ¢ (F%¢y)¢, # 0, and part (a) follows from (5.3). The proof of

with corresponding choices for b and ¢. It can then be shown that T'y(y)

part (b) follows by formulating the eigenvalue problem as

Gzt = | TREOADERe o[ cpe, (5.5)

¢'p—1 1
Now G(zg,t9) = 0 and Gz(z¢,1) is nonsingular (cf. Example 3.2), and the Implicit Function
Theorem shows that p = pu(t) is a simple eigenvalue of F g (x(t), A(t)) near t = ty. Differentiation
of Fg(x(t),\(t))o(t) = u(t)p(t), evaluation at t = ty, and left multiplication by ¢ provides
L(tg) # 0 iff /\(fg) # 0. (Note that ] ¢y # 0 since zero is an algebraically simple eigenvalue of

FY) O

5.2 Numerical Calculation of Fold points

The system (5.4) can easily be used to compute fold points. It was so used by Seydel [44], [43]
and by Moore and Spence [35]. It is important to realise that when solving (5.4) by Newton’s
method one need not solve the (2n + 1) x (2n + 1) linear systems directly. In [35] an efficient
solution procedure is described using only solves with an n x n nonsingular matrix, which is
formed from F'y and n — 1 linearly independent columns of F'g.. The details are not given here,
but the main work involves 4 linear solves with the same matrix i.e. only one LU factorisation
of an n x n matrix is needed per Newton step to solve (5.4).

The fact that the solution of the (2n+ 1) x (2n + 1) linear Jacobian systems is accomplished
using solves of n X n systems has been used many times since, and another example of this

technique is in the calculation of Hopf bifurcation points (see §8 and [16]).

22



Griewank and Reddien [17, 18] (and with improvements Govaerts [12]) suggested an alter-
native way of calculating fold points (and other higher order singularities). This involves setting

up a “minimal” defining system

T(y) = Flz.A) =0, y e RMT (5.6)

g(x, A)

where g(x, \) : R" x R — R is implicitly defined through the equations

M(x, \) = , (5.7)
g(z, A) 1
and
(wT(m,)\),g(m,)\))M(m,)\) = (OT, 1), (5.8)
where
Mz, ) = [Fm(f’” 0| (59)
T

for some b,c € R", d € R. (The fact that g(x, \) is defined uniquely by both (5.7) and (5.8) may
be seen since both equations imply that g(x,\) = [M~'(2, \)]n+1.n+1.) Note that M(z,)) is a
bordering of Fg, as arises in the numerical continuation method (§4). Assuming b, ¢, and d are
chosen so that M (x, \) is nonsingular (see the ABCD Lemma 3.3) then g(x, \) and v(x,\) in
(5.7) are uniquely defined. (Note, if S is parametrised by ¢ near (xg, Ag), i.e. (x(t), A(t)) near
t = tg, then v = v(x(t), A(t)) and g = g(x(t), A(t)), and these functions may be differentiated
with respect to t.) Also, if we apply Cramer’s Rule in (5.7) (an idea due to Govaerts) we have

(with M (x, \) nonsingular)
g(x,\) = det(Fg(x, \))/det(M (x, \)) (5.10)

and so

g(x,\) =0 <= Fg(x,\) is singular.

It is easily shown that quadratic fold points are regular solutions of (5.6). To apply Newton’s
method to (5.6) derivatives of g(x, \) are required and these can be found by differentiation of
(5.7). When the details of an efficient implementation of Newton’s method applied to (5.6) are
worked out then the main cost is two linear solves with M and one with M”". A nice summary
of these ideas is given in Beyn [1]. A complete account is in the forthcoming book by Govaerts

13].
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6 Bifurcation from the trivial solution

As usual we consider the problem F(x,\) = 0 and we assume that F' € C®°(R"*!1). We shall
also assume that

F(0,\) =0, forall A €eR, (6.1)

with (0,)) being the path of trivial solutions. (As an example, consider f € R?, f(x,\) =
xX — 23.) In this section we use the G° to denote the value of any function G at (0, \g).

A formal definition of bifurcation from the trivial solution is as follows.

Definition 6.1 A point (0,\) € R** ! s said to be a bifurcation point for F(x,\) = 0 if
and only if there exists a sequence (xy, \x), with &y — 0, \x — Ao, as k — oo, such that

F(xy, \p) =0 and xy # 0 for all k.

Application of the Implicit Function Theorem shows immediately that if (0, Ag) is a bifur-
cation point then ng must be singular. We shall assume that ng has an algebraically simple

zero eigenvalue: that is, there exist ¢y, ¢, € R" \ {0} such that

ker(Fl) = span{gy}.
ker(F%') = span{t}, (6.2)
and  ¥jd, # 0.
In §6.1 we shall consider the scalar case since it is simpler and the scalar result is used in
the n-dimensional case. We shall see in §7 that the scalar case is interesting in its own right. In

§6.2 we then discuss the n-dimensional case.

6.1 Scalar case

Consider the problem f(z,A) = 0, with f(0,A) = 0 for all \. Then we have the following

theorem.

Theorem 6.2 Suppose f : D C R x R — R where D is an open subset of R*. Suppose
feC=®D). Let S = {(x,\) € D : f(x,\) =0}, and assume (0,\) € S, for all A € R. Also

assume for some Ag € R
(i) f2 =0,
(ii) [ #0,
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(where fO = f.(0, o), etc). Then nontrivial solutions bifurcate from the trivial solution x = 0

at (0, A\g). Moreover, near Ay,

Az) = Ao + 2v(2) (6.3)
where v(x) is a smooth function of x with v(0) = —f2% /2f0,.
Proof Note that f) = f¥, = f{,, = -+ = 0since (0, ) € S for all . Thusrank[f, fJ] =0

and the Implicit Function Theorem cannot be applied directly on f(z,A) = 0. However, we can
introduce a new problem on which the Implicit Function Theorem can be applied. Define

h(z,v) : R — R by, for 2 # 0,

h(r.0) = = f(2.0), v =(A—Xo)/z. (6.4)

xr

Expanding f(x, \g +2v) in powers of  using Taylor’s theorem, and using f* = f = fg = f)[\]A =

0, gives, for = # 0,
1
h(z,v) = 2—[ 0+ 2f% ] + 2[smooth function of v].

Define h(xz,v) at x = 0 by

n(0,0) = 72, +2f%0]. (65)

Then h is a smooth function of (x,v). Moreover by setting

vo = —fru/2f2 (6.6)

then, at (z,v) = (0,v9) we have, from (6.5), h® = h(0,v9) = 0. Moreover, by assumption (i),
hY # 0, and the Implicit Function Theorem gives that for |x| sufficiently small there exists v(z)

such that h(xz,v(z)) = 0. Using this function v, recall (6.4) and define
Ax) = Ao + 2v(2), (6.7)

from which f(x, A(z)) = 0 and the existence of nontrivial bifurcating solutions is proved.

Differentiating (6.7) and evaluation at x = 0 gives

N(0) = v(0) = vy = —f2, /212, (6.8)

which tells us the slope of the tangent to the nontrivial solution branch at the bifurcation point

(see Figure 6.1). |
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Figure 6.1: Here 7 is the tangent to the bifurcating branches at (0, Ag). The slope of the tangent
is (—2fo5/ o)

To compute (x, A(x)) near (0, Ag) with & # 0, consider solving the system

G(y.t) := f@ ) —0, y=|")er (6.9)

xr—t A

If (y,t) solves (6.9) with sufficiently small ¢ # 0, then z = ¢ and (z,\) = (£, A(t)) =: y(¢t).

Moreover,
det (Gy(y(t),1)) = —fr(t, A1) = (= f)t + O(t?)
and so the Newton theory (Theorem 5.2.1 in [6]) shows that convergence of Newton’s method

can only be guaranteed for starting guesses in a ball of radius O(t). If we take as starting guess

the following point on the tangent T depicted in Figure 6.2:

z? 0 1
= +t
A0 Ao N(0)
with \'(0) given by (6.8), then
t 20 0 9
S - o)
A(t) A0 A(t) — A(0) — tA'(0)

and one can show that Newton’s method will converge for sufficiently small . Notice that in
this case ¢ is not the pseudo-arclength parameter.
6.2 n-dimensional case

For the general case we have the classical theorem by Crandall and Rabinowitz on bifurcation

from a simple eigenvalue [4] (which holds for general operators on Banach spaces under minimal
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Figure 6.2: Numerical continuation away from the bifurcation point. Here 2° = ¢ and in this

case t is merely the value of the (non-zero) x component.

smoothness requirements).
Theorem 6.3 Suppose F € C®(R"*!) and (6.1), (6.2) hold. If

Y FY g # 0, (6.10)

then (0, o) is a bifurcation point, and there exist smooth functions (x(t), \(t)) parametrised by

t near t =0 such that F(x(t), A(t)) = 0 with A\(0) = \g, (0) =0, and ='(0) = ¢,.

Proof We present a proof which we believe is within the scope of a typical UK research
student just starting a PhD. More elegant proofs are given in most text books on bifurcation
theory. The method of proof is an example of the “Lyapunov-Schmidt reduction” [2].

We give the proof only under the assumption that F9 has distinct real eigenvalues,

[0, - - - s fin—1, With linearly independent eigenvectors {¢g, @1, ..., ¢, 1}, and {2y, ¥, ..., ¢, 1}

the corresponding linearly independent eigenvectors of (Fg})T Recall that pug = 0 and all the

other eigenvalues of F'9, are nonzero. Also, because the eigenvalues are distinct and simple,

Wl b =0, (i # j) and ¢] ¢; # 0.

Now since the v, span R"”, the equation F(x,A\) = 0 can be written as

YEF(@,)\) = 0 (6.11)

and ¢! F(x,)\) = 0, i=1,...,(n—1). (6.12)
(The proof of this is an elementary exercise.) Also we write € R™ in the form
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where V' is the n x (n — 1) matrix with ith column ¢,, fori =1,...,(n—1). Thus we decompose
R" into R™ = span{¢,} ® R, where R = Image(FY,) = span{¢,,..., ¢, ,}. Note that ¢l v =0

for all v € R. Now consider the n — 1 equations given by (6.12) in the form
F(y,t,\)=0, F:R"'xRxR— R"! (6.14)

where (F(y,t,\)); = %! F(t¢y + Vy,\). We shall use the Tmplicit Function Theorem to

parametrise the solution y of (6.14) as a function of (¢,A). To do this observe that
F(0,0,\) =0eR" !,
and the matrix 1~7’y(0, 0, ) is given by

i.j

Thus [ﬁ‘y(0,0,)\o)]ij = 'c,bZTFOmcbj = ppl @, and since p; #0, i =1,...,(n — 1), 1-7‘y(0,0,/\0)
is nonsingular on R !, and so the Implicit Function Theorem (extended to the case of a two-
dimensional parameter [2]) shows that solutions y of (6.14) may be parametrised by (¢, A) i.e. y =
y(t, A) near (0, Xg). Thus F(y(t,A),£,A) = 0 for (£, A) near (0, o) and (by uniqueness) y(0, \) =
0. In addition, y,(0, \g) = 0 since F,(0,0, o) = 0, and y, (0, \) = 0 since F'5(0,0,)) = 0.

Having solved (6.14) (i.e. the equations (6.12)), we return to equation (6.11) and write it in
the form

f(t, ) = YL F(tpy + Vy(t,\),\) = 0. (6.15)

This is in the form of a scalar nonlinear problem, and all that remains to prove the existence
of nontrivial solutions is to check the conditions of Theorem 6.2. Not surprisingly (6.15) (or
(6.11)) is called the bifurcation equation in the Lyapunov-Schmidt reduction of F(x, ) = 0. It
is essentially a projection of the original n dimensional system into the one dimensional space

spanned by the null eigenvector. Observe that

f(07 >‘) = ¢§F(Vy(07 >‘)7 >‘)

Y F(0,))

= 0

and

ft(()a)‘o) = gng¢0 =0,
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since ¢, € ker(Fz(0, \g)). Finally

= Y (Fop(dg+Vy) (VYY) + Foun(do + Vyl) + FRVyl)

= g Fipydy #0

by (6.10). Here we have used yY = 0, yg =0, and Vyg)\ € R to simplify the expression for ftUA.
So the conclusions of Theorem 6.2 apply. Hence nontrivial solutions of f(¢,\) = 0 bifurcate at
A = ). The corresponding x(t) = z(y(t,\),t) =ty + Vy(t, A), with £(0) = 0 and ='(0) = ¢y,
provides the nontrivial solution of F(x, A) = 0. O

Detection of bifurcation points is relatively easy for this case. We seek points where Fg (0, \)
is singular. If u(\) denotes the eigenvalue of Fg(0,)) along the trivial solution path with
u(Xo) = 0 then it is a simple exercise to show that p'(Ag) # 0 if and only if (6.10) holds.
Hence (6.10) is another example of a nondegeneracy condition which can be interpreted as an
eigenvalue going through zero with nonzero speed. Note that det(F'g (0, \)) changes sign at the

bifurcation point as A passes through Ag.

Example 6.4 In Ezample 2.3, equation (2.7) is
F(Y,)\) =AY + Asin(Y).

(It is an instructive ezercise to go through the proof of Theorem 6.3 for this example.) In this
case F(0,\) =0, for all X\ € R, Fy-(0,\) = (A+ X), and Fy-,(0,\) = 1. Now A has (n — 1)

algebraically simple eigenvalues
pr = —h2(2—2coskrn/(n—1)), k=0,1,...,n—2.

The zero eigenvalue s ruled out of the buckling example on physical grounds, so Theorem 6.3
shows that bifurcation from the trivial solution occurs at X = —pug, k = 0,...,(n — 2) since
the nondegeneracy condition (6.5) reduces to the condition that the eigenvalue be algebraically

simple. O

If the n-dimensional problem arises from a discretization of an ODE or PDE then the eigen-
values and eigenfunctions of the linearisation of the continuous problem might be known analyt-
ically. To find Ay and ¢ in the discretized problem a simple inverse iteration approach applied
to Fg(0,\) with the exact value for A at the bifurcation point used would almost certainly work

very quickly.
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To move off the trivial branch a technique similar to that in §6.1 may be used. At (0, \y)
[F|FS] has a two dimensional kernel spanned by (¢g,0)” and (07, 1) Tt is straightforward

to show that the tangent to the bifurcating nontrivial branch has the form

70 = ((=24( Fiprcbo) b0, ¥ (Fipa o) bo)

(cf. the scalar case in the previous section). The fact that the ordinary pseudo-arclength method
works in these circumstances is proved in [22]. However, the direct analogue of the approach in
§6.1 is merely to set equal to ¢ one component of . The best component to choose is the rth,
where (¢g), is the component of maximum modulus of ¢, (see [39]).

Remarks

(i) It is important to note that bifurcation from the trivial solution is a rather special case but
nonetheless a very important case in applications. The trivial solution forms an invariant
subspace under the action of F' in R"*! and bifurcating nontrivial solutions break the
subspace. Werner [49] gives a general theory of subspace-breaking bifurcation. A different
case but with comparable results arises when F'(x, \) satisfies a symmetry condition (see

[48], [51]).

(ii) In the absence of any special features (for example, symmetry) a bifurcation where two
(nontrivial) solution curves intersect will not typically arise in a one parameter problem
F(x,)\) = 0. In this case one needs two parameters to detect and compute bifurcation

points (see [33], [18],[23]).

7 Bifurcation in Nonlinear ODEs

The bifurcation theory in these notes is given for finite dimensional problems. However several
of the theoretical results on bifurcation can be applied to infinite dimensional problems involving
nonlinear ODEs by use of the shooting method, which also provides a computational tool. In
fact Poincaré’s analysis of bifurcation of periodic orbits in ODEs using the Poincaré section is
the first example of the use of a shooting method to prove analytical results. The use of shooting
to study steady bifurcations in nonlinear boundary value problems (BVPs) seems to have been
considered first by J.B.Keller in 1960. The treatment here is based on Keller’s article [27]. An

account of the numerical analysis of shooting methods for nonlinear BVPs is given in [24].
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First recall a standard theorem of existence, uniqueness and continuity with respect to initial

data for systems of ordinary differential equations (ODEs) of the form
u = f(t,u), t>a (7.1)
with initial condition
u(a) =« (7.2)

where u(t) € R" is to be found for t > a, f: R xR" — R" is given, a € R” is given, and a € R

is given.
Theorem 7.1 Suppose f is continuous on [a,b] x R", and suppose
1£(t,u) = F(t, )] < Ljju — v (7.3)

for some L > 0 and for t € [a,b] and all u,v € R*. Then for any a € R* the IVP (7.1), (7.2)
has a unique solution u = u(t, ) defined for t € [a,b]. Moreover w is Lipschitz continuous in
a, and in fact

w(t, @) —u(t, B)]2 < " V|ja — Bl

for all o, B € R™.

Remarks

1. In many problems of interest (7.3) will not be true over all u,v € R", but rather
over all u,v € B(a,r) for some a € R", r > 0 fixed. In this case a similar theorem holds, but
the solution may exist only for ¢ € [a, bp] with by = min{b,r/L}.

2. The numerical solution of (7.1), (7.2) over finite ranges of ¢ > a is now well understood.
Many codes exist in which a user specifies f,a,b and a and a required tolerance, and the
program returns the value of u(b) at b or at any intermediate points between a and b. We will
assume that (7.1), (7.2) have a unique solution which can be found numerically for ¢ € [a, ],

with b > a.

7.1 The shooting method for ODEs

Consider the second order ODE
—y" —g(t,y,y') =0, tela,b] (7.4)
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subject to the boundary conditions

agy(a) —ary'(a) = o (7.5)
boy(b) +b1y'(b) = (7.6)
with |ag| + |a1] # 0, |bo| + |b1| # 0. Here it is assumed that ¢(¢,y1,y2) is continuous on

D :={(t,y1,y2) : t € [a,b], y? +y5 < oo} and satisfies a uniform Lipschitz condition in y; and

Y2-
To solve this BVP consider the associated initial value problem (IVP)

—u" —g(t,u,u’) =0 (asin (7.4)) (7.7)
subject to the initial conditions
agu(a) — ayu'(a) = a  (as in (7.5)) (7.8)
and
cou(a) — cru/(a) = s, (7.9)

where s is a parameter which will be determined below. We choose ¢, ¢ s.t.

d .= ajcy — apgcCi 75 0. (710)

Then (7.8), (7.9) are independent initial conditions and the matrix is invert-

ible. From Theorem 7.1 we know that (7.7)—(7.9) has a unique solution, which we denote by
u(t;s), t >0, s € R To solve (7.4) (7.6) we need to find s such that

f(s) =0 (7.11)

where f(s) is defined by the right-hand boundary condition (7.6)

ou

7(5) = {bou(b; ) + b 5 (b 5) = 5. (712)

Thus the solution of (7.4)—(7.6) is reduced to solving the nonlinear problem (7.11) where f is
implicitly defined in terms of solutions of (7.7) (7.9).

The numerical analysis of shooting methods for solving (7.4)—(7.6) where solutions of (7.7)—
(7.9) are evaluated numerically is given in [24].

The equivalence of (7.4) (7.6) to (7.11) is given in the following lemma (see [24],[27]).
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Lemma 7.2 (i) If sg solves (7.11) then y(t) = u(t; sg) solves (7.4)—(7.6). If y(t) solves (7.4)-
(7.6) then so = coy(a) — c1y'(a) solves (7.11).
(ii) sg is the unique solution of (7.11) if and only if y(t) is the unique solution of (7.4) (7.6).

Proof (i) Suppose f(sg) = 0 then y(t) = u(t;sg) solves (7.4)—(7.6). Conversely if y(¢) solves
(7.4) (7.6) then set sg = coy(a) — c1y'(a). By uniqueness of solutions to initial value problems

u(t; s0) = y(t) and f(so) = 0.

(ii) See Theorem 2 [27] where a more general problem is considered. 0

To analyse and solve (7.7) (7.9) we reduce to a first order system. To do this we set u; = u,

ug = u' = uj. Then (7.7) becomes the 2 x 2 system

u) us
= =: f(t,u) (7.13)
UIQ —g(t,u1,uQ)
and (7.8), (7.9) become (using (7.10)),
ui(a 1| —a a «
e Ly e @ , (7.14)
ui(a) d —co  ap s

and so (7.13), (7.14) has a unique solution using Theorem 7.1.

To implement Newton’s method for (7.11) we need to be able to evaluate not only f(s)

0 ou
but also fs(s) = {bow(b; s) + bl%(b; 9)} where w = 8—U We obtain an equation for w by
f s

differentiating (7.7)—(7.9) with respect to s to get the IVP

—w" — gy (t, u,u ) w — gy (t, u,u')w' =0,
agw(a) — ajw'(a) = 0, (7.15)
cow(a) — cw'(a) = 1.

(Note " always means differentiation with respect to ¢.) This system together with (7.7)—(7.9)
can be reduced to a first order system of dimension 4 which we can solve using standard ODE

software. We illustrate this by means of an example.

Example 7.3 Consider the boundary value problem

7?/// + ey — 0’

y(0) =0, y(1) =0,

(7.16)
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and the corresponding IVP

—u" 4" =0,
(7.17)
u(0) =0, v'(0) = s.
Denote the solution by u(t;s). The nonlinear problem (7.11) is
f(s):==u(l;s) =0. (7.18)
ou , , .
To find fs, set w = 95 then differentiate (7.17) with respect to s
s
—w" +etw = 0,
w(0) = 0, (7.19)
w'(0) = 1.

From the solution of this we obtain fs(s) = w(1;s).
We solve (7.17), (7.19) simultaneously by the substitutions

/
uy = u, U2 = U = Uy,

us = w, Ug =W = Ug,

to obtain a first order system of four equations:

— -/ - -

Ui U
ug exp(u1)
us U4
| ug | I exp(uq)ug |
with initial condition ) ) -
U1 0
u9 S
us 0
U 1
L 4 Jdt=0 L n

We solve this system up to ¢ = 1, from which we obtain

f(s) =u1(1), fs(s) = us(1).

If s is a guess to the solution of (7.11) then the values of f(s) and f4(s) can be used to generate

a new guess for s using Newton’s method, and this process can be iterated.
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7.2 Analysis of parameter dependent ODEs
As mentioned at the start of this section, the shooting method can be used as a technique for

theoretical analysis as well as numerically solving problems.

Example 7.4 (Recall Ezample 2.3). Prove that nontrivial solutions exist for the following
BVP

—y" — Asiny =0,
Y Y (7.20)
y'(0) = 0, y'(l)=0.
To prove this we use again the shooting approach and consider the IVP
—u" — Xsinu=0,
(7.21)
u'(0) = 0, u(0) =s.

Note that the solution u depends on ¢, s and also A, ie. u = u(t; s, \). In view of the right hand

boundary conditions in (7.20), we consider

P52 = Pts.0) = 0. (7.22)

By uniqueness for the IVP (7.21) we have
f(O,AN)=0 forall A e R

By Lemma 7.2, (7.22) is equivalent to (7.20), so nontrivial solutions y of (7.20) bifurcate at
A = Ag if and only if nontrivial solutions s of (7.22) bifurcate at A = X\g. To prove the latter
assertion we use Theorem 6.2, for which we need f; and f;). So set w = % and differentiate
(7.21) with respect to s to obtain

—w" — Acosu)w = 0,

w'(0) =0, w(0) =1,

(7.23)

with solution w = w(t;s,A). Now when s = 0, w = 0 (by uniqueness for (7.21)) and (7.23)
implies that w(t) = w(#;0, \) satisfies the linear 2nd order ODE

—w" — Aw = 0. (7.24)

Thus w(t) = Asin VAt + B cos VA, and to satisfy the boundary conditions, we have A =0, B =

1. Then, by (7.22)
ow

Fo(0.0) = —-(1:0,)) = —VAsin(VA). (7.25)
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2,2

This vanishes for A = \g = ™7—, m = 0,1,2.... (In the application of the buckling of a rod
the case A = 0 is ruled out on physical grounds.) To check if bifurcation occurs at A = Ag, we

have to compute fgx(0, ). To do this set

ow
ON’

v =
and differentiate (7.23) with respect to A to get

—v" — (cos u)w + A(sinu) 2w — A(cosu)v = 0

(7.26)
v'(0) =0, v(0) =0.
At s =0, u=0, and so v(t) = v(t;0, \) satisfies
- =X =w
(7.27)
v'(0) =0, v(0) = 0.
Bifurcation occurs at Ag if
ov
fs)\((]a AU) = E(la Oa AU) 7é 0. (728)

Suppose (7.28) does not hold. Then v(t) = v(t;0, \g) satisfies (7.27) with A = Xy, together with
v' (1) = 0. (7.29)
Then (7.27) implies
! ,
[«
Jo Jo
! !
= -l-/ v'w' — )\0/ vw by (7.29)
0 0
! !
= — [ v - Ao/ vw since w'(0) = 0 = w'(l)
0
!
= / v(—w" — Nw) =0 by (7.24),
Jo

which is impossible since w(t) = w(t;0, A\g) = v/ Ag cos VAot and Ag # 0. So bifurcation from the

o e . 2.2
trivial solution occurs at A = \g = 57—, m=1,2,....

7.3 Calculation of fold points in ODEs using shooting

We consider this technique via an example. See also Seydel [45].
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Example 7.5 Consider the following nonlinear ODE:
—y" = Xexp(y) =0, y(0) =0=y(1).

Using the development in Ezample 7.4 we set up an associated IVP and f(s) := u(1;s,A). To
calculate the values of f and its derivatives in the shooting method, we have the three initial

value problems:

—u” = det —w" = Aetw " = Xe'v+ e
u(0) = 0 w0) = 0 v(0) = 0
u'(0) = s w'(0) = 1 v'(0) = 0

Then
f(s, ) =u(lys, A); fs(s,A) = w(l;s,A); fals, A) = v(15s, A).

We may follow the solution curve of f(s,A) = 0 numerically by continuation with respect to s
or \, with a check on size of |fs|, |fa|- If one of these becomes small then we use the other as a
parameter. If they are not both zero then curve has only turning points. Observe also that when

s=10, A =0 we have

w = t, so fs(0,0)=1
1 1
v o= 75752, so  f,(0,0) = —5

We may use (0,0) as the starting point for continuation. To solve for u,v,w simultaneously, set

ur =u, ug =u', uz = w, ug = w', us = v, ug = v'. Then the three problems becomne:

/

[ U | [ Uy | I U | [0 |
U —uz exp(uq) U9 s
us Uy us3 0
Uy = —uy exp(u] )u3 , with Uy = 1 at t = 0.
Uus Ug us 0
Ug —u7exp(uy)us —exp(uq) Ug 0
| u7 | | 0 ] | ur | LA

For any (s, A\) we solve this system by any numerical routine, and then

f(sa A) = “‘1(1)a fS(Sa >‘) = “’3(1)a f)\(sa A) = “‘5(1)' (730)

These may be used in a continuation method as described in §4.
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8 Hopf Bifurcation

As was seen in Example 2.2, one way a steady state of & = F'(a, \) can lose stability as A varies
is when a complex pair of eigenvalues of Fg(x, \) crosses the imaginary axis. This situation is

described by the classical Hopf bifurcation theorem [19].

Theorem 8.1 (Hopf Bifurcation) Let F € C*(R"*) and assume
(7) F(mg, A(]) = 0,

(11) Fg(xg, Ng) has a simple, purely imaginary eigenvalue u(Xg) = +ifo, Bo # 0, with eigen-
vector ¢y + iy, and no other eigenvalues on the imaginary azis apart from at —if,
(i) {xRe(u)} |, | #0.
Then there exists an ag > 0 and a parameter a such that € = F(x,\) has a smooth branch of
T (a)-periodic solutions (x(t,a; A(a)), A(a)) for 0 <t < T(a), for all |a| < ag with the following

properties

z(t,a:A(a)) = @(Aa)) +a(cos(fot)dy — sin(Bot)ey) + O(a?),

Ma) = X+ 0(a?),
2w 9
T(a) = N + O(a”),

where x*(A\(a)) denotes the steady solution at A = \(a).

The theorem states that at (xg,Ag) there is a birth of periodic solutions that may be
parametrised by the amplitude a. If conditions (i), (%) and (u77) hold then (xg, Ag) is called
a Hopf bifurcation point.

Note that since FY, is nonsingular, the Tmplicit Function Theorem ensures that S (the
solution set of the steady problem) may be parametrised by A near A = Ag. Using the approach
in the proof of part (b) of Theorem 5.3 extended to C"*! shows that a (real or complex) simple
eigenvalue of Fg(x(A),\) is a smooth function of A near )\g. Hence we can write Re(u) =
Re(u(X))-

Condition (4i1) in Theorem 8.1 is another example of a nondegeneracy condition where an
eigenvalue smoothly crosses the imaginary axis.

Theorem 8.1 is due to Hopf in a famous paper in 1942, though in 1929 Andronov was the

first to formulate a theorem and Poincaré’s work in 1892 contained examples of this type of
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bifurcation. So this phenomenon is now often called Poincaré/Andronov/Hopf bifurcation. A
nice treatment of the theory of Hopf bifurcation with references to the work of Andronov and

Poincaré is given in Wiggins [52].

8.1 Calculation of a Hopf Bifurcation Point

If a good estimate of the Hopf bifurcation point is known then it may be computed exactly
by setting up and solving an appropriate extended system (cf. the fold point system in (5.4).)

Consider the nonlinear system

H(y)=0 (8.1)
where
F(x,\) x
Fa(x,\)¢ — B¢ ®
H(y) = cl'p—1 , yi=| A | eR™H2 (8.2)
Fg(x,\)¢ + B¢ Y
'y g

with H : R3"*2 — R3"*2_ This is the obvious system to write down as can be seen from
conditions (i) and (7) in Theorem 8.1. There are two conditions on the eigenvector ¢ + i) since
a complex vector requires two real normalisations.

The following theorem is readily proved (see [16]).

Theorem 8.2 Let (xg, A\o) be a Hopf bifurcation point (i.e. (i), (i) and (iii) of Theorem 8.1
hold) and assume ¢ has non-zero projection on span {¢,}. Then y, = (x{, ¢0T, )\g,ng,ﬁo)T €

R3"+2 s a regular solution of (8.1).

Note that fold points also satisfy (8.1) since if (xg,Ag) is a fold point and ¢, €
ker(Fg(xg, A\g)) then y, = (g, ¢y, N, 0,0) satisfies H(y,) = 0. In fact y, is a regular so-
lution if the conditions of Theorem 5.3 hold.

System (8.1) was first introduced by Jepson [21] and independently by Griewank and Red-
dien [16] who showed that the linearisation of (8.1) could be reduced to solving systems with
a bordered form of F%(x,)\) + $%I. This is natural since an alternative system for a Hopf
bifurcation can be derived by using the fact that the second and fourth equations of (8.1) can

be written as (Fg(x,\) + 3°I)v = 0 with v = ¢ or 4.
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To eliminate the possibility of computing a fold point rather than a Hopf bifurcation point,

Werner and Janovsky [50] used the system

R(y) =0 (8.3)
where
F(x,\) x
2
c' ¢ A
c'Fy(z, ) —1 v

in which R : R?"*2 — R?"*2_ and where c is a constant vector. The last equation in (8.3)
ensures that the solution cannot be a fold point. The system R(y) = 0 is closely related to a
system derived by Roose and Hlavacek [41], but (8.3) has several advantages when computing
paths of Hopf bifurcations if a second parameter is varying (see [50]).

The fact that (8.1) or (8.3) is regular at a Hopf bifurcation is important since Newton’s
method (or some variant) will probably be used to solve the system. Just as is the case in §5
for the computation of a fold point, there are efficient ways of solving the Jacobian systems in
Newton’s method. In [16] an efficient procedure is described for the solution of the (3n+42) x (3n+
2) Jacobian systems arising from (8.1) by solving systems with a bordering of (F% (x, \) + 521I).

We do not give the details here. A nice summary is given in [1].

8.2 The Detection of Hopf Bifurcations in Large Systems

The extended systems in §8.1 can only be used when we know we are near a Hopf point. The
following section describes how this might be determined in practice.

When computing a path of steady solutions of & = F(x, \) using a numerical continuation
method it is easy to pass over a Hopf bifurcation point without “noticing” it, since when a
complex pair of eigenvalues crosses the imaginary axis there is no easy detection test based on
the linear algebra of the continuation method. In particular the sign of the determinant of Fg
does not change. If n is small then the simplest test is merely to compute all the eigenvalues
of F'g during the continuation. For large n, say when F' arises from a discretized PDE, such
an approach will usually be out of the question. The efficient detection of Hopf bifurcations in
large systems is an important and, as yet, unsolved problem. The review article [8] discusses

in detail both classical techniques from complex analysis and linear algebra-based methods. It
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is natural to try to use classical ideas from complex analysis for this problem since then one
seeks an integer, namely the number of eigenvalues in the unstable half-plane, and counting
algorithms are applicable. This is explored for large systems in [14] but there is still work to be
done in this area.

The rightmost eigenvalues of Fg(x,\) determine the (linearised) stability of the steady
solutions of & = F(x,\) and one strategy for the detection of Hopf bifurcation points is to
monitor a few of the rightmost eigenvalues as the path of steady state solutions is computed.
(Note that the rightmost eigenvalue is not a continuous function of A, see [36].) Standard
iterative methods, e.g. Arnoldi’s method and simultaneous iteration, compute extremal or
dominant eigenvalues, and there is no guarantee that the rightmost eigenvalue will be computed
by direct application of these methods to F'g:. The approach in [8] and [3] is to first transform

the eigenvalue problem using the Generalised Cayley Transform
CA)=A-—a]) " (A-al), a,as€R

which has the key property that if u # 1 is an eigenvalue of A then § := (u — 1) (1 — o) is
an eigenvalue of C'(A4). Also, Re(u) < (>)(a1 +ag9)/2 if and only if |#] < (>)1. Thus eigenvalues
to the right of the line Re(u) = (a1 +a2)/2 are mapped outside the unit circle and eigenvalues to
the left of the line mapped inside the unit circle. In [8] and [3] algorithms based on computing
dominant eigenvalues of C'(F'g) using Arnoldi or simultaneous iteration are presented, with
consequent calculation of rightmost eigenvalues of F'zz. These algorithms were tested on a variety
of problems, including systems arising from mixed finite element discretizations of the Navier-
Stokes equations. Quite large problems can in fact be tackled. Indeed, in [15] the problem
of the stability of flow over a backward facing step is discussed in detail and the rightmost
eigenvalues of a system with over 3 x 105 degrees of freedom are found using the Generalised
Cayley transform allied with simultaneous iteration.

However it was later noted (see [31]) that since
C(A) =1+ (a1 - 042)(14 - Oé][)il,

Arnoldi’s method applied to C'(A) builds the same Krylov subspace as Arnoldi’s method applied
to the shift-invert transformation (A —ay1)~!. Thus if Arnoldi’s method is the eigenvalue solver
there is no advantage in using the Cayley transform, which needs two parameters, over the

standard shift-invert transformation (see [31]).
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One can think of the approach in [3] as the computation of the subspace containing the
eigenvectors corresponding to the rightmost eigenvalues of F'g:. A similar theme, derived using
a completely different approach, is described by [42] and refined by [5]. In these papers the
subspace corresponding to a set of (say rightmost) eigenvalues is computed using a hybrid
iterative process based on a splitting technique. Roughly speaking a small subspace is computed
using a Newton-type method and the solution in the larger complementary space is found using
a Picard (contraction mapping) approach. One advantage is that the Jacobian matrix Fg need
never be evaluated.

When detecting Hopf bifurcations in the Navier-Stokes equations using mixed finite elements,
a generalised eigenvalue problem of the form A¢ = uB¢ arises where B is singular. A common
method is to apply Arnoldi’s method to the shifted-inverted matrix (4 — aB) !B, which is
singular since B is singular. In [30] it is noted that great care is needed here when using
Arnoldi’s method because of the generation of spurious eigenvalues due to perturbation of the
zero eigenvalue. The details are quite technical and are omitted.

Finally we note that chapter 5 of [45] contains an overview of Hopf detection techniques.
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