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Introduction

Overall. This paper studies the topological aspect of cluster theory. Cluster algebra
was invented by Fomin-Zelevinsky in 2000, which rapidly developed and have been
shown related to various areas in mathematics (cf. [?]).

The combinatorial aspect of cluster theory is encoded by quiver mutation, which leads
to the categorification by BMRRT via quiver representations. In the cluster category,
mutation becomes tilting and it is an involution. Later, DWZ introduced the poten-
tial to quivers together with improved mutation. Keller-Yang gave the corresponding
categorification of quivers with potential via the associated Ginzburg dg (=differential
graded) algebra. In the corresponding Calabi-Yau-3 derived category, mutation becomes
simple tilting and the square of mutation becomes Seidel-Thoams spherical twist.

The geometric aspect of cluster theory was explored by FST [8]. Let S be a marked
surface. They showed that one can associated a quiverQT to each (tagged) triangulation
T of S while the flip on triangulations becomes mutation on QT. The remarkable feature
in their story is the tagging which makes everything worked but also leaves a puzzle.
Further, CL algebraically gave a potential for each QT. The arcs in the marked surface
corresponding to rigid objects in the corresponding cluster category, which play the role
of projective.

Contents. Our main theorem is the following.

thm:0 Theorem 0.1. Let T be a tagged triangulation on S, CT be the corresponding cluster
of curves and CT be canonical configuration of CT. Then

• the flip of an arc on T corresponds to the half Dehn twist of the corresponding
curves on the cluster of curves CT (Theorem ??);
• the intersection quiver Q(CT) of CT is isomorphic to the FST’s quiver QT of

T and the half Dehn twist on CT induces mutation on Q(CT) (Theorem ??);
• the embedded polygons of CT induces a potential W (CT) for the intersection

quiver Q(CT) of CT such that the quiver with potential (Q(CT),W (CT)) is e-
quivalent to CL’s associated to T (Theorem ??);
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• the reduced configuration of CT induces the reduced quiver with potential of
(Q(CT),W (CT)) such that the quiver is Q(CT). (Theorem ??).

Our main conjectures are the following

Conjecture 0.2. Let T be a tagged triangulation on S, CT be the corresponding cluster
of curves and CT be canonical configuration of CT on the twisted surface ΣT. Denote
by (Q(CT),W (CT)) the reduced quiver with potential from CT and ΓT the assoicated
Ginzburg dg algebra. Then

• there is a bijection between the set of reachable spherical objects in the finite-
dimensional derived category D(ΓT) of ΓT quotient by shift [2] and the set of
reachable curves on ΣT;
• the total dimension of Hom• between any two of those spherical objects equals

the geometry intersection number between the corresponding curves.
• the subgroup STG(ΓT), generating by reachable spherical twists, of the auto-

equivalence group AutD(ΓT) is isomorphic to the subgroup DTG(ΣT), generat-
ing by reachable Dehn twists, of the mapping class group MCG(ΣT).

Acknowledgements. QY would like to thank Luis Paris for explaining Perron-Vannier’s
proof of faithfulness of the braid group of type D. He would also like to thank Joe Grant
and Yang Dong for interesting discussion about derived equivalences.

1. The Krammer groupoids
sec:IT

1.1. Marked surfaces. Fix be an algebraically close filed k. S denotes an unpunctured
marked surface in the sense of [8], that is, a connected Riemann surface with a fixed
orientation with a finite set M of marked point on the boundary ∂S and a finite set P
of punctures inside, satisfying the following conditions:

• S is not closed, i.e. ∂S 6= ∅;
• each connected component of ∂S contains at least one marked point.

Up to homeomorphism, S is determined by the following data

• the genus g;
• the number b of boundary components;
• the number p = #P of punctures;
• the integer partition of m = #M into b parts describing the number of marked

points on its boundary.

As in [8, p5], we will exclude the case when there is no triangulation or there is no arcs
in the triangulation. In other wards, we require n ≥ 1 in (1.1). In this paper, we have
the following convention:

• an open arc is a curve on a marked surface that connected two marked points/punctures;
• a curve is a closed curve on a marked surface;
• any picture of S is drawn of its positive side.

An ideal triangulation T of S is a (isotopy class of) maximal collection of compatible
open arcs. Here, compatibility means no intersection in S −M − P. We have the
following result of ideal triangulation.
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pp:FST Theorem 1.1 (cf. [8]). For any ideal triangulation T of S, it consists of

n = 6g + 3p+ 3b+m− 6 (1.1) eq:n

(simple essential) open arcs and divides S in to ℵ = (2n+m)/3 triangles. Moreover, the
unoriented exchange graph EG(S) of ideal triangulations of S (whose edges correspond
to the flip, cf. Figure 2) is connected with fundamental groups generated by squares and
pentagons as in Figure 1.
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Figure 1. The square and pentagon fig:Pent
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Figure 2. The (unoriented) exchange graph EG(S) of ideal triangulations fig:FST

1.2. The Krammer groupoids. From now on, we will assume S is unpunctured, i.e.
p = 0 within this section. There is the notion of (forward/backward) flip (after [19] and
cf. [24]).
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def:f.flip Definition 1.2. Let γ be an open arc in a triangulation T of S. The arc γ] = γ](T) is
the arc obtained from γ by anticlockwise moving its endpoints along the quadrilateral
in T whose diagonal is γ to the next marked points. The forward flip of a triangulation

T of S at γ ∈ T is the triangulation T]
γ obtained from T by replacing the arc γ with γ].

Denote by EG◦(S) the (oriented) exchange graph of S, whose vertices are ideal tri-
angulations of S and whose edges are the forward flips.

Although the forward flip is the same as an ordinary flip, we will see later this will no
longer be the case when we decorated S. Moreover, an ordinary flip T −−→ T′ in EG(S)
induces two forward flips T −−→ T′ and T −−→ T′ in EG◦(S), cf. Figure 3.
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Figure 3. One ordinary flip induces two forward flips fig:F2-1

Definition 1.3. Let E be a oriented graph. Denote by W+(E) the path category of E,
i.e. whose objects are the vertices of E and whose generating morphisms corresponds
the (oriented) edges of E. Denote by W(E) the path groupoid of E, i.e. the same
presentation of W+(E) but all the morphisms are invertible.

def:gpd Definition 1.4. Define the Krammer groupoid EG◦(S) of an (unpunctured) marked
surface S to be the quotient groupoid of the path groupoidW(EG◦(S)) by the following
(square and pentagon) relations:

• For any square in EG◦(S) (cf. the left picture of Figure 1), it induces four
oriented squares between local rotations as shown in Figure 4. We will im-
pose the commutation relations in EG◦(S), that the compositions of generating
morphisms along the two paths of any oriented square are equal.
• For any pentagon in EG◦(S) (cf. the right picture of Figure 1), it induces five

oriented pentagon (each vertex of the original pentagon could be a source of such
an oriented pentagon) between local rotations as shown in Figure 5. We will
impose the pentagon relations in EG◦(S), that the compositions of generating
morphisms along the two paths of any oriented square are equal.

1.3. A covering via decorated surfaces. Recall that any triangulation of S consists
of ℵ triangles.

Definition 1.5. [24] The decorated marked surface S4 is a marked surface S togetherdef:arcs
with a fixed set 4 of ℵ ‘decorated’ points (in the interior of S. Moreover,

• An open arc in S4 is (the isotopy class of) a simple curve in S4 − 4 that
connects two marked points in M.
• A triangulation T of S4 is an (isotopy class of) maximal collection of compatible

open arcs (i.e. no intersection in S−M) such that they divide S4 into ℵ triangles,
each of which contains exactly one point in 4.
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Figure 4. The commutation relation for EG◦(S) fig:Squa.rel
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Figure 5. The pentagon relation for EG◦(S) fig:Pent.rel

• There is a canonical map, the forgetful map

F : S4 → S,

forgetting the decorated points. Clearly, F induces a map from the set of open
arcs in S4 to the set of open arcs in S. Thus, F also induces a map from the
set of triangulations of S4 to the set of triangulations of S.
• The forward flip of a triangulation T of S4 is defined exactly the same way as

in Definition 1.2 for a triangulation T of S. There relations are demonstrated
in Figure 6.
• The exchange graph EG(S4) is the oriented graph whose vertices are triangu-

lations of S4 and whose edges correspond to forward flips between them.

Note that EG(S4) is usually not connected; however, each connected component are
isomorphic to each other (cf. [24, Remark 3.10]). Now, we construct a covering of the
groupoid EG◦(S). Fix an initial triangulation T0 of S4 and take a connected component
EG◦(S4) of EG(S4) that contains T0.

Denote by T0 = F (T0) the induces triangulation of EG(S).

def:gpd.b Definition 1.6. Define the exchange groupoid EG◦(S4) to be the quotient groupoid of
the path groupoid W(EG◦(S4)) by the following (square and pentagon) relations:
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Figure 6. The forward flip fig:filp.o

• For a triangulation T in EG◦(S) with two open arcs that are not adjacent in any
triangle of T (cf. blue arcs in the upper left picture of Figure 7), the forward
flips with respect to them form a square in EG◦(S4). We will impose the
corresponding pentagon relations in EG◦(S).
• For a triangulation T in EG◦(S) with two open arcs that are adjacent in some

triangle of T (cf. blue arcs in the leftmost picture of Figure 21), it induces
an oriented pentagon in EG◦(S4) as shown in Figure 21. We will impose the
corresponding pentagon relations in EG◦(S).
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Figure 7. The commutation relation in EG◦(S4) fig:4+

Lemma 1.7 (Krammer). EG◦(S4) is a covering of EG◦(S).

Proof. We claim that the covering functor F∗ is induced by the forgetful map F . It is
clearly F∗ is well-defined on the objects. Figure 6 show that F∗ map the generating
morphisms to the generating morphisms. What is left to check is that the relations
between generating morphisms in EG◦(S) preserve by F∗. This follows from



TWISTED SURFACES I: CLUSTERS OF CURVES 7

• •

•

•

•

◦
◦ ◦

• •

•

•

•

◦
◦ ◦

• •

•

•

•

◦
◦ ◦

• •

•

•

•

◦
◦ ◦

• •

•

•

•

◦
◦ ◦

Figure 8. The pentagon relation for EG◦(S4) fig:5+

• Figure 4 and Figure 5 for the square relations;
• Figure 7 and Figure 21 for the pentagon relations.

�

1.4. The covering group.

Definition 1.8. A closed arc in S4 is (the isotopy class of) a simple curve in the
interior of S4 that connects two decorated points in 4. Let T be a triangulation of S4
(consisting of n open arcs). The dual triangulation T∗ of T is the collection of n closed
arcs in CA(S4), such that every closed arc only intersects one open arc in T and with
intersection one. See the left picture of Figure 9 for an example. More precisely, for
γ in T, the corresponding closed arc in T∗ is the unique open arc s, that is contained
in the quadrilateral A with diagonal γ, connecting the two decorated points in A and
intersecting γ only once We will call s and γ the dual of each other, with respect to T
(or T∗).

An H-arc in S4 is (the isotopy class of) a simple curve in S4 that connects a dec-
orated point and a midpoint of some boundary segment of S4. The completed dual
triangulation of T consists of T∗ and a maximal collection of H-arcs that does not in-
tersect T. So there will be exactly m H-arcs in any completed dual triangulation, cf.
right picture of Figure 9.

Definition 1.9. The mapping class group MCG(S4) is the group of isotopy classes of
homeomorphisms of S4, where all homeomorphisms and isotopies are required to

• fix ∂S4(⊃M) pointwise;
• fix the decorated points set 4 (but allow to permutate points in it).
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Figure 9. The (completed) dual of a triangulation fig:ex0

Note that the mapping class group MCG(S) of S will require only the first condition.
It is well-known that MCG(S) is generated by Dehn twists along simple closed curves.

For any closed arc η ∈ CA(S4), there is the (positive) braid twist Bη ∈ MCG(S4)
along η, which is shown in Figure 10. Further, there is the following well-known formula

η

+

•◦ •◦
Bη η

•◦ •◦

Figure 10. The Braid twist fig:Braid twist

Bρ(η) = ρ ◦ Bη ◦ρ−1, (1.2) eq:formulaB

for any Ψ ∈ MCG(S4).

Definition 1.10. The braid twist group BTG(S4) of the decorated marked surface S4
is the subgroup of MCG(S4) generated by the braid twists Bη for η ∈ CA(S4).

Note that the composition of forward/backward flips is a negative/positive braid twist
(cf. Figure 11). By [24, Lemma 3.9], we have the following.

lem:covering Lemma 1.11. The covering group of EG◦(S4)→ EG◦(S) is BTG(S4).

1.5. The braid representation. An alternative way to describe the covering in Lem-
ma 1.11 is via a representation to the mapping class groupoid of decorated surfaces.

For any object (i.e. a triangulation) T in EG◦(S), define S4(T) to be the (isotopy
class of) decorated marked surface obtained from S by decorating a set of ℵ points
so that each triangle of T contains exactly one decorated point. Note that there is a
canonical triangulation T of S4(T), inherited from T.
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Figure 11. The composition of forward flips fig:flips

Definition 1.12. The mapping class groupoid MCG(S4) of S4 is the groupoid whose
objects are S4(T) and whose morphisms are the (isotopy classed of) homeomorphisms
between them.

Construction 1.13. Now, we define a representation ξb : EG◦(S) → MCG(S4) as
follows:

• ξb(T) = S4(T) for any object (i.e. a triangulation) T in EG◦(S);

• For each generating morphism (i.e. a forward flip) η : T→ T′ = T]
γ , let ξb(η) be

the (isotopy class of) homeomorphism from S4(T) to S4(T]
γ), such that

ξ(η)
(
T]γ
)

= T′, (1.3) eq:def

where T and T′ are the canonical triangulations of S4(T) and S4(T′), respec-
tively.

Note that triangulations of decorated surfaces satisfy the square and pentagon relations
(cf. Figure 7 and Figure 21). Similarly, by Figure ??, there are square and pentagon
relations in MCG(S4) by (1.4). Then it is straightforward to check the representation
above is well-defined. Moreover, denoted by BT (S4) the image of ξb. Then Lemma 1.11
implies

π1(BT (S4)) ∼= BTG(S4). (1.4) eq:def

2. Quivers with potential and cluster theory

In this section, we discuss the cluster exchange groupoids, which is a generalization
of the Krammer groupoids.

2.1. Three categories. A quiver Q is a directed graph and a potential W associated
to Q is the sum of some cycles in Q (possible with coefficients). One can mutate a quiver
with potential, in the sense of DWZ. We will always assume the quivers with potential
are non-degenerated, which basically means that the (iterated) mutation works well.
Further details see [14] for example.

Denote by Γ(Q,W ) the Ginzburg dg algebra (of degree 3) associated to a quiver with
potential (Q,W ), which is constructed as follows (see [14, § 7.2] for further details):

• Let Q3 be the graded quiver whose vertex set is Q0 and whose arrows are: the
arrows in Q with degree 0; an arrow a∗ : j → i with degree −1 for each arrow
a : i→ j in Q; a loop e∗ : i→ i with degree −2 for each vertex e in Q.
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• The underlying graded algebra of Γ(Q,W ) is the completion of the graded path
algebra kQ3 in the category of graded vector spaces with respect to the ideal
generated by the arrow of Q3.
• The differential of Γ(Q,W ) is the unique continuous linear endomorphism ho-

mogeneous of degree 1 which satisfies the Leibniz rule and takes the following
values

d
∑
e∈Q0

e∗ + d
∑
a∈Q1

a∗ =
∑
a∈Q1

[a, a∗] + ∂W.

A triangulated category D is called N -Calabi-Yau (N -CY) if, for any objects L,M
in D we have a natural isomorphism

S : Hom•D(L,M)
∼−→ Hom•D(M,L)∨[N ]. (2.1) eq:serre

Further, an object S is N -spherical if Hom•(S, S) = k ⊕ k[−N ] and (2.1) holds func-
torially for L = S and M in D.. Note that the graded dual of a graded k-vector space
V = ⊕i∈ZVi[i] is

V ∨ =
⊕
i∈Z

V ∗i [−i].

There are three categories associated to a Ginzburg dg algebra Γ, namely,

• The perfect derived category per Γ.
• The finite-dimensional derived category Dfd(Γ), which is a full subcategory of

per Γ. Moreover, it is 3-CY.
• The cluster category C(Γ), which is defined by the following short exact sequence

of triangulated categories (due to Amiot)

0→ Dfd(Γ)→ per Γ→ C(Γ)→ 0. (2.2) eq:ses

Moreover, it is 2-CY.

ex:un-p Example 2.1. Let S be an unpunctured marked surface with a triangulation T. Then
there is an associated FST-quiver QT with a LF-potential WT, constructed as follows
(See, e.g. [10] or [27] for the precise definition):

• the vertices of QT are the arcs in T.
• for each triangle T (a.k.a. the type I puzzle piece) in T, there are three arrows

between the corresponding vertices as shown in Figure 12.
• these three arrows form a 3-cycle in QT and WT is the sum of all such 3-cycles

that correspond to inner triangles (i.e. whose edges, say b, c, d in Figure 12, are
not boundary segments).

Denote by the corresponding Ginzburg dg algebra of such a quiver with potential by
ΓT.

2.2. Cluster tilting and cluster exchange graphs. A cluster tilting set L in a
category C is an Ext-configuration, i.e. a maximal collection of non-isomorphic inde-

composables such that Hom1(L,M) = 0 for any L,M ∈ L. The forward mutation µ]L
at an element L ∈ L acts on a cluster tilting set L by replacing L by

L] = Cone
(
L→

⊕
M∈L−{L}

Irr(L,M)∗ ⊗ T
)
, (2.3) eq:++
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Figure 12. The type I puzzle piece and associated quiver with potential fig:type I

where Irr(X,Y ) is a space of irreducible maps X → Y , in the additive subcategory

Add
⊕

M∈LM of C. The backward mutation µ[L at an element L ∈ L acts on a cluster
tilting set L by replacing L by

L[ = Cone
( ⊕
M∈L−{L}

Irr(M,L)⊗M → L
)

[−1]. (2.4) eq:--

If C is 2-CY, we will have L] = L[ or µ]LL = µ[LL.
For a cluster category C(Γ) arising from a Ginzburg dg algebra Γ of some quiver with

potential (Q,W ), there is a canonical cluster tilting set LΓ whose elements correspond
one-one to the vertices of the quiver Q. It is in fact induced from the canonical silting
object Γ in per Γ, cf. § 2.5. All the cluster tilting sets that can be iterated mutated
from LΓ are called reachable. Note that if (Q,W ) is rising from a marked surface (with
non-empty boundaries and possibly with punctures), then every cluster tilting set is
reachable ([27, Theorem 5.2]).

Definition 2.2. Let Γ be the Ginzburg dg algebra of some quiver with potential. The
(oriented) cluster exchange graph CEG(C(Γ)) of the cluster category C(Γ) is the oriented
graph whose vertices are the reachable cluster tilting sets in C(Γ) and whose edges are
the forward mutations.

Let Q be a mutation equivalent class of (non-degenerated) quivers with potential.
There is notation of (unoriented) cluster exchange graph CEG(Q) of Q, whose vertices
are quivers with potential and whose edges are mutations between them. One can
consider its oriented version CEG(Q) by replacing every edge with a 2-cycle (i.e. give
the mutation a direction, say forward/backward), cf [16, Figure 4].

Remark 2.3. For each cluster tilting set L in CEG(C(Γ)), one can associated a quiver
with potential (QL,WL) so that the quiver QL is the Gabriel quiver for L. It is well-
known that CEG(Q) can be identified (as graphs) with CEG(C(Γ(Q,W ))) for any
(Q,W ) in Q, where the correspondence is given by

CEG(C(Γ(Q,W ))) ∼= CEG(Q)

L 7→ (QL,WL).

So the (forward/backward) mutation between cluster titling sets becomes the (for-
ward/backward) DWZ-mutation for the associated quivers with potential.



12 ALASTAIR KING AND YU QIU

2.3. Exchange graphs of hearts. There is a close relation between cluster exchange
graphs and exchange graphs of hearts in the corresponding 3-CY categories Dfd(Γ). We
will investigate this in this subsection.

A t-structure P on a triangulated category D is a full subcategory P ⊂ D with
P[1] ⊂ P and such that, if one defines

P⊥ = {G ∈ D : HomD(F,G) = 0,∀F ∈ P},

then, for every object E ∈ D, there is a unique triangle F → E → G→ F [1] in D with
F ∈ P and G ∈ P⊥. It is bounded if for any object M in D, the shifts M [k] are in P
for k � 0 and in P⊥ for k � 0. We will only consider bounded t-structures. The heart
of a (bounded) t-structure P is the full subcategory H = P⊥[1] ∩ P, which uniquely
determines P.

Note that any heart is abelian. Recall that a torsion pair in an abelian category A
is a pair of full subcategories 〈F , T 〉 of A, such that Hom(T ,F) = 0 and furthermore

every object E ∈ A fits into a short exact sequence 0 // ET // E // EF // 0 for

some objects ET ∈ T and EF ∈ F . We will write A = 〈F , T 〉.
Let H be a heart in a triangulated category D with torsion pair H = 〈F , T 〉. Then

there is a heart H] with torsion pair H] = 〈T ,F [1]〉, called the forward tilts of H and

a heart H[ with torsion pair H[ = 〈T [−1],F〉, called the backward tilts of H (cf. [16,
Proposition 3.2]). We say a forward tilt is simple if F = 〈S〉 for a rigid simple S, and

write it as H]S . Similarly, a backward tilt is simple if T = 〈S〉 for a rigid simple S, and

write it as H[S .
Let Γ = Γ(Q,W ) be the Ginzburg dg algebra of some quiver with potential (Q,W ).

Then Dfd(Γ) admits a canonical heartHΓ generated by simple Γ-modules Se, for e ∈ Q0,
each of which is 3-spherical, i.e. (cf. say [14]).

Definition 2.4. The twist functor φ of a spherical object S is defined by

φS(X) = Cone (S ⊗Hom•(S,X)→ X) (2.5) eq:phi

with inverse

φ−1
S (X) = Cone

(
X → S ⊗Hom•(X,S)∨

)
[−1].

Denote by STG(Γ) the spherical twist group of Dfd(Γ) in AutDfd(Γ), generated by
{φSe | e ∈ Q0}.

The (total) exchange graph EG(D) of a triangulated category D is the oriented graph
whose vertices are all hearts in D and whose edges correspond to simple forward tiltings
between them. We will consider the principal component EG◦(Dfd(Γ)) of the exchange
graph EG(Dfd(Γ)) of Dfd(Γ). We call the hearts in EG◦(Dfd(Γ)) reachable.

Denote by Sph(Γ) the set of reachable spherical objects in Dfd(Γ), that is,

Sph(Γ) = STG(Γ) · SimHΓ, (2.6) eq:sph=st

where SimH denotes the set of simples of an abelian category H. Then Sph(Γ) in fact
consists of all the simples of reachable hearts (see, e.g. [24]).

We have the following result (cf. [16, Theorem 8.6] for the acyclic case).
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Theorem 2.5. [13, Theorem 5.6] Let Γ be the Ginzburg dg algebra of some quiver withthm:KN
potential. There is an isomorphism between oriented graphs:

EG◦(Dfd(Γ))/STG(Γ) = CEG(C(Γ)). (2.7) eq:quo

Moreover, let H be a heart in EG◦(Dfd(Γ)) that corresponds to a cluster tilting set L
in CEG(C(Γ)). Then the associated/Gabriel quiver QL can be identified with the degree
one part of the Ext-quiver of H (cf. [16, § 6]).

eq:pentagon
2.4. Square and pentagon relations. In this section, we show that EG◦(Dfd(Γ))
has squares and pentagons.

Let D be a triangulated category with hearts H1 ≤ H2 ≤ H3 ≤ H1[1]. By [16,
Proposition 3.2], there is a torsion pair 〈Fij , Tij〉 in Hi such that Hj is the forward
tilting of Hi with respect to which, for (i, j) = (1, 2), (2, 3), (1, 3). In fact, we have

Tij = Hi ∩Hj , Fij = Hj [−1] ∩Hi . (2.8) eq:FT

lem:123 Lemma 2.6. F13 admits a torsion pair 〈F12,F23〉 in the sense that

1◦. HomD(F23,F12) = 0;
2◦. for any object X in F13, there is a short exact sequence 0→ N → X → L→ 0

in H1, where N ∈ F23, L ∈ F12;
3◦. If there is a short exact sequence 0 → N → X → L → 0 in H1, where N ∈
F23, L ∈ F12, then X is in F13.

Proof. Recall that a heart in a triangulated category induces a homology (cf. [16, (2.4)]).
Denote by H•(?) the homology with respect to H1. Since H1 ≤ H2 ≤ H3 ≤ H1[1],
H•(X) concentrates in degree zero and one, for any objects X in H2 or H3. Since
F23 = H2 ∩H3[−1], H•(X) must concentrate in degree zero, for any X ∈ F23. In other
words, F23 ∈ H1. Then by (2.8) we have

T12 ∩ F13 = (H1 ∩H2) ∩ (H3[−1] ∩H1)

= H1 ∩(H3[−1] ∩H2)

= H1 ∩F23 = F23.

Similarly, we have T23[−1] ∩ F13 = F12. So 1◦ follows from HomD(T12,F12) = 0 and
F23 ⊂ T12. For 2◦, such an X admits a short exact sequence 0 → N → X → L → 0
in H1, where N ∈ T12, L ∈ F12. Since F23 is closed under taking subobject, we have
N is in F23 and hence in T12 ∩ F13 = F23 as required. To finish, let N,X,L satisfy the
condition in 3◦. Then F23 ∈ T12 implies X ∈ H1 and F12 ∈ T23[−1] implies X ∈ H3[−1].
Thus X ∈ H3[−1] ∩H1 = F13. �

pp:eg.h Proposition 2.7. Let H be a heart in EG◦(Dfd(Γ)) with simples Si and Sj satisfying

Ext1(Si, Sj) = 0. We have the following.

(I). If Hom1(Sj , Si) = 0 and then (Hi)]Sj = Hij. Equivalently, there is a square in

EG◦(Dfd(Γ)) as in the left diagram of (2.9).

(II). If Hom1(Sj , Si) = k and then Hij = (H∗)]Sj , where Tj = φ−1
Si

(Sj) and H∗ =

(Hi)]Tj . Equivalently, there is a pentagon in EG◦(Dfd(Γ)) as in the right diagram

of (2.9).
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Hi
Sj

##
H

Si <<

Sj ""

Hij

Hj
Si

;;

Hi
Tj // H∗ Sj

##
H

Si ==

Sj $$

Hij

Hj
Si

99

(2.9) eq:45

Proof. We only deal the pentagon case since the square case is similar and simpler. Let
F be the abelian category generated by Si and Sj , which contains only three indecom-
posables, namely Si, Sj and Tj . By [16, Proposition 5.2], we know that Si is a simple in
Hj . Moreover, Hji ≤ H[1] by [16, Lemma 5.4]. Applying Lemma 2.6, we see that Hij
is the forward tilt of H with respect to the torsion pair whose torsion free part is F .

Similarly, Tj is a simple in Hi and Sj is a simple in H∗. Let Hji = (H∗)]Sj and we have

Hji ≤ H[1] by [16, Lemma 5.4]. Applying Lemma 2.6, we see that H∗ is the forward
tilt of H with respect to the torsion pair whose torsion free part is F ′, which contains
exactly two indecomposables Si and Tj . Applying Lemma 2.6 again, we see that Hji is
the forward tilt of H with respect to the torsion pair whose torsion free part contains
exactly three indecomposables, Si Tj and Sj , which is exactly F . Thus Hij = Hji, i.e.
we have the pentagon in (2.9) as required. �

def:gpd.h Definition 2.8. Define the exchange groupoid EG◦(Dfd(Γ)) to be the quotient groupoid
of the path groupoid W(EG◦(Dfd(Γ))) by the square and pentagon relations (induced
from squares/pentagons in (2.9)) as in Definition 1.6.

By Theorem 2.5, squares and pentagons in (2.9) induces squares and pentagons in
CEG(C(Γ)) in the following sense.

Lemma 2.9. Let L be a cluster tilting set. Let Li, Lj ∈ L such that there is no arrow
from Li to Lj in the Gabriel quiver QL. We have the following.

(I). If there is no arrow from Lj to Li in QL, then there is a square in CEG(C(Γ))
as in the left diagram of (2.9).

(II). If there is exactly one arrow from Lj to Li in QL, then there is a pentagon in
CEG(C(Γ)) as in the right diagram of (2.9).

Li
Lj

##
L

Li ==

Lj !!

Lij

Lj
Li

<<

Li
Lj // L∗ L′i

""
L

Li >>

Lj ##

Lij

Lj

Li

::

(2.10) eq:45.2

Proof. �

def:gpd.c Definition 2.10. Let (Q,W ) be a quiver with potential in a mutation equivalent class
Q and Γ = Γ(Q,W ) the Ginzburg dg algebra. Define the cluster exchange groupoid
CEG(Γ) to be the quotient groupoid of the path groupoidW(CEG(C(Γ))) by the square
and pentagon relations (induced from squares/pentagons in (2.10)) as in Definition 1.6.
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By construction, we have the following covering

EG◦(Dfd(Γ) � CEG(Γ). (2.11) eq:cov

The covering group is the STG0(Γ), which is a quotient group of STG(Γ) that acts freely
on EG◦(Dfd(Γ) (or equivalently on the corresponding component of stability space, cf.
[26]). As a reachable heart is finite and determined by its simples, the condition that
acts freely on EG◦(Dfd(Γ) is equivalent to acts freely on Sph(Γ).

sec:cat
2.5. Silting mutation and derived equivalences. In the following two subsections,
we give a categorical representation of cluster exchange groupoid, which is a upgraded
version of (2.11).

A silting object M in a category C is an object such that it generates C (i.e. thick(M) =
C) and any two indecomposable summands M,M ′ of M satisfy Homt(M,M ′) = 0 if
t > 0. We will also usually requires that the indecomposable summands of M are
pairwise non-isomorphic. For instance, Γ is the canonical silting object in per Γ for a
Ginzburg dg algebra of some quiver with potential. Using the formulae (2.3) and (2.3)
for cluster tilting, one can define the forward/backward mutation of a silting object,
by replacing an indecomposable summand with another one. As before, we will call
a silting object in per Γ reachable, if it can be iterated mutated from Γ. Denote the
exchange graph of reachable silting objects in per Γ by EG◦(per Γ). By Keller-Nicolás
(cf. [18]), we have the following.

pp:dual Proposition 2.11. There is a canonical isomorphism between oriented graphs

EG◦(per Γ) ∼= EG◦(Dfd(Γ)),

which is a dg version of projective-simple duality. More precisely, if M =
⋃n
i=1Mi in

EG◦(per Γ) corresponds to H in EG◦(Dfd(Γ)), then one can label the simples of H as
{Si}ni=1 so that Hom•(Mi, Sj) = δijk.

In fact, the proof of (2.7) uses the proposition above: given a heartH in EG◦(Dfd(Γ)),
let M be the corresponding silting object in per Γ; then its image in C(Γ) under the
projection in (2.2) will be a cluster tilting set.

Beside, (2.9) in Proposition 2.7 induces squares and pentagons in EG◦(per Γ) as
follows:

Xi
µj

##
X

µi <<

µj ""

Xij

Xj

µi

;;

Xi

µj // X∗ µ′i
##

X

µi ==

µj
$$

Xij

Xj

µi

99

(2.12) eq:45.3

sec:cat2
2.6. A categorical representation. Next, we study the categorical version of the mu-
tation of silting objects in per Γ. Let (Q,W ) be a quiver with potential and (Q′,W ′) =
µi(Q,W ) be the quiver with potential mutated from (Q,W ) at vertex i. Denote by Γ
and Γ′ by their Ginzburg dg algebras respectively. Let Si and S′i be the simples corre-
sponding to i in the canonical hearts HΓ and H′Γ of Dfd(Γ) and Dfd(Γ′) respectively.
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Let X be the silting objects in per Γ obtained from Γ by forward mutating its sum-
mand corresponds to the vertex i. One can equip X with a left Γ′-module structure by
specifying an isomorphism between dg algebra

HomΓ(X,X) ∼= Γ′, (2.13) eq:dg.iso

see [15, Proposition 3.5] for details.

Proposition 2.12. [15, Theorem 3.2] There is a pair of derived equivalences (inversepp:KY
to each other)

D(Γ)
ψ]S=HomΓ(X,?)

//oo

ψ[
S′=?

L
⊗Γ′X

D(Γ′), (2.14) eq:hst

called half spherical twists (Hom is forward and
L
⊗ is backward). Moreover, we have

HΓ′ = ψ]S

(
(HΓ)]S

)
, HΓ = ψ[S′

(
((HΓ′))

[
S′

)
,

Similarly, we have another pair of derived functors ψ]S′ = (ψ[S)−1 : D(Γ′) → D(Γ) and
satisfies

ψ]S′ ◦ ψ
]
S = φ−1

S ∈ AutDfd(Γ),

ψ[S ◦ ψ[S′ = φS′ ∈ AutDfd(Γ′).

We need the following lemma about composition of derived functors (for dg settings).

Lemma 2.13. [12, § 7.3 (c)] Suppose we have there dg algebras Γ,Γ′,Γ′′ and two bi-lem:dg
modules Γ′XΓ , Γ′′YΓ′ that induces derived equivalences

D(Γ)
HomΓ(X,?) //oo

?
L
⊗Γ′X

D(Γ′)
HomΓ′ (Y,?)

//oo

?
L
⊗Γ′′Y

D(Γ′′).

Let Z = Y
L
⊗Γ′ X, which is a Γ′′ − Γ−bimodules. Then there are natural isomorphisms

HomΓ′ (Y,HomΓ(X, ?)) ∼= HomΓ(Z, ?) : D(Γ)
∼−→ D(Γ′′),

(?
L
⊗Γ′′ Y)

L
⊗Γ′ X ∼= ?

L
⊗Γ′′ Z : D(Γ′′)

∼−→ D(Γ)

Now, we proceed to establish a categorical square and pentagon relations. First,
there are square and pentagons in any cluster exchange graph CEG(Q) in the following
sense. Let (Q,W ) be a (non-degenerated) quiver with potential with vertices i and j
such that there is no arrows from i to j.

• If there is no arrows from j to i, then µiµj(Q,W ) = µjµi(Q,W ). Denote such
a square (with orientation) of the corresponding Ginzburg dg algebras as the
square in (2.15).
• If there is exactly one arrows from j to i. then µjµi(Q,W ) = µiµjµj(Q,W ).

Denote such a pentagon (with orientation) of the corresponding Ginzburg dg
algebras as the pentagon in (2.15).
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Γi
µj

""
Γ

µi ==

µj !!

Γij

Γj
µi

<<

Γi
µj // Γ∗ µ′i

""
Γ

µi >>

µj
##

Γij

Γj

µi

::

(2.15) eq:45.q

For each directed path from : Γ to Γij above, there is an induced derived equivalence
D(Γ) → D(Γij) as the composition of (Keller-Yang’s) forward half spherical twists in
(2.14). We claim the following.

thm:pentagon Theorem 2.14. In either the square or the pentagon case in (2.15), the two derived
equivalences from D(Γ) → D(Γij) induced from the two directed paths are naturally
isomorphic.

Proof. We only deal with the pentagon case while the square one is similar but simpler.
The canonical silting object in per Γ is denoted by X = Γ and we have a pentagon, as
in (2.12) in per Γ, by mutating the silting summands that correspond to vertices i and
j. By specifying an isomorphism

HomΓ(Xj ,Xj) ∼= Γj , (2.16) eq:dg.iso.2

as in (2.13), Xj induces derived equivalences

D(Γ)
HomΓ(Xj ,?)

//oo

?
L
⊗Γj

Xj

D(Γj).

Denote by X′ → X′j → X′ij the image of the mutation sequence X→ Xj → Xij under

HomΓ(Xj , ?). Again, by specifying an isomorphism

HomΓi(X
′
ij ,X

′
ij)
∼= Γij , (2.17) eq:dg.iso.3

X′ij induces derived equivalences

D(Γi)
HomΓi

(X′ij ,?)
//oo

?
L
⊗Γij

X′ij

D(Γij).

Moreover, Xij = X′ij
L
⊗Γj Xj inherits the left Γij−module structure as follows:

HomΓ(Xij ,Xij) ∼= HomΓi(X
′
ij ,X

′
ij)
∼= Γij . (2.18) eq:dg.iso.4

Denote by ς this isomorphism HomΓ(Xij ,Xij) ∼= Γij . Then Γij (Xij)Γ induces derived
equivalences

D(Γ)
HomΓ(Xij ,?)

//oo

?
L
⊗Γij

Xij

D(Γij). (2.19) eq:hst2

by Lemma 2.13.
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Similarly, going from Γ to Γij via Γi and Γ∗, we will get another isomorphism
ς ′ : HomΓ(Xij ,Xij) ∼= Γij with another pair of induced derived equivalences as in (2.19)
To show these derived equivalences are naturally isomorphic is equivalent to show that
ς = ς ′.

By [15, Proposition 3.5], the isomorphisms ς and ς ′ are defined by specifying the corre-
spondence, from irreducible morphisms between indecomposable projective summands
of Γij to the morphisms in HomΓ(Xij ,Xij), and extending to the rest. Therefore, to
prove ς = ς ′ we only need to study these irreducible morphisms that correspond to
arrows of the associated quivers. Note that, the correspondence between the summands
of Γij and Xij are already determined by the associated quivers.

Let Γ = X =
⊕n

t=1Xt and

Xi = X]
i ⊕

⊕
t6=i

Xt, X∗ = X]
i ⊕ Yj ⊕

⊕
t6=i,j

Xt,

Xj = X]
j ⊕

⊕
t6=j

Xt, Xij = X]
j ⊕ Yi ⊕

⊕
t 6=i,j

Xt.

By the pentagon relation in (2.12), X∗ forward mutates to Xij at X]
i . Note that here

is a non-trivial isomorphism between the corresponding quivers, see [13, Figure 5] for
details, and we have Yi = Yj (denoted by Y ). As

⊕
t6=i,j Xt never changes during any

mutation in (2.12), they (and morphisms between them) will correspond to the same
part in Γij via either ς or ς ′. Moreover, the dimension of irreducible morphisms from

Y to X]
j is one. So this irreducible morphism must correspond the unique morphism in

Γij between the projective summands that correspond to vertices i and j. Then we only

need to worry about the irreducible morphisms between the new summands X]
j⊕Yi and⊕

t6=i,j Xt. By the simple projective duality in Proposition 2.11 (cf. [15, Lemma 2.15]),
it is equivalent to consider the Ext between the simples in the corresponding hearts.

Let fix t 6= i, j and consider the full sub-quiver with vertices i, j and t. Depending
on the numbers of arrows between i, j and t, there are several cases. Let us prove one
for demonstration and the rest can be done in a similar way. Suppose that there are a
arrows from t to i and b arrows from t to j.

The changes between simples (and Ext1 between them, denoted by arrows) �

cor:ST Corollary 2.15 (Seidel-Thomas). Suppose we are in the square or pentagon case in
(2.15). Let Si and Sj be the simple Γ−modules in D(Γ) that correspond to vertices i
and j. Then the spherical twists φSi and φSj (in AutD(Γ)) satisfy the commutative
relation in the square case and satisfy the braid relation in the pentagon case.

Proof. �

Definition 2.16. For a mutation equivalent class Q of quivers with potential, define the
auto-equivalence groupoid Aut(Γ(Q)) to be the groupoid whose objects are Γ(Q,W ) for
any quiver with potential (Q,W ) in Q and whose morphisms are the derived equivalences
between them.

Construction 2.17. Now, we define a representation ξΓ : CEG(Q) → Aut(Γ(Q)) as
follows:
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• ξΓ(Q,P ) = Dfd(Γ(Q,P )) for each object (i.e. a quiver with potential) (Q,W )
in CEG(Q);
• For each generating morphism (i.e. a forward mutation) µ : (Q,W )→ (Q′,W ′),

let ξb(η) be the forward half spherical twist ψS in (2.14).

The well-definedness follows from Theorem 2.14.
sec:unp

2.7. Unpunctured marked surface case. For a marked surface S (say unpunctured
for now), the quivers with potential associated to triangulations of S (in the sense of
Example 2.1) form a mutation equivalent class QS. One can identify EG◦(S) with the
exchange graph of triangulations (see [8]):

EG◦(S) ∼= CEG(QS)

T 7→ (QT,WT).

In fact, more is true in this case. There is one canonical cluster category C(S) associated
to S (cf. [27]) so that there is bijection between reachable indecomposables in C(S)
and simple (open) arcs in S). Moreover, this bijection induces the correspondence
CEG(CS) ∼= EG◦(S), sending a cluster sets L to a triangulation T whose arcs are the
ones correspond to the (reachable) indecomposables in L. Their associated quivers with
potential also match under this correspondence: (QT,WT) = (QL,WL). Therefore,
EG◦(S) should be considered as a special case of CEG(QS)

Theorem 2.18. [24, Theorem 7,7] The image of the two representations of CEG(S) is
isomorphic.

3. Clusters of curves on twisted surfaces
sec:double

3.1. The branched double cover. In this section, we introduce the twisted surface
associated to an ideal triangulation of an unpunctured marked surface and show that
it is the branched double cover of the original surface branching at the centers of each
triangle.

def:xms Definition 3.1. Let T be an ideal triangulation T of S, The twisted surface ΣT (with
marked points and punctures) is defined as follows.

• For each triangle T in T, construct a twisted triangle ΣT (the blue area is the
front, the green area is the back and they are glued in a twisted way).
• Denote by ΣT =

⋃
T∈T ΣT the twisted surface of S with respect to T, which is

obtained by gluing all ΣT along the arcs in T.

+

• •

•

T

•

•

•

ΣT

Figure 13. fig:GT
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For instance, Figure 14 shows the twisted surface of a triangulated pentagon, which
is a torus with one boundary.

Lemma 3.2. Let T and T′ be two triangulations of S. Then the twisted surfaces ΣT

and ΣT′ are homeomorphic.

Proof. As the exchange graph of triangulations of S is connected, any two triangulations
are related by a sequence of flips. Thus we only need to prove the lemma for the case
when T and T′ are differed by a flip. To construct a homeomorphism between the two
triangulations, we only need to worry about the two triangles that are involved in the
flip. The local twisted sub-surfaces are both annulus, as shown in Figure 20, which
implies the assertion. �

There is another way to see any twisted surfaces of S are homeomorphic to each
other, via the branched double cover.

Definition 3.3. Let X be a surface with marked points. Define its opened surface X�

to be

X� = X−
⋃

marked points M

O(M),

where O(M) is a small open neighborhood of M .

pp:double Proposition 3.4. Let T be a triangulation of S. Then Σ�T is a double cover of S�,
branching at all the centers of triangles in T.

Proof. The assertion is a local one. Since the proposition holds locally from Figure 15
and hence globally. �

As X� is homeomorphic to X, one can regard ΣT as a branched double cover of S.

ex:B-H0 Example 3.5 (Birman-Hilden’s double cover). In the case when S is a polygon, the
double cover in Proposition 3.4 that corresponds to the triangulation in the lower picture
of Figure ?? is Birman-Hilden’s double cover (cf. Figure ??).

•

•

•

•

•

•

•

••

∼=

Figure 14. A triangulation and the twisted surface for a pentagon fig:Taitwist
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• •

•

A B

C

B′ A′′

B′′

C ′

A′

C ′′

=

A B

C

C ′′ C ′

A′′

A′B′′

B′

• •

•

B A

C

C ′′ C ′

B′

B′′A′

A′′

• •

•

◦

• •

•

A B

C

◦

Figure 15. The branched double cover fig:double

Definition 3.6. The mapping class groupoid MCG(ΣS) of twisted surfaces of S is the
groupoid whose objects are ΣT for T in EG◦(S4) and whose morphisms are the (isotopy
classed of) homeomorphisms between them.

3.2. Clusters of curves and tilting.

Construction 3.7. A (extended) cluster of curves C on an oriented surfaces X is a
collection of isotopy classes of oriented simple curves (and half-curves).

Consider an ideal triangulation T of S without self-folded triangles. For each triangle
T in T, draw the (oriented) arcs as in Figure 16 on the twisted triangle ΣT of ΣT. Note
that all the endpoints of the arcs are the midpoints of the corresponding line segments
in ΣT. Then,

• each arc a in T corresponds to two arcs on ΣT, of which form a close curve Ca
(cf. Figure 16).
• each boundary arc f of S corresponds to a half-curve Af on ΣT.

The canonical clusters of curves CT associated to such an ideal triangulation T on ΣT

consist of the homotopy classes of the curves {Ca | arc a in T}, i.e.

CT = {[Ca] | arc a in T}. (3.1) eq:cc1
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Moreover, the extended cluster of curves C̃T is defined to be

C̃T = CT ∪ {[Af ] | boundary arc f in S}. (3.2) eq:cc2

rem:dual1 Remark 3.8. When regarding ΣT is the branched double cover of S, with respect to
T, the cluster of curves on ΣT is the lifts of the dual T∗ of the triangulation T on S (cf.
Figure 17).

Next, we introduce an operation tilting on clusters of curves, which is the analogue
of the (simple) tilting on hearts in triangulated categories. Note that everything works
also for extended clusters of curves. However for simplicity, we only give the statement
for clusters of curves.

def:Dehn1 Definition 3.9. For a cluster of curves C and an element α in C, define the forward
tilt of C with respect to α is the cluster of curves

C]
α = {[β] | α 6= β ∈ C,AI(β, α) ≥ 0} ∪ {[α]} ∪

{[D−1
α (β)] | β ∈ C,AI(β, α) < 0},

where α has the same homotopy class with α but different orientation. Similarly, define
the backward tilt C with respect to α is the cluster of curves

C[
α = {[β] | α 6= β ∈ C,AI(β, α) ≤ 0} ∪ {[α]} ∪

{[Dα(β)] | β ∈ C,AI(β, α) > 0}.

3.3. A representation and a covering via twisted surfaces. For any simple closed
curve C on a surface X, there is the (positive) Dehn twist DC along C, which is shown
in Figure ??. This is the analogue of braid twist of an arc. We also have the analogue
formula of (1.2)

Dρ(η) = ρ ◦DC ◦ρ−1,

for any Ψ ∈ MCG(S4).

Definition 3.10. Let α and β be any two transverse (oriented) curves or arcs an
oriented surface X and [α], [β] be the isotopy classes of them.

• •

•

A B

C

B′′ A′

B′

C ′′

A′′

C ′

=

A B

C

C ′ C ′′

A′

A′′B′

B′′

• •

•

Figure 16. The curves on ΛT fig:curves
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• •

•

A B

C

−→

•◦

A C

B

C

B

A

•◦

Figure 17. The lifting of the dual graph of the triangulation fig:lift

C

+

DC

Figure 18. The Dehn twist fig:The Dehn twist

• An intersection of α and β is of index plus one if the orientation of the intersec-
tion agrees with the orientation of X (see Figure 19), and is mins one otherwise.
Denote by Int±(α, β) the number of positive/negative intersections of α and β.
• The algebraic intersection number AI(α, β) is defined to be

Int+(α, β)− Int−(α, β).

• The positive geometric intersection number GI+([α], [β]) is defined to be

min{Int+(α, β)} | α′ ∼ α, β′ ∼ β}.

• The geometric intersection number GI([α], [β]) is defined to be

min{|α′ ∩ β′| | α′ ∼ α, β′ ∼ β}.

Note that we have

GI([α], [β]) = GI+([α], [β]) + GI+([β], [α]).
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• The algebraic intersection number AI([α], [β]) is defined to be AI(α, β). Note
that this is well-defined and we have

GI([α], [β]) ≥ GI+([α], [β])−GI+([β], [α]) | |AI([α], [β]) | |.

α

β

+

Figure 19. The index of an intersection fig:index

Note that AI is an anti-symmetric bilinear form on the first homotopy class H1(X)
of X and thus behaves nicely. But GI is usually much harder to calculate. Recall a
result from topology.

pp:homotopy Proposition 3.11. [7, Proposition 1.10] Two essential simple closed curves in a surface
X are isotopic if and only they are homotopic.

The following construction is the topological analogue of Proposition 2.12. Let T
a−→

T′ be a forward flip in EG◦(S), where the arc a in T becomes the arc a′ in T′. Consider
the corresponding twisted surfaces ΣT,ΣT′ and clusters of curves CT,CT′ , where the
arcs a and a′ correspond to the curve Ca ∈ CT and Ca′ ∈ CT′ respectively.

pp:half DT Proposition 3.12. There is an unique pair of (isotopy class of) homeomorphisms (in-
verse of each other) in MCG(ΣS)

ΣT

Ψ]a //oo
Ψ[
a′

ΣT′ , (3.3) eq:hDt

called half Dehn twists (Ψ] is the forward one and Ψ[ the backward), satisfying the
following:

(I) for any triangle T that are both in T and T′, the homeomorphisms perseveres
the twisted triangle ΣT in ΣT and ΣT′;

(II) CT′ = Ψ]
a

(
(CT)]Ca

)
and CT = Ψ[

a′

(
(CT′)

[
Ca′

)
.

Similarly, we have another pair of homeomorphisms Ψ]
a′ = (Ψ[

a)
−1 : ΣT′ → ΣT, for the

forward flip T′ −−→ T. And we have

Ψ]
a′ ◦Ψ]

a = D−1
Ca
∈ MCG(ΣT),

Ψ[
a ◦Ψ[

a′ = DCa′ ∈ MCG(ΣT′).
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Figure 20. The flip and half Dehn twist fig:flip

Proof. We first show the existence of Ψ]
a = (Ψ[

a′)
−1. By condition (I), we only need to

consider the local quadrilateral where the flip happens, where the local twisted surfaces
are annulus (see Figure 20). Therefore, any two homeomorphisms from ΣT to ΣT′

satisfying condition (I) differ by pre-composing Dk
Ca or post-composing Dk′

Ca′
for some

integer k and k′. Further, requirement in condition (II) is equivalent to one of the
following four equalities (by Alexander method)

Ψ]
a(α18) = α′18, Ψ]

a(α36) = α′36Ψ]
a

(
D−1
Ca

(α27)
)

= α′27, Ψ]
a

(
D−1
Ca

(α45)
)

= α′45. (3.4)

This forces the uniqueness of Ψ]
a.

Similarly for the existence of Ψ]
a′ . Finally, noticing that (CT)]Ca = D−1

Ca

(
(CT)[Ca

)
,

which implies (Ψ]
a′)
−1 = Ψ[

a = Ψ]
a ◦DCa . �
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Definition 3.13. We say a cluster of curves C is digon-free if QA(C) = QG(C), or
equivalently, for any two (isotopy classes of) curves C,C ′ in C, we have

| AI(C,C ′) |= GI(C,C ′). (3.5) eq:a=g

We say C is stronglydigon-free, if any cluster of curves obtained from C by repeatedly
tilting is also digon-free. For instance, the cluster of curves C = {[X], [Y ], [Z]} that
forms a lantern (cf. Figure ??) is not digon-free. Since

AI(C,C ′) = 0 6= 2 = GI(C,C ′),

for nay C,C ′ in C.

def:int.quiver Definition 3.14. The (geometric) intersection quiver QC the quiver whose vertices are
in C and whose edges are bijective to the positive geometric intersections between the
elements in C, i.e. there are GI+(C,C ′) arrows from C to C ′.

Note that the definition of intersection quiver can be extended to a set of curves
(rather than the isotopy classes). Also note that a cluster of curves is digon-free if and
only if its intersection quiver is 2-cycle free.

thm:cc.0 Theorem 3.15. There is a representation ξd : EG◦(S)→MCG(ΣS), sending an object

T to its twisted surface ΣT and a generating morphism T
a−→ T′ to the (forward) half

Dehn twist Ψ]
Ca

. Moreover, there is a canonical isomorphism

ι : QT −→ Q(CT)

α 7→ Cα,

between the FST-quiver QT and the intersection quiver Q(CT) of the cluster of curves
CT on the corresponding twisted surface ΣT.

Proof. To prove ξd is well-defined, we only need to show that the half Dehn twists in
MCG(ΣS) satisfy the square and pentagon relations. We only deal the pentagon case
while the square case is more straightforward. The issue is a local one, by condition (I)
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Figure 21. The pentagon relation fig:5+

in Proposition 3.12. So we only need to consider the twisted surfaces correspond to a
pentagon. Consider Figure 21, the twisted surfaces version of Figure 5. Note that we
only need to specify the correspondence between one half curve to determine the half
Dehn twist, as in the proof of Proposition 3.12. Then as we know how the red (half)
curves change during half Dehn twist in Figure 21, we deduce the corresponding half
Dehn twists satisfy the pentagon relation.

Moreover, the isomorphism ι : QT
∼= Q(CT) is also a local statement, which can be

checked for one triangle. �

A direct corollary of Theorem 3.15 is the following.

cor:digon-free.0 Corollary 3.16. The tilting of clusters of curves becomes mutation of their intersection
quivers and any clusters of curves rising from triangulated marked surfaces (without
punctures) are strongly digon-free.

We can also construct a covering of EG◦(surf) by pulling back The Dehn twist group
DTG(C) of a cluster of curves C on a surface X is the subgroup of MCG(X) generating
by the Dehn twist {D[C] | [C] ∈ C}. The point group of ΣT in MCGS(Σ) is exactly the
Dehn twist group DTG(CT) of the corresponding cluster of curves CT. Then we have
another conjecture following Conjecture ??

conj:twist Conjecture 3.17. There is a canonical isomorphisms between the twist groups

DTG(CT) ' STG(ΓT),

D[Cα] 7→ φSα ,
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where α is any arc in T, [Cα] the corresponding curve in the cluster of curves CT (on
the twisted surface ΣT) and Sα the corresponding simple in the heart HΓ (in the 3-CY
category Dfd(ΓT)).

3.4. A representation via twisted surfaces. Let ΣS be the branched double cover
of S and MCG(ΣS) be its mapping class groupoid.

Construction 3.18. Now, we define a representation ξt : EG◦(S) → MCG(ΣS) as
follows:

• For any object (i.e. a triangulation) T in EG◦(S), let ξb(T) be the (isotopy class
of) twisted surface ΣT.

• For each generating morphism (i.e. a forward flip) η : T→ T′ = T]
γ , let ξ(η) be

the (isotopy class of) homeomorphism from ΣT to ΣT′ , such that

ξ(η)
(
T]γ
)

= T′,

where T and T′ are the canonical triangulations of S4(T) and S4(T′), respec-
tively.

As triangulations of decorated surfaces satisfy the square and pentagon relations (cf.
Figure 7 and Figure 21), it is straightforward to check the representation above is well-
defined. Moreover, denoted by BT (S4) the image of ξb. Then Lemma 1.11 implies

π1(BT (S4)) ∼= BTG(S4).

4. Twisted surfaces for tagged triangulations

We make the following observation.

rem:hole Remark 4.1. Notice that, each puncture P in S is inherited by ΣT and hence become
a hole hP in S� as well as Σ�T. On the other hand, by construction P corresponds to a
boundary component ∂P in Σ (and in Σ�T), e.g. the big blue triangle in the left picture
of Figure ??. In fact, these two holes hP and ∂P in Σ�T are the covers, in Proposition 3.4,
of the hole hP in S�.

Denote by Σ•T, the surface obtained from Σ�T by shrinking the holes hP and ∂P to
punctures Ph and P∂ , respectively, for every puncture P ∈ P. By Proposition 3.4, there
is a branched double cover

ιT : Σ•T −→ S.

Next consider a ideal triangulation T with self-folded triangle. We need to deal with
the second, third and fourth puzzle pieces (cf. Definition ??). The naive way to extend
the construction above to the second puzzle piece is shown in Figure ??. The curve C ′a
that corresponds to the arc a in this naive way is clearly bad for the obviously reason
that it is not simple and we need to modify it. The correction Ca should be the ‘sum’
of C ′a and Cb (i.e. cf. Figure ??). Similarly, for the third puzzle piece, the curve C ′ai
should be replaced by the ‘sum’ of Cai and Cbi , where i = 1, 2 (cf. Figure ??); we omit
the figure for the fourth puzzle piece. Now let TT = (T, ζ) be a tagged triangulation
on S. Draw the curves and half-curves and arcs on Σ�T for each puzzle piece with
corrections as above and define the (extended) cluster of curves as in (3.1) and (3.2). It
is straightforward to that these curves and half-curves are simple.
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Figure 22. Half curves in a self-folded triangle fig:arc.self

def:cc Definition 4.2. Let T = (T, ζ) be a tagged triangulation on S. The cluster of curves
CT on ΣT is the one inherited from the cluster of curves C�T on Σ�T. Similar for the

extended cluster of curves ĈT.

Next, we show that the definition above is well defined on EG×(S) (cf. (??)). This is
equivalent to say, under the canonical identification (cf. Figure ??), the cluster of curves
CT1 coincides with CT2 , for two equivalent tagged triangulation T1 and T2. This follow
from Figure ?? and Figure ??, that the effect of a filling different hole is swapping the
labeling of the corresponding two curves (Ca and Cb for the second puzzle piece; Cai
and Cbi for the thrid puzzle piece).

Equivalently, we can draw the half-curves for Ca and Cb as in Figure 22.

rem:dual2 Remark 4.3. Recall that there is a canonical bijection X between the set of simple
tagged arcs α in S and the set of reachable indecomposable objects Xα in the cluster
category C(ΓS). In fact, for a self-folded triangle as in Figure ??, the object in C(S) that

corresponds to the arc b should be Xa ⊕Xa− . Further, we can lift Xa and Xa− to X̃a

and X̃a− (in the corresponding silting set) in the perfect derived category per(ΓS) with
the dual objects (Sa, Sa−) (simples in the corresponding heart) in the 3-CY category
Dfd(ΓS). we should have

Hom(X̃i, Sj)) = δij , i, j ∈ {a, a−}.
Since {

Hom(X̃a, Sa − Sa−) = k,

Hom(X̃a ⊕ X̃a− , Sa−) = k,

{
Hom(X̃a, Sa−) = 0,

Hom(X̃a ⊕ X̃a− , Sa − Sa−) = 0.

, the dual of (X̃a, X̃a ⊕ X̃a−), which corresponds to the arcs (a, b), is (Sa − Sa− , Sa−),
which should correspond to the dual of (a, b), i.e. the curves C ′a and Cb. This explains
the modification above, that the curve corresponding to a should be C ′a + Cb, which
corresponds to the simple Sa = (Sa − Sa−) + Sa− .

5. Geometric realization of potentials
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GLFS [10] C. Geiss, D. Labrdini-Fragoso, and J.Schröer, The representation fype of Jacobian algebras, arX-
iv:1308.0478v1.

LP [11] C. Labruère, and L. Paris, Presentations for the punctured mapping class groups in terms of Artin
groups, Alg. Geom. Topology 1 (2001), 73-114 (arXiv:math/9911063v1).

Kel [12] B. Keller, Deriving DG categories, Ann. Scient. Ec. Norm. Sup., 27 (1994), 63-102.
K6 [13] B. Keller, On cluster theory and quantum dilogarithm, arXiv:1102.4148v4.

K10 [14] B. Keller, Cluster algebras and derived categories, arXiv:1202.4161v4.
KY [15] B. Keller, and D. Yang, Derived equivalences from mutations of quivers with potential, Advances

in Mathematics, 226 (2011), 2118-2168. (arXiv:0906.0761)
KQ [16] A. King and Y. Qiu, Exchange graphs of acyclic Calabi-Yau categories, arXiv:1109.2924v2.
KS [17] M. Khovanov and P. Seidel, Quivers, floer cohomology and braid group actions, J. Amer. Math.

Soc. 15 (2002), 203–271. (arXiv:math/0006056v2)
KY2 [18] S. Koenig and D. Yang, Silting objects, simple-minded collections, t-structures and co-t-structures

for finite-dimensional algebras, arXiv:1203.5657.
Kr [19] D. Krammer, A class of Garside groupoid structures on the pure braid group, Trans. Amer. Math.

Soc. 360 (2008), 4029-4061. (arXiv:math/0509165v4)
N1 [20] K. Nagao, Donaldson-Thomas theory and cluster algebras, arXiv:1002.4884v2.
PV [21] B. Perron, and J.P. Vannier, Groupe de monodromie géométrique des singularités simples, Math.

Ann. 306 (1996), no. 2, 231C245.
Qiu [22] Y. Qiu, Exchange graphs and stability conditions for quivers, Bath Ph.D thesis, 2011.
Q2 [23] Y. Qiu, Stability conditions and quantum dilogarithm identities for Dynkin quivers, arX-

iv:1111.1010v2.
QQ [24] Y. Qiu On the spherical twists on 3-Calabi-Yau categoreis from makrd surfaces, arXiv:1407.0806.
Q3 [25] Y. Qiu, C-sortable words as green mutation sequences, arXiv:1205.0034.
QW [26] Y. Qiu and J. Woolf, Contractible stability spaces and faithful braid group actions, arXiv:1407.5986.
QZ [27] Y. Qiu and Y. Zhou, Cluster categories for marked surfaces: punctured case, arXiv:1311.0010v1.
ST [28] P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke

Math. J., 108 (2001) 37–108. (arXiv:math/0001043v2)
W [29] B. Wajnryb, Artin groups and geometric monodromy, Invent. Math. 138 (1999), 563-571.

Mathematical Sciences, University of Bath, Bath, BA2 7AY, U.K.

http://arxiv.org/abs/1302.7030
http://arxiv.org/abs/1212.0007
http://arxiv.org/abs/1108.1774
http://arxiv.org/abs/0704.0649
http://arxiv.org/abs/math/0608367
http://arxiv.org/abs/0907.3987
http://arxiv.org/abs/1308.0478
http://arxiv.org/abs/1308.0478
http://arxiv.org/abs/math/9911063
http://arxiv.org/abs/1102.4148
http://arxiv.org/abs/1202.4161
http://arxiv.org/abs/0906.0761
http://arxiv.org/abs/1109.2924
http://arxiv.org/abs/math/0006056
http://arxiv.org/abs/1203.5657
http://arxiv.org/abs/math/0509165
http://arxiv.org/abs/1002.4884
http://arxiv.org/abs/1111.1010
http://arxiv.org/abs/1111.1010
http://arxiv.org/abs/1407.0806
http://arxiv.org/abs/1205.0034
http://arxiv.org/abs/1407.5986
http://arxiv.org/abs/1311.0010
http://arxiv.org/abs/math/0001043


TWISTED SURFACES I: CLUSTERS OF CURVES 31

A.D.King@bath.ac.uk

Institutt for matematiske fag, NTNU, N-7491 Trondheim, Norway
Yu.Qiu@bath.edu


	Introduction
	Overall
	Contents
	Acknowledgements

	1. The Krammer groupoids
	1.1. Marked surfaces
	1.2. The Krammer groupoids
	1.3. A covering via decorated surfaces
	1.4. The covering group
	1.5. The braid representation

	2. Quivers with potential and cluster theory
	2.1. Three categories
	2.2. Cluster tilting and cluster exchange graphs
	2.3. Exchange graphs of hearts
	2.4. Square and pentagon relations
	2.5. Silting mutation and derived equivalences
	2.6. A categorical representation
	2.7. Unpunctured marked surface case

	3. Clusters of curves on twisted surfaces
	3.1. The branched double cover
	3.2. Clusters of curves and tilting
	3.3. A representation and a covering via twisted surfaces
	3.4. A representation via twisted surfaces

	4. Twisted surfaces for tagged triangulations
	5. Geometric realization of potentials
	References

