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Kahler Geometry
Let N be a smooth compact manifold of real dimension 2dy.

» If J is a smooth bundle-morphism on the real tangent bundle,
J: TN — TN such that J? = —Id and VX,Y € TN

J(ExY) = LxJY = J(LxIY — JExY),

then (N, J) is a complex manifold with complex structure J.
» A Riemannian metric g on (N, J) is said to be a Hermitian
Riemannian metric if

VX, Y € TN, g(JX,JY)=g(X,Y)

» This implies that w(X, Y) := g(JX, Y) is a J— invariant
(w(4X,JY) = w(X,Y)) non-degenerate 2— form on N.

» If dw =0, then we say that (N, J, g,w) is a Kdhler manifold (or
Kahler structure) with Kahler form w and Kahler metric g.

» The second cohomology class [w] is called the K&hler class.

» For fixed J, the subset in H2(N,R) consisting of Kihler classes is
called the Kahler cone.
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Ricci Curvature of Kahler metrics:

Given a Kahler structure (N, J, g,w), the Riemannian metric g defines
(via the unique Levi-Civita connection V)

>

>

the Riemann curvature tensor R: TN @ TN® TN — TN
and the trace thereoff, the Ricci tensor r: TN @ TN — C*°(N)

This gives us the Ricci form, p(X,Y) = r(JX,Y).
The miracle of Kihler geometry is that ¢1 (N, J) = [£].

— lom

If p = Aw, where )\ is some constant, then we say that (N, J, g,w) is
Kéhler-Einstein (or just KE).

More generally, if
p— 2w = Lyw,
where V is a holomorphic vector field, then we say that (N, J, g,w)
is a Kahler-Ricci soliton (or just KRS).
KRS = ¢ (N, J) is positive, negative, or null.
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Scalar Curvature of Kahler metrics:

Given a Kahler structure (N, J, g,w), the Riemannian metric g defines
(via the unique Levi-Civita connection V)

>

the scalar curvature, Scal € C*°(N), where Scal is the trace of the
map X — F(X) where VX, Y € TN, g(#(X),Y)=r(X,Y).

If Scal is a constant function, we say that (N, J, g,w) is a constant
scalar curvature Kahler metric (or just CSC).

H Sca
KE = CSC (with A = 2le)

Not all complex manifolds (N, J) admit CSC Kahler structures.

There are generalizations of CSC, e.g. extremal Kahler metrics as
defined by Calabi (Lv,scard = 0) .

Not all complex manifolds (N, J) admit extremal K&hler structures
either.
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Admissible Kahler manifolds/orbifolds

vV vV.v v v Yy

Special cases of the more general (admissible) constructions defined
by/organized by Apostolov, Calderbank, Gauduchon, and T-F.

Credit also goes to Calabi, Koiso, Sakane, Simanca, Pedersen,
Poon, Hwang, Singer, Guan, LeBrun, and others.

Let wy be a primitive integral Kahler form of a CSC Kahler metric
on (N, J).

Let 1 — N be the trivial complex line bundle.

Let n € Z\ {0}.

Let L, — N be a holomorphic line bundle with ¢;(L,) = [nwn].
Consider the total space of a projective bundle S, =P(1& L,) — N.
Note that the fiber is CP!.

S, is called admissible, or an admissible manifold.
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Admissible Kahler classes

> Let D; =[1® 0] and D, = [0 ® L,] denote the “zero” and “infinity”
sections of S, — N.

> Let r be a real number such that 0 < |r| < 1, and such that rn > 0.

» A Kabhler class on S, Q, is admissible if (up to scale)
Q = Zmlen] 4 27 pD(D; 4 D).

> In general, the admissible cone is a sub-cone of the Kahler cone.

» In each admissible class we can now construct explicit Kahler
metrics g (called admissible Kahler metrics).

» We can generalize this construction to the log pair (S,, A), where A
denotes the branch divisor A = (1 —1/m1)D; + (1 — 1/m3)Ds.

> If m = gcd(my, my), then (S,, A) is a fiber bundle over N with fiber
CPYmy/m, ma/m]/Zp.

» g is smooth on S, \ (D; U D,) and has orbifold singularities along Dy
and D,
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Sasakian Geometry:

Sasakian geometry: odd dimensional version of Kahlerian geometry and
special case of contact structure.

A Sasakian structure on a smooth manifold M of dimension 2n+ 1 is
defined by a quadruple S = (¢, 7, ®, g) where

» 7 is contact 1-form defining a subbundle (contact bundle) in TM
by D = kern.

» ¢ is the Reeb vector field of 1 [n(£) =1 and £|dn = 0]

» & is an endomorphism field which annihilates £ and satisfies J = ®|p
is a complex structure on the contact bundle (dn(J-, J-) = dn(-,"))

v

g:=dno(®®1)+n®nis a Riemannian metric

v

is a Killing vector field of g which generates a one dimensional
g g g
foliation J¢ of M whose transverse structure is Kahler.

v

(Let (g7,wTt) denote the transverse Kdhler metric)

(dt? + t2g, d(t?n)) is Kahler on M x R* with complex structure /:
Y =oY + n(Y)t% for vector fields Y on M, and I(t%) = —¢£.

v



> If £ is regular, the transverse Kahler structure lives on a smooth
manifold (quotient of regular foliation J¢).

> If £ is quasi-regular, the transverse Kahler structure has orbifold
singularities (quotient of quasi-regular foliation F¢).

» If not regular or quasi-regular we call it irregular... (that's most of
them)

Transverse Homothety:
> If S = (&,n, P, g) is a Sasakian structure, so is
S, = (a71¢, an, ®, g,) for every a € RT with
g =ag+ (% —amen.
» So Sasakian structures come in rays.
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Deforming the Sasaki structure:

In its contact structure isotopy class:
>

n—n+d¢, ¢ isbasic
» This corresponds to a deformation of the transverse Kahler form
wr = Wt + ddc¢

in its K&hler class in the regular/quasi-regular case.

» “Up to isotopy” means that the Sasaki structure might have to been
deformed as above.



10

In the Sasaki Cone:

» Choose a maximal torus T, 0 < k < n+ 1 in the Sasaki
automorphism group

Aut(8) = {¢ € Diff(M)[¢"n =mn, ¢"J = J, ¢"¢ =&, ¢"g = g}

» The unreduced Sasaki cone is

th ={¢ € t[n(¢) > 0},

where t¥ denotes the Lie algebra of TX.

» Each element in t* determines a new Sasaki structure with the same
underlying CR-structure.
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Ricci Curvature of Sasaki metrics

» The Ricci tensor of g behaves as follows:
> r(X,&) =2nn(X) for any vector field X
> r(X,Y)=rr(X,Y)—2g(X,Y), where X, Y are sections of D and
rr is the transverse Ricci tensor

> If the transverse Kahler structure is Kahler-Einstein then we say that
the Sasaki metric is n-Einstein.

> S = (&, d,g) is n-Einstein iff its entire ray is n-Einstein
(“n-Einstein ray”)

» If the transverse Kahler-Einstein structure has positive scalar
curvature, then exactly one of the Sasaki structures in the n-Einstein
ray is actually Einstein (Ricci curvature tensor a rescale of the metric
tensor). That metric is called Sasaki-Einstein.

» If S = (&,n,9, g) is Sasaki-Einstein, then we must have that ¢;(D)
is a torsion class (e.g. it vanishes).
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v

A Sasaki Ricci Soliton (SRS) is a transverse Kahler Ricci soliton,
that is, the equation

pl —dw! =Lyw!

holds, where V' is some transverse holomorphic vector field, and A is
some constant.

So if V vanishes, we have an 7-Einstein Sasaki structure.

» Our definition allows SRS to come in rays.

We will say that S = (&,n,®, g)

is n-Einstein / Einstein / SRS

whenever it is

n-Einstein / Einstein /SRS up to isotopy.
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Scalar Curvature of Sasaki metrics

>

v

The scalar curvature of g behaves as follows

Scal = Scalr — 2n

S = (&,1,9,g) has constant scalar curvature (CSC) if and only if
the transverse Kahler structure has constant scalar curvature.

S =(&,n,9,g) has CSC iff its entire ray has CSC (“CSC ray”).

» CSC can be generalized to Sasaki Extremal (Boyer, Galicki,

Simanca) such that

S =1(&n,,g) is extremal if and only if the transverse Kahler
structure is extremal

S =(&n,,g) is extremal iff its entire ray is extremal (“extremal
ray”).

We will say that S = (&,n,, g)

is CSC/extremal whenever it is CSC/extremal up to isotopy.
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The Join Construction

» The join construction of Sasaki manifolds (Boyer, Galicki, Ornea) is
the analogue of Kahler products.

» Given quasi-regular Sasakian manifolds w; : M; — Z;. Let
_ 1 1
L=35-6— 58

» Form (1, h)- join by taking the quotient by the action induced by L:

M1 X M2
N\
[m My x,1, Mo
N
Zl X ZQ

» My, My is a St-orbibundle (generalized Boothby-Wang fibration).

> M %, 1, M> has a natural quasi-regular Sasakian structure for all
relatively prime positive integers h, /. Fixing h, > fixes the contact
orbifold. It is a smooth manifold iff gcd(u1h, uah) = 1, where p; is
the order of the orbifold Z;.
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Join with a weighted 3-sphere
» Take w5 : My, — 2, to be the Sl-orbibundle
T ! 5“:’, — (CIP[W]

determined by a weighted S'-action on S3 with weights
w = (wy, wy) such that wy > w, are relative prime.

» S3 has an extremal Sasakian structure.

> Let My = M be a regular CSC Sasaki manifold whose quotient is a
compact CSC Kahler manifold N.

> Assume ged(h, hwiw,) = 1 (equivalent with ged(kh, w;) = 1).

M x S

3 .
hﬂu M %1, Se =t M1 w
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The w-Sasaki cone

vV v v v

The Lie algebra aut(Sy, ;,.w) of the automorphism group of the join
satisfies aut(Sy, 1, w) = aut(S1) @ aut(Sw),

mod (L, pw = ﬁgl - ifz), where S is the Sasakian structure on
M, and S,, is the Sasakian structure on S3.

The unreduced Sasaki cone t;lr bow of the join My, ;, w thus has a
2-dimensional subcone t; is called the w-Sasaki cone.

t,} is inherited from the Sasaki cone on S3

Each ray in t is determined by a choice of (v1, ) € RT x RT.
The ray is quasi-regular iff vo/v; € Q.

t has a regular ray (given by (vi,v») = (1,1)) iff & divides wy — wy.



17

Motivating Questions

» Does tf have a CSC/n-Einstein ray?

» What about extremal/Sasaki-Ricci solitons?
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Key Proposition (Boyer, T-F)

Let My, w = Mxj, 1, S be the join as described above.

Let v = (v1, v2) be a weight vector with relatively prime integer
components and let £, be the corresponding Reeb vector field in the
Sasaki cone t}.

Then the quotient of My, 1, w by the flow of the Reeb vector field &, is
(Sn, A)

with n = Iﬂ%), where s = ged(h, wiva — wavy), and A is the
branch divisor )
my

A:(l—mil)DlJr(l— )D», (1)

with ramification indices m; = v;2.
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The Kahler class on the (quasi-regular) quotient

» is admissible up to scale.
» We can determine exactly which one it is.

» So we can test it for containing admissible KRS, KE, CSC, or
extremal metrics.

> Hence we can test if the ray of &, is (admissible and)
n-Einstein/SRS/CSC/extremal (up to isotopy).

» By lifting the admissible construction to the Sasakian level (in a way
so it depends smoothly on (vi, v»)), we can also handle the irregular
rays.
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Theorem A (Boyer, T-F)

» For each vector w = (wq, wp) € ZT x ZT with relatively prime
components satisfying w; > w» there exists a Reeb vector field &, in
the 2-dimensional w-Sasaki cone on M}, j, w such that the
corresponding ray of Sasakian structures S, = (a~1&,, any, @, g,) has
constant scalar curvature.

» Suppose in addition that the scalar curvature of N is non-negative.
Then the w-Sasaki cone is exhausted by extremal Sasaki metrics.
In particular, if the Kahler structure on N admits no Hamiltonian
vector fields, then the entire Sasaki cone of the join M, , w can be
represented by extremal Sasaki metrics.

» Suppose in addition that the scalar curvature of N is positive.

Then for sufficiently large I, there are at least three CSC rays in the
w-Sasaki cone of the join My j, w.
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Theorem B (Boyer, T-F)

Suppose N is positive Kahler-Einstein with Fano index Jy and

In w1 + wp

L N e . N—
! ng(Wl + Wz,j/v) 2 ng(Wl + Wz,JN)

(ensures that ¢; (D) vanishes).

» Then for each vector w = (wy, wp) € Z1 x Z*1 with relatively prime
components satisfying w; > w» there exists a Reeb vector field &, in
the 2-dimensional w-Sasaki cone on M, ,,  such that the
corresponding Sasakian structure S = (&, ny, P, g) is
Sasaki-Einstein.

» Moreover, this ray is the only admissible CSC ray in the w-Sasaki
cone.

» In addition, for each vector w = (wy, wp) € Z+ x Z* with relatively
prime components satisfying wy; > w, every single ray in the
2-dimensional w-Sasaki cone on M, ;, w admits (up to isotopy) a
Sasaki-Ricci soliton.
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Remarks

The Sasaki-Einstein structures were first found by the physicists
Guantlett, Martelli, Sparks, Waldram.

Starting from the join construction allows us to study the topology
of the Sasaki manifolds more closely.

When N = CP?, My, 1w are S3-bundles over S52. These were treated
by Boyer and Boyer, Pati, as well as by E. Legendre.

Our set-up, starting from a join construction, allows for cases where
no regular ray in the w-Sasaki cone exists. If, however, the given
w-Sasaki cone does admit a regular ray, then the transverse Kahler
structure is a smooth Kahler Ricci soliton and the existence of an SE
metric in some ray of the Sasaki cone is predicted by the work of
Mabuchi and Nakagawa.
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