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Abstract

Moving boundary problems of generalised Stefan-Type are considered
for the Harry Dym equation via a Painlevé II symmetry reduction. Exact
solution of such nonlinear boundary value problems is obtained in terms of
Yablonski-Vorob’ev polynomials corresponding to an infinite sequence of
values of the Painlevé II parameter. The action of two kinds of reciprocal
transformation on the class of moving boundary problems is described.

Colin Rogers (University of New South Wales) 2 / 32



. . . . . .

Background

Moving boundary problems of Stefan-Type have their origin in the
analysis of the melting of solids and the freezing of liquids. The heat
balance requirement on the moving boundary separating the phases
characteristically leads to a nonlinear boundary condition on the temp-
erature. The known exact solutions for standard 1+1-dimensional Stefan
problems typically involve similarity reduction of the classical heat
equation, Burgers’ equation or their reciprocal associates, with a moving
boundary x = γt1/2 wherein γ is constrained by a transcendental equation.
However, the natural nonlinear analogues of Stefan problems for solitonic
equations do not seem to have been previously investigated.
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A Solitonic Connection
One intriguing solitonic link was made by Vasconceles and Kadanoff

(1991) where, in an investigation of the Saffman-Taylor problem with
surface tension, a one-parameter class of solutions was isolated in a
description of the motion of an interface between a viscous and
non-viscous fluid: this class was shown to be linked to travelling wave
solutions of the well-known Harry Dym equation of soliton theory. Its
occurrence in Hele-Shaw problems has been discussed in work of Tanveer
and Fokas (1993, 1998).

In terms of the application of reciprocal transformations to moving
boundary problems, an elegant integral representation developed by
Calogero et al (1984, 2000) has recently been conjugated with reciprocal
transformations to generate classes of novel exact solutions.
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Moving Boundary Problems for the Harry Dym Equation
The Harry Dym equation

ρt + ρ−1(ρ−1)xxx = 0

arises as the base member corresponding to n = 1 of the solitonic hierarchy

ρt + En,x = 0 , n = 1, 2, ...

where the flux terms En are generated iteratively by the relations

En = −
∫ ∞

x
ρ−1 [ ρ−1En−1 ]xxx dx , n = 1, 2, ... ,

E0 = 1 .

[F. Calogero and A. Degasperis, Spectral Transform and Solitons, North
Holland, Amsterdam 1982]
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A Conservation Law

It is readily shown that the Dym hierarchy admits the conservation
law

(ρ2)t + 2( ρ−1En−1 )xxx = 0 , n = 1, 2, ...

whence, in particular, the Harry Dym equation has the alternative
representation

pt + 2(p−1/2)xxx = 0

with p = ρ2 to be adopted in the sequel.
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The Stefan-Type Moving Boundary Problems

Here, we consider the class of moving boundary problems

pt + 2(p−1/2)xxx = 0 , 0 < x < S(t) , t > 0

2(p−1/2)xx = LmS i Ṡ ,

p = PmS j

 on x = S(t) , t > 0

2(p−1/2)xx
∣∣∣
x=0

= H0 tδ , t > 0 ,

S(0) = 0 ,

where Lm , Pm , H0 are assigned constants while i, j and δ are indices to be
determined by admittance of a viable symmetry reduction.
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Non-Standard Stefan Problems
The boundary conditions in the above are analogous with i = j = 0 to
those of the classical Stefan problem with prescribed boundary flux on
x = 0. Non-standard moving boundary problems of Stefan type with i ̸= 0
arise in geo-mechanical models of sedimentation:

I J.B. Swenson et al, Fluvio-deltaic sedimentation: a generalised Stefan
problem, Eur. J. Appl. Math. 11, 433-452 (2000).

Generalised Stefan problems with variable latent heat have recently been
discussed in:

I N.N. Salva and D.A. Tarzia, Explicit solution for a Stefan problem
with variable latent heat and constant heat flux boundary conditions,
J. Math. Anal. Appl. 379, 240-244 (2011).

I Y. Zhou et al, Exact solution for a Stefan problem with latent heat a
power function of position, Int. J. Heat Mass. Transfer 69, 451-454
(2014).
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Painlevé II Similarity Reduction

The Harry Dym equation

pt + 2(p−1/2)xxx = 0

admits a one-parameter class of similarity solutions with

p−1/2 = t(3n−1)/3P(x/tn)

where
P ′′′ = m

P2 − nξ
P ′

P3 , m = 3n − 1
3

and the prime denotes a derivative with respect to the similarity variable
ξ = x/tn .
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Integration yields

PP ′′ − P ′2

2
− nξ

P
− (m − n)

∫ 1
P

dξ = I ,

where I is an arbitrary constant. If we now set

w = aPξ , s = PP ′′ − P ′2

2
− nξ

P
= I + (m − n)

∫ 1
P

dξ

together with the scaling s = ϵz where

ϵ = ±2a(m − n) , a2 = 1
4ϵ

, ϵ > 0

then reduction is made to the canonical Painlevé II equation

wzz = 2w3 + zw + α

Here, the Painlevé II parameter α is related to n by

α = ±
(1 − 3n

2

)
.
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Symmetry Reduction of the Moving Boundary Problems

Here, the moving boundary is taken to be S : x = γtn whence, the
class of nonlinear boundary value problems for the Harry Dym equation
requires the solution of the Painlevé II equation

wzz = 2w3 + zw + α ,

subject to the three constraints

2Pξξ|ξ=1 = nLmγi+1 ,

P−2
∣∣∣
ξ=1

= Pmγj ,

2Pξξ|ξ=0 = H0 ,

where w = aPξ.
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The z , ξ Relation & Constraints

The independent variable z in the Painlevé II reduction is related to
the similarity variable ξ via

dξ = ϵPdz
m − n

It may be shown that the similarity reduction requires the relations

i = j = 2(1 − 3n)
3n

,

δ = −(n + 1
3

) .
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Classical 1+1-Dimensional Stefan Problems

The known exact solutions for 1+1-dimensional moving boundary
problems of Stefan-type for the classical heat equation and its Burgers or
reciprocal associates are typically obtained via a symmetry reduction and
with moving boundary x = γt1/2. The second order linear equation
determined by this symmetry reduction admits general solution in terms of
the erf function. The two arbitrary constants in this general solution
together with the parameter γ in the moving boundary x = γt1/2 allow the
solution of the Stefan problem subject to a transcendental constraint on γ.
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Moving Boundary Problems for the Harry Dym Equation

The present class of moving boundary problems with x = γtn

involves symmetry reduction to Painlevé II and the latter does not admit a
known exact solution involving two arbitrary constants. Thus, prima facie,
it might be conjectured that these moving boundary value problems are not
amenable to exact solution. However, remarkably two arbitrary constants
arise in another manner which do indeed allow the construction of exact
solutions to privileged infinite sequences of Stefan-type bvps for the Harry
Dym equation. These sequences depend on the parameter n which, in
turn, has been seen to be linked to the Painlevé II parameter α. In analogy
with classical Stefan problems, there is a constraint on the parameter γ.
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Application of the Painlevé II Bäcklund Transformation

In the sequel, consequences of the following well-known and elegant
Bäcklund transformation for the Painlevé II equation (PII) will be applied
to the class of moving boundary problems for the Harry Dym equation:

Theorem
(Lukashevich 1971)

If wα = w(z ; α) is a solution of PII with parameter α, then

wα+1 = −wα −
(α + 1

2)

wα,z + w2
α + z

2
, α ̸= −1

2

is a solution of PII with parameter α + 1. �
In addition, if w(z; α) is a solution of PII then −w(z; −α) is also a

solution. This result together with iteration of the above Bäcklund
transformation allows the generation of all known exact solutions of PII.
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Boundary Value Problems and the Nernst-Planck System

The known exact solutions of PII in terms of Yablonski-Vorob’ev
polynomials or Airy functions as generated by the iterated action of the
Bäcklund transformation have previously been applied to solve steady state
boundary value problems arising out of the Nernst-Planck system of
two-ion electrodiffusion. The iterated action in this electrolytic setting is
associated with quantized fluxes of the ionic species. Such discrete fluxes
have been reported to arise across excitable membranes in certain
biophysical contexts.
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Rational Solutions of PII: Yablonski-Vorob’ev Polynomials

The iterative action of the Bäcklund transformation on the seed
solution w = 0 of PII with α = 0 conjugated with the invariance
w(z; α) → −w(z; −α), generates the subsequent sequence of rational
solutions

w+ =
(

ln Pk−2
Pk−1

)
z

, w− =
(

ln Pk−1
Pk−2

)
z

, k = 1, 2, ...

corresponding to the Painlevé II parameters α = ±1, ±2, ... where the Pk
are the Yablonski-Vorob’ev polynomials determined via the quadratic
recurrence relations

PkPk−2 = zP2
k−1 + 4(P2

k−1,z − Pk−1Pk−1,zz) ,

P−1 = P−2 = 1 .
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The Yablonski-Vorob’ev Similarity Reductions

The P(ξ) in the similarity reduction of the Harry Dym equation with
p−1/2 = tmP(ξ) is connected to w by the relations

w = ±1
2

(ln P)z ,

Hence, corresponding to the sequences {w+}, {w−} of solutions of PII
one obtains two sequences of exact solutions for P, namely

P+(z) = C+,k

(Pk−2
Pk−1

)2
, P−(z) = C−,k

(Pk−1
Pk−2

)2

where C+,k , C−,k are arbitrary constants of integration.
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The Boundary Conditions

Corresponding to the P+(z), the boundary conditions may be shown
to yield

4ϵ

C+,k

[(
ln
[Pk−2

Pk−1

])
zz

/

(Pk−2
Pk−1

)2
]∣∣∣∣∣

ξ=γ

= nLmγi+1 ,

1
C2

+,k

(Pk−1
Pk−2

)4
∣∣∣∣∣
ξ=γ

= Pmγi ,

4ϵ

C+,k

[(
ln
[Pk−2

Pk−1

])
zz

/

(Pk−2
Pk−1

)2
]∣∣∣∣∣

ξ=0
= H0

with an analogous three conditions corresponding to the P−(z).
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Admittance of the Boundary Conditions

In the preceding, the similarity variable ξ and the independent
variable z in the PII reduction are related by

dξ = ϵPdz
m − n

whence, on integration, in turn, with P = P+(z) or P = P−(z)
expressions are obtained of the type

ξ = K+,k + ϵ
C+,k

(m − n)

∫ (Pk−2
Pk−1

)2
dz ,

or
ξ = K−,k + ϵ

C−,k
(m − n)

∫ (Pk−1
Pk−2

)2
dz ,

where K+,k , K−,k are arbitrary constants.
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Sequences of Solvable Moving Boundary Problems

Corresponding to a given choice of P = P+z or P−z , the pairs of
constants C+,k , K+,k or C−,k , K−,k together with an appropriate
constraint on the parameter γ allow the admittance of the three boundary
conditions. The sequence of boundary value problems with moving
boundary x = γtn which admit exact solution in terms of
Yablonski-Vorob’ev polynomials via the preceding symmetry reduction
correspond to

n = 1 − 2α

3
where α = ±1, ±2, ... . Analogous sequences of exact solutions may be
obtained in terms of classical Airy functions when α = ±1/2, +3/2, ... .
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A Single Application of the Bäcklund Transformation
The case with Painlevé parameter α = −1 corresponds to a single

application of the Bäcklund transformation to the trivial seed solution
w = 0 with α = 0, conjugated with the invariance of PII under
w(z; α) → −w(z; −α). This results in the solution of PII with

w =
[
ln P0

P−1

]
z

= 1
z

corresponding to P0 = z, P−1 = 1. The associated P(ξ) in the similarity
representation is given by

P = C−,1

( P0
P−1

)2
= C−,1z2 ,

where integration of the ξ, z relation yields

ξ = K−,1 − ϵ C−,1z3 .
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A Cubic Constraint
The boundary conditions yield

− 4ϵ

C−,1z4

∣∣∣∣∣
ξ=γ

= nLmγi+1 ,

1
C2

−,1z4

∣∣∣∣∣
ξ=γ

= Pmγi ,

− 4ϵ

C−,1z4

∣∣∣∣∣
ξ=0

= H0

The above triad serves to determine the constants C−,1 and K−,1 while
imposing a cubic constraint on Γ = γ1/4 of the form

Γ3 + λΓ + µ = 0 .
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The exact solution of the class of moving boundary problems for the
Harry Dym equation as generated by a single application of the Bäcklund
transformation is given by the travelling wave representation

p = C−2/3
−,1

[1
ϵ

(x − K−,1 t)
]−3/4

.

Travelling wave solutions for the classical Stefan problem associated
with the melting and freezing of solids have been previously investigated
in:

I J.B. Keller, Melting and freezing at constant speed, Phys. Fluids 92,
2013 (1986).
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Summary

The iterated action of the Bäcklund transformation for PII may be
used to generate exact solutions of increasing complexity of moving
boundary problems for the Harry Dym equation and with boundaries
S(t) : x = γtn , n = 1 − 2α

3
and Painlevé II parameters

α = ±1, ±2, ±3, ... . In the latter case, the exact solutions are expressed
via the Yablonski-Vorob’ev polynomials. In a similar manner, exact
solutions can be derived in terms of classical Airy functions where
α = ±1/2, ±3/2, ... .

Exact solutions of Stefan-type moving boundary problems for the
Dym hierarchy may likewise be sought via a PII hierarchy similarity
reduction.
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Application of Reciprocal Transformations
The Dym hierarchy

(ρ2)t + 2 (ρ−1En−1)xxx = 0 , n = 1, 2, ...

where

En = −
∫ ∞

x
ρ−1[ ρ−1En−1 ]xxxdx , n = 1, 2, ...

E0 = 1

is invariant under the reciprocal transformation

dx∗ = ρ2 dx − 2(ρ−1En−1)xx dt , t∗ = t

ρ∗ = 1
ρ

 R∗

I C. Rogers and M.C. Nucci, On reciprocal Bäcklund transformations
and the Korteweg de Vries hierarchy, Physica Scripta 33, 289-292
(1986).
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The Parametric Representation
Corresponding to a similarity solution with ρ−1 = tmP(ξ) of the

original class of Stefan problems, the reciprocally associated class of
moving boundary problems has exact solution given parametrically be the
relations

ρ∗ = tmP(ξ) ,

dx∗ = tn−2m

P2(ξ)
dξ +

[
nξtn−2m−1

P2(ξ)
− 2tm−2nP ′′

]
dt

t∗ = t

In the reciprocal class of moving boundary problems for the classical
Harry Dym equation corresponding to n = 1, it may be shown that the
prescribed flux condition on x = S(t) goes over to a Robin-type condition
on the reciprocal boundary x∗ = S∗(t∗).

Colin Rogers (University of New South Wales) 29 / 32



. . . . . .

Reciprocal Link to the KdV Singularity Manifold Equation
Under the alternative reciprocal transformation

dx̄ = ρdx − Endt , t̄ = t

ρ̄ = 1
ρ

,

 R̄

for the avatar
ρt + En,x = 0 , n = 1, 2, ...

of the Dym hierarchy, the latter becomes

ρ̄t̄ + Ēn,x̄ = 0 , n = 1, 2, ...

where the Ēn are given iteratively by the relations

ρ̄−1 ∂

∂x̄
[ ρ̄−1Ēn ] = ∂

∂x̄

[
ρ̄−1 ∂

∂x̄

[
ρ̄−1 ∂

∂x̄
Ēn−1

]]
, n = 1, 2...

Ē0 = −ρ̄ .
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The Reciprocal Harry Dym Equation

In the case of the Harry Dym equation correspondng to n = 1 its
reciprocal is

∂ρ̄

∂ t̄
− ∂

∂x̄
[ ρ̄x̄ x̄ − 3

2
ρ̄2

x̄
ρ̄

] = 0

whence, with ρ̄ = ϕx̄ , one obtains the KdV singularity manifold equation

ϕt̄/ϕx̄ − {ϕ; x̄} = 0

wherein
{ϕ; x̄} :=

(
ϕx̄ x̄
ϕx̄

)
x̄

− 1
2

(
ϕx̄ x̄
ϕx̄

)2

is the Schwarzian derivative.
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Exact solutions of the reciprocal class of moving boundary problems
in ρ̄ may generated via the PII reduction. On use of the reciprocal relations

dx̄ = ρdx −
[
(ρ−1)xxρ−1 − 1

2
(ρ−1)2

x

]
dt , t̄ = t ,

ρ̄ = 1
ρ

these are given parametrically via

ρ̄ = t̄mP(ξ) ,

dx̄ = t̄−m+nP−1dξ + t̄−m+n−1
[
nξ P−1 −

(
P ′′P − P ′2

2

)]
dt̄ ,

t̄ = t .
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