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What is hydrodynamic integrability?

v

A test for ‘integrability’ of ‘dispersionless’ systems of PDEs.
Introduced by E. Ferapontov and K. Khusnutdinova [FeKh].

Applies to systems which can be written in
translation-invariant quasilinear first order form.

‘Integrable’ means system has sufficiently many
‘hydrodynamic reductions’ (= Lots of solutions given by
nonlinear superpositions of plane waves.)

Known to be equivalent to integrability by dispersionless Lax
pair in some cases [BFT,DFKN1,DFKN2,FHK].

Computationally intensive: need symbolic computer algebra.



Quasilinear first order systems

A (translation-invariant first order) quasilinear system is a PDE
system of the form [Tsa]

(1) AL(9)0xp + -+ + An(p)Ox, 0 = 0
on maps ¢: R" — R*, where Aj: R® = M s(R).

Example. An N-component hydrodynamic system is a system of
the form

(2) 8)9- Rs = Haj(R)axl R,

for je{2,...n}, ac {1,... N} and functions j,; of

R = (R, ... Ryn) which satisfy the compatibility conditions

Obttaj = Vab(R) (i — paj) for all a# b and j € {2,...n}.

An N-component hydrodynamic reduction of (1) is an ansatz
¢ = F(R1,...Ryn) s.t. ¢ satisfies (1) if and only if R satisfies (2).



Example: dispersionless KP

Dispersionless limit of the Kadomtsev—Petviashvili equation:
(dKP) (ur + uuy)x = uyy.
Put into quasilinear first order form:
uy — vx = 0= u + uuyx — vy.
Substitute u = U(R1, ... Rn) and v = V(Ry,... Ry) with
0tRs = Xa(R1, ... Rn)OxRs  and Oy R, = pa(R1, ... Ry)OxRa,
using ux = »_,(0,U)0«xR, etc. to get

S (12 02U = 9,V)0Rs = 0 =3 (Ao + U) 02U — 112 9,V) xR,

a a

so require pi,0,U = 0,V and (A\; + U) 0,U = p, 0,V for all a.
In particular A\, + U = u2 (the dispersion relation).



Method of hydrodynamic reductions

In general, the condition for functions F(r1,...ry) and
paj(r, ... ry) to define a hydrodynamic reduction of a quasilinear
system (1) is itself a PDE system.

For dKP, after eliminating V by 0,V = p,0,U and A\, = p2 — U,
the PDE system for U and p, to define a hydrodynamic reduction
is that for all a # b,

Dot = —22Y 005U = 22008
(,Ub - ;U'a)

Hb — ,ua’
Definition. A quasilinear system (1) is integrable by
hydrodynamic reductions if the PDE system for N-component
reductions is compatible for all N > 2.

(It then admits solutions depending on N functions of 1-variable.)

In fact the 2-component system is always compatible and it is
enough to check N = 3 [FeKh].



Hydrodynamic integrability of dKP

In the dKP case, a tedious computation of the derivatives of the
system yields

_ OpUBU (uptpc—2pa)
(3) ac(abﬂa) - (Mbb_uc)2(,u,bb—ua)(uc_lla)7

_ 292U 38U U ((112)* 4+ (1) (1) = prapth —patic = fipfic)
(4) 0(0:05U) = 4= (Na_#b)Q(za_NC)2(Nb—NCb)2 =,

for all distinct a, b, c.

Since the RHS of (3) is symmetric in b, ¢ and the RHS of (4) is
totally symmetric in a, b, ¢, the system is compatible.

This is how the method works for one specific PDE with just one
quadratic nonlinearity.

For anything remotely general, the computations are brutal.



What is going on?

Two clues to some underlying geometric meaning.

» The dispersion relation. For dKP, this says
[20, 21, 22] = [1, Aa, pa] is @ point on zozy + uzg = z3.
This quadric is the characteristic variety of dKP.

For general hydrodynamic reductions, the characteristic

momenta w, = ZJ’-’:l [taj dx; are on the characteristic variety.

» Papers [BFT,DFKN1,DFKN2,FHK] showing that for three
particular classes of systems, hydrodynamic reductions are
nice submanifolds with respect to some interesting geometric
structure on the codomain of .

Also inspiring ideas of A. Smith [Smil,Smi2].



Plan for rest of talk

» Explain geometry of hydrodynamic reductions using the
‘characteristic correspondence’ of a quasilinear system.

» Use some algebraic geometry (projective embeddings) and
differential geometry (nets) to give a fairly general result
which unifies aforementioned observations of
[BFT,DFKN1,DFKN2,FHK].

(But no progress yet on the harder, computationally intensive parts
of these papers e.g. showing equivalence of hydrodynamic and Lax
integrability.)



Quasilinear systems revisited

Natural context for quasilinear systems (QLS):
> Maps ¢: M — ¥ where M is an affine space modelled on an
n-dimensional vector space t and X is an s-manifold.
» Have dp = (¢,dx) € QY(M, p* TL) where
> e CO(M,t* @ ¢*TE)  and
» dx € Q1(M, t) is the tautological isomorphism TM = M x t.
» QLS is ¢ € C®°(M, p*W) for a vector subbundle ¥ < t*®@ TX
over ¥ (locally defined as kernel of some A: t* @ TL — R¥).

Hydrodynamic case: ¥ has coordinates r,: a€ A= {1,...s} and
functions p,: X — t* s.t. W is spanned by p, ® 0,, : a € A.

Equivalently, setting w, = (ua, dx), the 2-forms w, A dr, pull back
to zero by (id,p): M — M x L.

(A very simple exterior differential system whose compatibility
condition is dw, Adr, =0 Vae A)



The characteristic correspondence
Projective bundle P(t* ® TX) — X has subbundle R with fibre

Rp={[E®Z]: (et Ze T}

i.e., rank one tensors — Segre image of P(t*) x P(T,X).
Definition. Let W < t*® TX be a QLS.
> Rank one variety of V is RY := RN P(V).

» Characteristic and cocharacteristic varieties of UV are

projections x¥ and CY of RY to ¥ x P(t*) and P(TX) resp.

» Characteristic correspondence of V:

R\U
WV YC
Y x P(t*) >V ¢V <P(TY)

(Assumed smooth double fibration.)
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Examples

» Hydrodynamic system: xV = {[ua] : a € A},
CV={0,]:ac A}, RY = {[na®0,,] : a € A}.
» dKP: o = (u,v): M=R3 - ¥ =R2 Then Vi) is
{(ux, uy, ur) ®(1,0) + (uy, ue + uuy, v¢) ®(0,1)} and rank one
elts have (uyx, uy, ut) and (uy, us + uuy, v¢) lin. dep., giving
Ry = {02 A, 1 = ud®) @ (A, ) - A, € R}

Then CY = P!, and xV is a u-dependent conic in P?.
» For L Ct* @V CGrp(td V), ¢: M — X is derivative of
u: M — Viff 9(x) € W) with
U, =t @ T,ENS @Vt ®@t"® V. Then
xg’ ={[{] e P(t"): £® v € T,X for some v € V}
C, ={[¢®v] € P(T,E)}
Ry ={[¢@¢®Vv] e P(t' ® T,I)}.

Get many examples this way (including Ferapontov et al.).
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Hydrodynamic reductions revisited
Seek to write o = So R with R: M — RN and S: RN — ¥ so
that ¢ solves VW iff Vae A={1,... N}, dR, A (ua(R),dx) =0
i.e.,, dR; = f,(R){1a(R), dx) for some functions f,.

Chain rule:  dp = R*dSodR = > dR,® 8,5(R)

acA
= > H(R)(1a(R), dx) ® 02S(R) = (v, dx),
acA
where P = Z fa( R) ® 0,S(R).
acA

Want many solns: pu, ® 0,5 € ¥
Definition. An N-component hydrodynamic reduction of a
QLS VW <t*® TX is a map

(Sa [/‘1]?"' [MN]): RN — X\U Xy =+ Xy X\U
(N-fold fibre product) s.t. p, ® 9,5 is in W for all a, and the
hydrodynamic system defined by u, is compatible.
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Main result

So far: turned simple-minded but fearsome calculus into abstract
nonsense geometry. No PDE person would call this progress.

So do we win anything?

Theorem. Let ¥ < t*® TX be a compliant QLS. Then modulo
natural equivalences, generic N-component hydrodynamic
reductions of W, with N < dim X, correspond bijectively to
N-dimensional cocharacteristic nets in X.
Remaining business:

» Explain what is a compliant QLS (alg. geom.)

» Explain what is a cocharacteristic net (diff. geom.)

> Prove the theorem
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Algebraic geometry: projective embeddings

» xV and CY are fibrewise projective varieties in projectivized
vector bundles, and the corresponding dual tautological line
bundles pull back to line bundles L, — VY and Lo — CY.

» For a line bundle L over a bundle of projective varieties over
¥, let HO(L) — X be the bundle of fibrewise regular sections.

» Have canonical maps £ x t — HO(L,) and T*X — HO(Lc)
given by restricting fibrewise sections of the dual tautological
line bundles to xV and CV.

» If x¥ and CY are not contained (fibrewise) in any hyperplane,
these maps are injective, hence fibrewise linear systems, and
surjectivity means that these linear systems are complete.

14



Compliant QLS

A QLS is compliant if the following conditions hold:

1. the characteristic correspondence maps are isomorphisms, and
we let ¢V = Ty O wgl be the induced isomorphism CY — \V;

2. the canonical maps ¥ x t — HO(L,) and T*X — HO(Lc) are
isomorphisms;

3. VW= Ho(Le ® (¢¥)*L%)* — X is a nonzero vector bundle,
and the canonical vector bundle map TY — t*® V¥Y—induced
by the transpose of the tensor product map

HO((C) L) ® HO(Le ® (¢¥)"Ly) — H(Le)

—is an embedding;

4. if rank(V¥) > 2, no 2-dimensional submanifold of & has rank
one tangent space in t* ® VY.

Key point: under isomorphism in 1., L¢ is at least as ample as L,
by 3., so TX has a tensor product decomposition using 2.
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Differential geometry: nets

» A pre-net on an N-manifold Q is a direct sum decomposition
TQ = EBJ-EJ D; into rank one distributions D; < TQ for
jeJ ={1,...N}.

» A pre-net D;:j € J on Q is integrable if for every subset
I C J, Dz :=@;cr Diis an integrable distribution (i.e.,
tangent to a foliation with #Z dimensional leaves); an
integrable pre-net is called a net.

Frobenius theorem gives characterizations of integrability.
Also need a special class of nets.
» IfDj:je Jisapreneton Q, and TQ <V @ t* for a line
bundle V — @ and a vector space t*, then each D; defines a
line subbundle M; of @ x t*.
» May then require that for any section X; of D;, have
dx,M; < M; ® M;. If this holds then D; : j € J is a net and
will be called a conjugate net.

(Well known when Q is an affine space with translation group t.)
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Cocharacteristic nets

Let W < t* ® TX be a compliant QLS with TE < t* @ VY.
An N-dimensional cocharacteristic net in X is an N-dimensional
submanifold S: RV — ¥ such that:
1. the net spanned by 0,5 : a € A satisfies [0,5] € CV; and
2. if VY has rank one, the net is conjugate.
Clearly a hydrodynamic reduction defines a net satisfying 1.

Conversely, given such a net, the embedding of CV into P(t* ® V)
gives 9,5 = ., ® v, for some local sections v, of S*VV.

The main point is to show that the compatibility of the
hydrodynamic system with characteristic momenta (5, dx) is
equivalent to 2.
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Proof of Theorem

Choose a basis for t* and rescale characteristic momenta s.t.
pa1 = 1. Then have 0pSk = ppkOpS1 = ppkvp for k € {1,...n}.

Differentiate by 0, and commute partial derivatives to obtain

(5) (Oattbk)OpS1 — (Opptak)02S1 = (tak — tibk)020pS1-

Dividing by pax — ppk, RHS is independent of k so

( Oattbk  Oapibe )Vb _ ( Oppak  Opprar )V
Mak — Hbk  Hat — Hbe Mak — bk Hat — Hbe ?

Both sides are zero unless v, and v, are lin. dep., i.e., multiples of
some v € V¥, say. But then span of 9,5 = u, ® v, and
OpS = pp @ vp is span{ua, up} @ span{v}, i.e., entirely rank one.

For rank(V¥) > 1, the set where this holds has empty interior by
compliancy, so hydrodynamic compatibility condition is satisfied on
dense complement, hence everywhere by continuity.
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The rank one case
If Oapiok = Yba(ttak — pbk) for a # b, have
0a0pSk = (Daftbk)OpS1 + fibk 0a0pS1
= Vba(ftak — Hbk)ObS1 + 1ok (V2602 S1 + VbaObS1)
= Yab(Va/Vb)ObSk + Vba(Vb/ Va)O0aSk

by (5) so S is conjugate.

Conversely, if S is conjugate with 0,055k = 2505 Sk + Bap01 Sk for
a # b, then taking k =1, have

020p51 = @ap0pS1 + Bap0aS1 = apVp + BabVa-
On the other hand
bk 020pS1 = 020 Sk—(Dattbk)ObS1 = Qabltbk Vb+Babitak Va—(Daftbk ) Vb
Now eliminate 0,0,51 to obtain
Qabltbk Vb + BablbkVa = Qapfibk Vb + BabliakVa — (Oaftbk) Ve

and hence Oafipk = Bab(Va/ Vi) (fak — tbk)- O
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