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t. The approa
h of metri
{aÆne �eld theory is to de�ne spa
etime as areal oriented 4-manifold equipped with a metri
 and an aÆne 
onne
tion. The 10independent 
omponents of the metri
 tensor and the 64 
onne
tion 
oeÆ
ients arethe unknowns of the theory. We write the Yang{Mills a
tion for the aÆne 
onne
tionand vary it both with respe
t to the metri
 and the 
onne
tion. We �nd a familyof spa
etimes whi
h are stationary points. These spa
etimes are waves of torsionin Minkowski spa
e. We then �nd a spe
ial subfamily of spa
etimes with zero Ri

i
urvature; the latter 
ondition is the Einstein equation des
ribing the absen
e of sour
esof gravitation. A detailed examination of this spe
ial subfamily suggests the possibilityof using it to model the neutrino. Our model naturally 
ontains only two distin
ttypes of parti
les whi
h may be identi�ed with left-handed neutrinos and right-handedantineutrinos.PACS numbers: 04.50.+h, 03.65.PmSubmitted to: Class. Quantum Grav.1. Main resultsWe 
onsider spa
etime to be a real oriented 4-manifold M equipped with a non-degenerate symmetri
 metri
 g and an aÆne 
onne
tion �. The 10 independent
omponents of the metri
 tensor g�� and the 64 
onne
tion 
oeÆ
ients ���� are theunknowns, as is the manifold M itself. This approa
h is known as metri
{aÆne �eldtheory. Its origins lie in the works of authors su
h as �E Cartan, A S Eddington,A Einstein, T Levi-Civita, E S
hr�odinger and H Weyl; see, for example, AppendixII in [1℄, or [2℄. Reviews of the more re
ent work in this area 
an be found in [3, 4, 5, 6℄.The Yang{Mills a
tion for the aÆne 
onne
tion isSYM := Z R���� R���� (1)where R is the Riemann 
urvature tensor (14). Variation of (1) with respe
t to themetri
 g and the 
onne
tion � produ
es Euler{Lagrange equations whi
h we, for thetime being, will write symboli
ally as�SYM=�g = 0 ; (2)



Torsion waves in metri
{aÆne �eld theory 2�SYM=�� = 0 : (3)Equation (3) is the Yang{Mills equation for the aÆne 
onne
tion. Equation (2) doesnot have an established name; we will 
all it the 
omplementary Yang{Mills equation.Our initial obje
tive is the study of the 
ombined system (2), (3). This is a systemof 74 real non-linear partial di�erential equations with 74 real unknowns.In order to state our results we will require the Maxwell equationÆdu = 0 (4)as well as the polarized Maxwell equation�du = �idu ; (5)� = �1; here u is the unknown ve
tor fun
tion. In 
alling (5) the polarized Maxwellequation we are motivated by the fa
t that any solution of (5) is a solution of (4). We
all a solution u of the Maxwell equation (4) non-trivial if du 6� 0.If the metri
 is given and the 
onne
tion is known to be metri
 
ompatible thenthe 
onne
tion 
oeÆ
ients are uniquely determined by torsion (13) or 
ontortion (16).The 
hoi
e of torsion or 
ontortion for the purpose of des
ribing a metri
 
ompatible
onne
tion is purely a matter of 
onvenien
e as the two are expressed one via the otherin a

ordan
e with formulae (17).We de�ne Minkowski spa
e M 4 as a real 4-manifold with a global 
oordinate system(x0; x1; x2; x3) and metri
 g�� = diag(+1;�1;�1;�1) . Our de�nition of M 4 spe
i�esthe manifold M and the metri
 g, but does not spe
ify the 
onne
tion �.Our �rst result isTheorem 1 Let u be a 
omplex-valued ve
tor fun
tion on M 4 whi
h is a non-trivialplane wave solution of the polarized Maxwell equation (5), let L 6= 0 be a 
onstant
omplex antisymmetri
 tensor satisfying�L = ~�iL ; (6)~� = �1, and let � be the metri
 
ompatible 
onne
tion 
orresponding to 
ontortionK��� = Re(u�L��) : (7)Then the spa
etime fM 4 ;�g is a solution of the system of equations (2), (3).Remark 1 In abstra
t Yang{Mills theory it is not 
ustomary to 
onsider the equation(2) be
ause there is no guarantee that this would lead to physi
ally meaningful results. Asan illustration let us examine the Maxwell equation (4) for real-valued ve
tor fun
tionson a Lorentzian manifold, whi
h is the simplest example of a Yang{Mills equation.Straightforward 
al
ulations show that it does not have non-trivial solutions whi
h arestationary points of the Maxwell a
tion with respe
t to the variation of the metri
.It is easy to see that the 
onne
tions from Theorem 1 are not 
at, i.e., R 6� 0.The non-trivial plane wave solutions of (5) 
an, of 
ourse, be written down expli
itly:up to a proper Lorentz transformation they areu(x) = w e�ik�x (8)
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{aÆne �eld theory 3where w� = C(0; 1;��i; 0) ; k� = �(1; 0; 0; 1) ; (9)� = �1, and C is an arbitrary positive 
onstant (amplitude).Let us now introdu
e an additional equation into our model:Ri
 = 0 (10)where Ri
 is the Ri

i 
urvature tensor. This is the Einstein equation des
ribing theabsen
e of sour
es of gravitation.Remark 2 If the 
onne
tion is that of Levi-Civita then (10) implies (3). In the general
ase equations (3) and (10) are independent.The question we are about to address is whether there are any spa
etimes whi
hsimultaneously satisfy the Yang{Mills equation (3), the 
omplementary Yang{Millsequation (2), and the Einstein equation (10). More spe
i�
ally, we are interested inspa
etimes whose 
onne
tions are not 
at and not Levi-Civita 
onne
tions.The following theorem provides an aÆrmative answer to the above question.Theorem 2 A spa
etime from Theorem 1 satis�es equation (10) if and only if Lis proportional to (du)jx=0, in whi
h 
ase torsion equals 
ontortion up to a naturalreordering of indi
es:T��� = K��� : (11)When des
ribing the spa
etimes from Theorem 2 it is 
onvenient to take L = durather than L = (du)jx=0 . This leads to a res
aling of the wave ve
tor k whi
h 
an, of
ourse, be in
orporated into a Lorentz transformation. Thus, the torsion of spa
etimesfrom Theorem 2 
an be written asT��� = Re(u�(du)��) : (12)The paper has the following stru
ture.Se
tions 3 and 4 
ontain the proof of Theorem 1, whereas Se
tion 5 
ontains theproof of Theorem 2. The 
entral elements of our 
onstru
tion are the linearizationansatz (Lemma 2) and the double duality ansatz (Lemma 3).The rest of the paper is a detailed examination of the spa
etimes from Theorem 2.In Se
tion 6 we establish general invariant properties of the spa
etimes fromTheorem 2. In parti
ular, it turns out (Lemma 6) that their Riemann 
urvature tensorspossess all the symmetry properties of the \usual" 
urvature tensors generated by Levi-Civita 
onne
tions. This means that in observing su
h 
onne
tions we might be led tobelieve (mistakenly) that we live in a Levi-Civita universe.In Se
tion 7 we show that the Riemann 
urvature tensors 
orresponding to spa
e-times from Theorem 2 have an algebrai
 stru
ture whi
h makes them equivalent tobispinors. It turns out (Lemma 8) that these bispinors satisfy the Weyl equation, whi
hsuggests the possibility of interpreting su
h spa
etimes as a model for the neutrino. Our
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{aÆne �eld theory 4model naturally 
ontains only two distin
t types of parti
les whi
h may be identi�edwith left-handed neutrinos and right-handed antineutrinos.Finally, in Se
tion 8 we 
ompare our results with those of Einstein [7℄ who performeda double duality analysis of Riemann 
urvatures with the aim of modelling elementaryparti
les. We show that the spa
etimes from Theorem 2 are in agreement with theresults of Einstein's analysis, in that we get the sign predi
ted by Einstein.2. NotationWe denote �� = �=�x� and de�ne the 
ovariant derivative of a ve
tor fun
tion asr�v� := ��v� + ����v�. We de�ne the torsion tensor asT ��� := ���� � ���� ; (13)the Riemann 
urvature tensor asR���� := ������ � ������ + �������� � �������� ; (14)and the Ri

i 
urvature tensor as Ri
�� := R����.We employ the usual 
onvention of raising or lowering tensor indi
es by 
ontra
tionwith the 
ontravariant or 
ovariant metri
 tensor. Some 
are is, however, required whenperforming 
ovariant di�erentiation: the operations of raising or lowering of indi
es donot 
ommute with the operation of 
ovariant di�erentiation unless the 
onne
tion ismetri
 
ompatible.By d we denote the exterior derivative and by Æ its adjoint. Of 
ourse, theseoperators do not depend on the 
onne
tion.Given a s
alar fun
tion f we write for brevityZ f := ZM fpj det gj dx0dx1dx2dx3 ; det g := det(g��) : (15)Throughout the paper we work only in 
oordinate systems with positive orientation.Moreover, when we restri
t our 
onsideration to Minkowski spa
e we assume thatour 
oordinate frame is obtained from a given referen
e frame by a proper Lorentztransformation. We use these 
onventions when de�ning the notions of left-handednessand right-handedness, as well as those of the forward and ba
kward light 
one.We de�ne the Hodge star as (�Q)�q+1:::�4 := (q!)�1pj det gjQ�1 :::�q"�1:::�4 where " isthe totally antisymmetri
 quantity, "0123 := +1.When dealing with a 
onne
tion whi
h is 
ompatible with a given metri
 it is
onvenient to introdu
e the 
ontortion tensorK��� := ���� � � ���� (16)where n ���o := 12g��(��g�� + ��g�� � ��g��) is the Christo�el symbol. Contortion hasthe antisymmetry property K��� = �K��� : A metri
 and 
ontortion uniquely determinethe metri
 
ompatible 
onne
tion. Torsion and 
ontortion are related asT ��� = K��� �K��� ; K��� = 12(T ��� + T ��� + T ���) ; (17)
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{aÆne �eld theory 5see formula (7.35) in [8℄.The remainder of this se
tion is devoted to the spe
ial 
ase of Minkowski spa
e.Lorentz transformations are assumed to be \passive" in the sense that we transformthe 
oordinate system and not the tensors or spinors themselves.Consider a 
omplex-valued tensor or spinor fun
tion of the form 
onst � e�ik�xwhere k 6= 0 is a 
onstant real ve
tor and k � x := k�x�. We 
all su
h a fun
tion a planewave and the ve
tor k a wave ve
tor. In de�ning a plane wave as � e�ik�x rather than� eik�x we follow the 
onvention of [9, 10, 11℄. We say that a lightlike wave ve
tor k lieson the forward (respe
tively, ba
kward) light 
one if k0 > 0 (respe
tively, k0 < 0).A bispinor is a 
olumn of four 
omplex numbers ( �1 �2 � _1 � _2 )T whi
h 
hangeunder Lorentz transformations in a parti
ular way, see Se
tion 18 in [10℄ for details. ThePauli and Dira
 matri
es are�0 =  1 00 1 ! ; �1 =  0 11 0 ! ; �2 =  0 �ii 0 ! ; �3 =  1 00 �1 ! ;
0 =  0 ��0��0 0 ! ; 
j =  0 �j��j 0 ! ; j = 1; 2; 3;
5 = i
0
1
2
3 =  �0 00 ��0 ! :We 
hose the sign of 
5 as in [11℄ (in [10℄ it is opposite).3. Solving the Yang{Mills equationWhen dealing with the Yang{Mills equation it is 
onvenient to use matrix notation tohide two indi
es: R�� = R���� , �� = ����, with � enumerating the rows and � the
olumns. Formulae (1), (14) 
an be rewritten in this notation asSYM := Z tr(R�� R��) ; (18)R�� = ���� � ���� + [��;��℄ ; (19)where trL := L�� (tra
e of a matrix) and [L;N ℄� � := L� �N�� � N � �L�� (
ommutatorof matri
es). Straightforward analysis of formulae (18), (19), (15) shows that the Yang{Mills equation whi
h we initially wrote down symboli
ally as (3) is a
tually(�� + [��; � ℄)(pj det gjR��) = 0 : (20)From now on we work only in Minkowski spa
e and only with metri
 
ompatible
onne
tions. This leads to a number of simpli�
ations. Conne
tion 
oeÆ
ients now
oin
ide with 
ontortion, for whi
h we 
ontinue using matrix notation K� = K���.Formula (19) be
omesR�� = ��K� � ��K� + [K�; K�℄ ; (21)
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{aÆne �eld theory 6and the Yang{Mills equation (20) be
omes(�� + [K�; � ℄)R�� = 0 : (22)The Yang{Mills equation (22) appears to be overdetermined as it is a system of 64equations with only 24 unknowns (24 is the number of independent 
omponents of the
ontortion tensor). However 40 of the 64 equations are automati
ally ful�lled. This is a
onsequen
e of the fa
t that the 6-dimensional Lie algebra of real antisymmetri
 rank 2tensors is a subalgebra of the 16-dimensional general Lie algebra of real rank 2 tensors.The fundamental diÆ
ulty with the Yang{Mills equation is that it is nonlinear withrespe
t to the unknown 
ontortion K. The following lemma plays a 
ru
ial role in our
onstru
tion by allowing us to get rid of the nonlinearities.Lemma 1 If L is an eigenve
tor of the Hodge star then [ReL; ImL℄ = 0.Proof of Lemma 1 The result follows from the general formula [�L;N ℄ = �[L;N ℄. �Lemma 1 
an be rephrased in the following way: the 6-dimensional Lie algebra ofreal antisymmetri
 rank 2 tensors has 2-dimensional abelian subalgebras whi
h 
an beexpli
itly des
ribed in terms of the eigenve
tors of the Hodge star.Lemma 1 immediately implies the following linearization ansatz.Lemma 2 Suppose 
ontortion is of the form (7) where u is a 
omplex-valued ve
torfun
tion and L 6= 0 is a 
onstant 
omplex antisymmetri
 tensor satisfying (6). Thenthe nonlinear terms in the formula for Riemann 
urvature (21) and in the Yang{Millsequation (22) vanish.Substituting (7) into (21) and the latter into (22) we see that the Yang{Millsequation redu
es to the Maxwell equation (4) for the 
omplex-valued ve
tor fun
tion u.4. Solving the 
omplementary Yang{Mills equationStraightforward analysis of formulae (1), (15) shows that the 
omplementary Yang{Millsequation whi
h we initially wrote down symboli
ally as (2) is a
tuallyH � 14 (trH) Æ = 0 (23)where H = H�� := R����R���� and Æ = Æ�� is the identity tensor. Note the importantdi�eren
e between the Yang{Mills equation (20) and the 
omplementary Yang{Millsequation (23): equation (20) is linear in 
urvature, whereas (23) is quadrati
.Equation (23) was written down without any assumptions on the 
onne
tion.We, however, will be interested in solving (23) in the 
lass of spa
etimes with metri

ompatible 
onne
tions, in whi
h 
ase the Riemann 
urvature tensor has the symmetriesR���� = �R���� = �R���� : (24)Let R be the 36-dimensional linear spa
e of real rank 4 tensors satisfying (24). Wede�ne in R the following two 
ommuting endomorphismsR! �R ; (�R)���� := 12pj det gj "�0�0��R�0�0�� ;
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{aÆne �eld theory 7R! R� ; (R�)���� := 12pj det gj R���0�0 "�0�0�� ;and we also 
onsider their 
ompositionR! �R� : (25)Clearly, the endomorphism (25) has eigenvalues �1.Remark 3 It is easy to see that the endomorphism (25) is well de�ned even if themanifold is not orientable. This observation is related to a mu
h deeper fa
t establishedin [12℄: the rank 8 tensor (det g) "�0�0�� "�0�0�� is a purely metri
al quantity, i.e., it isexpressed via the metri
 tensor.The following lemma is the double duality ansatz whi
h redu
es the 
omplementaryYang{Mills equation to an equation linear in 
urvature.Lemma 3 If R 2 R is an eigenve
tor of (25) then it satis�es (23).Proof of Lemma 3 We haveH�� = R����R���� = R����R���� = 12(R����R���� + (�R�)����(�R�)����) : (26)For antisymmetri
 rank 2 tensors we have the identities(�L)��(�N)�� = �L��N�� ;(�L)��(�N)�� + (�N)��(�L)�� = L��N�� +N��L�� + L��N�� Æ�� ;so formula (26) 
an be 
ontinued asH�� = 12(R����R���� � (R�)����(R�)����)= 14((R����R���� +R����R����)� ((R�)����(R�)���� + (R�)����(R�)����))= �14R����R����Æ�� :The tensor H�� is proportional to the identity tensor Æ��, therefore it satis�es (23). �Let us now apply Lemma 3 to the spa
etimes 
onstru
ted in the previous se
tion.In view of Lemma 2 the Riemann 
urvature in this 
ase isR���� = Re(L��(du)��) (27)where L is an eigenve
tor of the Hodge star and u is a non-trivial 
omplex-valued solutionof the Maxwell equation (4). Clearly, (27) is an eigenve
tor of the endomorphism (25) ifand only if du is an eigenve
tor of the Hodge star. The latter means that u is a solutionof the polarized Maxwell equation (5). The proof of Theorem 1 is 
omplete.
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{aÆne �eld theory 85. Solving the Einstein equationSubstituting (27) into the Einstein equation (10) we get Re(L��(du)��) = 0 . As theexpression under the Re sign is a plane wave, the latter is equivalent toL��((du)jx=0)�� = 0 : (28)It is 
onvenient to perform further 
al
ulations in the 
oordinate system in whi
h u hasthe 
anoni
al form (8), (9). Then(du)�� = C i0BBB� 0 �1 �i 01 0 0 1��i 0 0 ��i0 �1 �i 0 1CCCA e�i�(x0+x3) (29)and (28) be
omes an expli
it system of linear algebrai
 equations with respe
t to theunknown 
omponents of the tensor L ; namely, it is a system of 16 equations with3 unknowns (re
all that L has to be an eigenve
tor of the Hodge star). Elementaryanalysis shows that equation (28) is satis�ed if and only if L is proportional to (du)jx=0.Finally, formula (11) is established by straightforward 
al
ulations (see also Lemma 5in the next se
tion). The proof of Theorem 2 is 
omplete.6. Invariant properties of our solutionsIt is known [4, 5, 6℄ that the 24-dimensional spa
e of real torsions de
omposes into thefollowing 3 irredu
ible subspa
es: tensor torsions, tra
e torsions, and axial torsions. Thedimensions of these subspa
es are 16, 4, and 4, respe
tively.Lemma 4 The torsions of spa
etimes from Theorem 2 are purely tensor.Proof of Lemma 4 The tra
e 
omponent of a torsion tensor T��� is zero if T ��� = 0,and the axial 
omponent is zero if T��� "���� = 0. These identities are established bydire
t examination of the expli
it formulae (12), (8), (9). �It has been suggested [13℄ to interpret the axial 
omponent of torsion as the Hodgedual of the ele
tromagneti
 ve
tor potential. If one takes this point of view thenLemma 4 implies that in spa
etimes from Theorem 2 the ele
tromagneti
 �eld is zero.Let us mention (without proof) the following useful general result.Lemma 5 Equation (11) is satis�ed if and only if the axial 
omponent of torsion iszero.Lemmas 4 and 5 imply that when working with spa
etimes from Theorem 2 one 
answit
h from 
ontortion to torsion and ba
k without a
quiring 
umbersome expressions.Lemma 6 The Riemann 
urvatures of spa
etimes from Theorem 2 have all the sym-metry properties of Riemann 
urvatures in the Levi-Civita setting, that is,R���� = �R���� = �R���� = R���� ; (30)R���� "���� = 0 : (31)
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{aÆne �eld theory 9Proof of Lemma 6 Let us de�ne the 
omplex Riemann 
urvature tensorCR���� := F��F�� (32)where F := du (33)and u is a plane wave solution of (5). Then the Riemann 
urvature generated by torsion(12) 
an be written asR = Re CR (34)(
f. (27)). Dire
t examination of formulae (32){(34), (29) establishes the identities (30),(31). �7. Weyl's equationThe torsions (and, therefore, spa
etimes) from Theorem 2 are des
ribed, up to a properLorentz transformation and a s
aling fa
tor C > 0, by a pair of indi
es �; � = �1;see (12), (8), (9). It may seem that this gives us 4 essentially di�erent spa
etimes.However, formula (12) 
ontains the operation of taking the real part and, as a result,the transformation f�; �g ! f��;��g does not 
hange our torsion. Thus, Theorem 2provides us with only two essentially di�erent spa
etimes labelled by the produ
t�� = �1. The purpose of this se
tion is to show that it is natural to interpret thesetwo spa
etimes as the neutrino and antineutrino.We base our interpretation on the analysis of the Riemann 
urvature tensor. We
hoose to deal with 
urvature rather than with torsion be
ause 
urvature is an a

eptedphysi
al observable.We will work with the 
omplex 
urvature (32) rather than the real 
urvature (34)be
ause the 
omplex one has a simpler stru
ture. Indeed, a

ording to formula (32) the
omplex Riemann 
urvature tensor CR fa
torizes as the square of a rank 2 tensor F andis, therefore, 
ompletely determined by it.Working with the rank 2 tensor F is mu
h easier than with the original rank 4tensor CR, but one would like to simplify the analysis even further by fa
torizing Fitself. It is impossible to fa
torize F as the square of a ve
tor but it is possible tofa
torize F as the square of a bispinor.Lemma 7 A 
omplex rank 2 antisymmetri
 tensor F satisfying the 
onditionsF��F �� = 0; (�F )��F �� = 0 (35)is equivalent to a bispinor  , the relationship between the two beingF �� = � i4  T
0
2
�
� : (36)Proof of Lemma 7 Formula (36) is a spe
ial 
ase of the general equivalen
e relationbetween rank 2 antisymmetri
 tensors and rank 2 symmetri
 bispinors, see end ofSe
tion 19 in [10℄. Conditions (35) are ne
essary and suÆ
ient for the fa
torizationof the symmetri
 rank 2 spinors as squares of rank 1 spinors. �
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{aÆne �eld theory 10Remark 4 The 
orresponding text in the end of Se
tion 19 in [10℄ 
ontains mistakes.These 
an be 
orre
ted by repla
ing everywhere i by �i:Remark 5 For a given F formula (36) de�nes the individual spinors � = ( �1 �2 )Tand � = ( � _1 � _2 )T uniquely up to 
hoi
e of sign. This is in agreement with the generalfa
t that a spinor does not have a spe
i�
 sign, see the beginning of Se
tion 19 in [10℄.Remark 6 Conditions (35) are equivalent to detF = 0, det �F = 0.Our parti
ular tensor F de�ned by formula (33) satis�es 
onditions (35). Indeed,F��F �� = 0 is the statement that the 
omplex s
alar 
urvature is zero (
onsequen
eof the 
omplex Ri

i 
urvature being zero), whereas (�F )��F �� = 0 is the statementthat the 
omplex Riemann 
urvature satis�es the 
y
li
 sum identity, 
f. (31). Thus,the 
omplex Riemann 
urvature tensor (32) has an algebrai
 stru
ture whi
h makes itequivalent to a bispinor. We will now establish whi
h equations this bispinor satis�es.We say that two solutions u and u0 of the Maxwell equation (4) belong to the sameequivalen
e 
lass if du = du0. We say that two bispinor fun
tions  and  0 belong tothe same equivalen
e 
lass if  = � 0.Lemma 8 Formula (36) establishes a one{to{one 
orresponden
e between the equi-valen
e 
lasses of non-trivial plane wave solutions of the polarized Maxwell equation(5) and of the system
��� = 0 ; (37)
5 = � : (38)Equation (37) is, of 
ourse, the Weyl equation (Dira
 equation for massless parti
le).Proof of Lemma 8 If u is a non-trivial plane wave solution of the polarized Maxwellequation (5) then, up to a proper Lorentz transformation, our tensor F is given byformula (29), where C is a positive 
onstant. If  is a non-trivial plane wave solutionof the system (37), (38) then, up to a proper Lorentz transformation, = �pC i0BBB� 01 + �i� �i0 1CCCA e� i2�(x0+x3) (39)where C is a positive 
onstant. Straightforward 
al
ulations show that the tensorfun
tion (29) and the bispinor fun
tion (39) are related in a

ordan
e with formula(36). �The parameter � = �1 in formula (39) determines whether the wave ve
tor lies onthe forward (� = +1) or ba
kward (� = �1) light 
one. Non-trivial plane wave solutionsof (37), (38) whose wave ve
tor lies on the forward light 
one are 
alled neutrinos whereasthose whose wave ve
tor lies on the ba
kward light 
one are 
alled antineutrinos.The parameter � = �1 in formula (39) determines whether the solution is left- orright-handed. A neutrino is said to be left-handed if � = �1 and right-handed if � = +1.An antineutrino is said to be left-handed if � = +1 and right-handed if � = �1.
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{aÆne �eld theory 11Remark 7 The above de�nitions of left- and right-handedness are given in terms ofheli
ity. See Se
tion 2-4-3 in [11℄ for a detailed explanation of why one should useheli
ity rather than 
hirality for these purposes.As explained in the beginning of this se
tion, the transformation f�; �g !f��;��g does not 
hange the resulting spa
etime. This means that the torsionwave whi
h models the left-handed neutrino is identi
al to that for the left-handedantineutrino, and the torsion wave whi
h models the right-handed neutrino is identi
alto that for the right-handed antineutrino. Thus, our model 
ontains as many distin
ttypes of neutrinos as are 
urrently observed experimentally.8. Einstein's double duality analysisLet us examine in more detail the linear spa
e of Riemann 
urvatures R introdu
ed inSe
tion 4. For R 2 R we de�ne its transpose RT as (RT )���� := R����. We 
onsiderthe following two 
ommuting endomorphisms in R:R! RT (40)and (25). The endomorphisms (40) and (25) have no asso
iated eigenve
tors and theireigenvalues are �1. Therefore, R de
omposes into a dire
t sum of 4 invariant subspa
esR = �a;b=� Rab ; Rab := fR 2 R j RT = aR; �R� = bRg : (41)The de
omposition (41) was suggested in [14℄ and analyzed in [7, 12℄. A
tually,[14, 7, 12℄ dealt only with the 
ase of a Levi-Civita 
onne
tion, but the generalizationto an arbitrary metri
 
ompatible 
onne
tion is straightforward. Lan
zos 
alled tensorsR 2 R self-dual (respe
tively, antidual) if �R� = �R (respe
tively, �R� = R). Su
h a
hoi
e of terminology is due to the fa
t that Einstein and Lan
zos de�ned their doubleduality endomorphism asR! (sgn det g) �R� (42)rather than as (25). The advantage of (42) is that this linear operator is expressed viathe metri
 tensor as a rational fun
tion. The endomorphism (42) is, in a sense, evenmore invariant than (25) be
ause it does not \feel" the signature of the metri
.Lemma 9 (Raini
h [14℄) The subspa
es R++ and R+� have dimensions 9 and 12,respe
tively.Remark 8 In Raini
h's arti
le the dimensions are a
tually given as 9 and 11. Thereason behind this is that Raini
h imposed on 
urvatures the 
y
li
 sum 
ondition (31).This ex
ludes from R+� 
urvatures of the type R���� = 
onst � "���� and, therefore,redu
es the dimension by 1.Lemma 10 (Einstein [7℄) Let R 2 R++. Then the 
orresponding Ri

i tensor issymmetri
 and tra
e free. Moreover, R is uniquely determined by its Ri

i tensor andthe metri
 tensor a

ording to the formulaR���� = 12(g��Ri
�� + g��Ri
�� � g��Ri
�� � g��Ri
��) : (43)



Torsion waves in metri
{aÆne �eld theory 12Einstein's goal in [7℄ was to 
onstru
t a relativisti
 model for the ele
tron; notethat this paper was published in 1927, a year before Dira
 published his equation. (Fora basi
 exposition of [7℄ in English see the Introdu
tion in [12℄.) Einstein based hissear
h for a mathemati
al model on the de
omposition (41). As in this parti
ular paperEinstein restri
ted his analysis to the 
ase of a Levi-Civita 
onne
tion he had to makethe 
hoi
e between the invariant subspa
es R++ and R+�. The di�eren
e betweenthese two invariant subspa
es is fundamental: it has nothing to do with the 
hoi
ebetween forward and ba
kward light 
ones or the 
hoi
e of orientation of the 
oordinatesystem, and, as a 
onsequen
e, it has nothing to do with the notions of \parti
le" and\antiparti
le" or the notions of \left-handedness" and \right-handedness".Lemmas 9 and 10 led Einstein to the 
on
lusion that 
urvatures from R++ aretoo trivial and the dimension of the subspa
e too low to asso
iate it with the ele
tron.Namely, the main argument against R++ is that dimension 9 is not enough to a

ountfor the 10 independent 
omponents of the energy{momentum tensor. This suggests thatif the ele
tron were to be modelled in terms of General Relativity then one would expe
tits Riemann 
urvature to lie in the invariant subspa
e R+�, that is, satisfy the equation�R� = �R : (44)Formulae (32){(34), (5) imply that the spa
etimes from Theorem 2 satisfy equation(44). Our paper falls short of 
onstru
ting a metri
{aÆne �eld model for the ele
tron,but, nevertheless, we �nd it en
ouraging that our metri
{aÆne �eld model for theneutrino agrees with the results of Einstein's analysis.A
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