
TILTING BUNDLES ON SOME RATIONAL SURFACESALASTAIR KING1. IntrodutionLet X be a smooth projetive variety de�ned over an algebraiallylosed �eld k, and let Db(X) = Db(OX -mod) be the derived ategoryof bounded omplexes of oherent sheaves of OX-modules. A naturalquestion is: when is Db(X) freely and �nitely generated? This wasshown to be the ase when X is a projetive spae, by Beilinson [Be1℄,and when X is a quadri, Grassmannian or ag variety, by Kapranov[Ka℄. In this paper, we desribe a method for attaking this problemand illustrate it with the examples of some rational surfaes. In fat,it is now known from general methods of Orlov [Or℄ that Db(X) freelyand �nitely generated for all rational surfaes X.This paper elaborates the view-point of Bondal [Bo℄, who observedthat showing that Db(X) is free and �nitely generated by a sheafT 2 OX -mod amounts to showing that Db(X) is equivalent as a tri-angulated ategory to the derived ategory Db(A) = Db(mod-A) of�nite dimensional right modules over the �nite dimensional algebraA = HomX(T; T ). The equivalene is provided expliitly by the pair ofadjoint funtors � L
A T : Db(A) �! Db(X)RHomX(T;�) : Db(X) �! Db(A)Following the terminology of representation theory (f. [Ba℄), the sheafT is alled a tilting sheaf or, when it is loally free, a tilting bundle.The preise de�nition is as follows.De�nition 1.1. A tilting sheaf is a sheaf T 2 OX -mod for whih(i) ExtiX(T; T ) = 0 for i � 1,(ii) the algebra A = HomX(T; T ) has �nite global dimension,(iii) T generates the derived ategory Db(OX-mod).If T satis�es just the �rst two onditions then it is alled a partial tiltingsheaf.The searh for a tilting sheaf is naturally divided into two steps. First�nd a partial tilting sheaf T with the orret number of summands; thisnumber being the rank of K0(X). Seond, show that T generates thederived ategory. The �rst step appears more `mehanial' than theDate: 16 Sept 1997. 1



2 ALASTAIR KINGseond, sine it mainly involves alulating ohomology. However, theprinipal observation of this paper is that, at least when T is bundle,the seond step an be made similarly mehanial.Theorem 1.2. Let X be a smooth projetive variety and T be a par-tial tilting bundle with HomX(T; T ) = A. Then T is a tilting bundleif and only if the natural map T_ L�A T ! O� is an isomorphism inDb(OX�X -mod). Furthermore, this map is an isomorphism if the �-bres Tx for x 2 X, regarded as left A-modules, satisfy the followingonditionsi) for all x, HomA(Tx; Tx) = k and ExtiA(Tx; Tx) = 0 for i > dimX,ii) for x 6= y, HomA(Tx; Ty) = 0 and ExtiA(Tx; Ty) = 0 for i � 1.The paper is laid out as follows. In x2 we reall the standard def-initions and theorems for tilting sheaves. In x3{x5 we desribe thetehniques we use in the paper to identify tilting bundles. In x6{x8 we�nd tilting bundles on the rational surfaes mentioned above. We on-lude in x9 with some remarks and onjetures about possible furtherdevelopments.Notation and Conventions. All varieties and algebras are de�ned overa �xed algebraially losed �eld k. In all ategories morphisms at onthe left. A `sheaf' on X is a oherent sheaf of OX -modules. We shallnot distinguish between a bundle and its loally-free sheaf of setions.The dual of a bundle T is denoted T_. When X is smooth, we writeDb(X) for Db(OX -mod), and when A has �nite global dimension, wewrite Db(A) for Db(mod-A).2. Tilting sheavesIn this setion, we reall the de�nitions and basi theorems (withskethed proofs) for tilting sheaves, based on similar de�nitions andresults in the theory of tilting between �nite dimensional algebras. See[Ba℄ for more details.Reall that an algebra A has �nite global dimension, equal to d, ifand only if Exti(M;N) = 0, for all i > d and for all M;N 2 mod-A.Furthermore, T generates Db(OX -mod) if and only if the latter is equiv-alent to its smallest triangulated subategory whih ontains all thesummands of T . Sine there is no loss of generality in assuming thatthe indeomposable summands of T are pairwise non-isomorphi, wewill make this assumption in future.Theorem 2.1. Let T be a partial tilting sheaf and A = End(T ). Thenthe derived funtorRHom(T;�) : Db(OX -mod) �! Db(mod-A):is a left inverse of the derived funtor� L
A T : Db(mod-A) �! Db(OX -mod)



TILTING BUNDLES ON SOME RATIONAL SURFACES 3Hene, these funtors de�ne an equivalene between Db(mod-A) andthe triangulated subategory of Db(OX-mod) generated by T .Proof. Observe that A L
A T = T and RHom(T; T ) = A. Hene, theomposite funtor RHom(T;� L
A T ) is the identity on A. But, sineA has �nite global dimension, it generates Db(mod-A) and so the om-posite is the identity on Db(mod-A).From this there immediately followsTheorem 2.2. If T is a tilting sheaf, then the funtors RHom(T;�)and � L
A T are mutually inverse equivalenes between Db(OX-mod)and Db(mod-A).The existene of a tilting sheaf puts rather a strong restrition onX, namely that its Grothendiek group K0(X) = K0(OX-mod) is iso-morphi to Zn.Corollary 2.3. Suppose X has a tilting sheaf T with non-isomorphiindeomposable summands T1; � � � ; Tn. Then K0(OX -mod) is freelygenerated by the lasses [T1℄; : : : ; [Tn℄.Proof. The derived equivalene indues an isomorphism betweenK0(OX -mod)and K0(mod-A) under whih [T1℄; : : : ; [Tn℄ orrespond to the lassesof the indeomposable projetive A-modules, whih form a basis forK0(mod-A).3. Tilting Bundles and Resolutions of the DiagonalIn general, it is not so lear how to hek whether a sheaf T generatesthe derived ategory Db(OX -mod), i.e. Condition (iii) in De�nition1.1. In this setion, we give an equivalent ondition, whih an beveri�ed more easily, at least when T is a vetor bundle, provided onean alulate derived tensor produts. We give a method for doing thisin Setion 5.First observe that, for any T 2 OX-mod, there is a natural mapHom(T;E)
A T ! E;for all E 2 OX -mod, and hene, taking derived funtors, there is alsoa natural map �E : RHom(T;E) L
A T �! E;for all E 2 Db(OX-mod). From Theorem 2.1, we see that a partialtilting sheaf T is atually a tilting sheaf if and only if �E is always anisomorphism. The next result shows that it is essentially suÆient tohek that this map is an isomorphism when E = Ox, the struturesheaf of a point x, for all x 2 X.Notation: O� is the struture sheaf of the diagonal � � X � X,to be thought of as the family fOxgx2X , via the �rst projetion �1 :



4 ALASTAIR KINGX � X ! X; A � B is the exterior tensor produt of A and B inOX -mod, i.e. A� B = ��1A
 ��2B in OX�X -mod.Proposition 3.1. Let T be a partial tilting bundle with End(T ) = A.Then T is a tilting bundle if and only if the natural map T_ L�A T ! O�is an isomorphism in Db(OX�X-mod).Proof. Suppose T is a vetor bundle. Then RHom(T;Ox) = T_x andso there are natural maps �x : T_x L
A T ! Ox, for eah x 2 X. These�t together to give the natural map�� : T_ L�A T �! O�;whih an be represented by a omplex on X �X whose last term isO�. If T is a tilting bundle, then eah �x is an isomorphism, i.e. theomplex is exat on eah �bre of �1, hene it is exat, i.e. �� is anisomorphism.On the other hand, observe thatRHom(T;E) L
A T = R�2����1E L
 ��1T_ L
A ��2T�while taking derived funtors of the equation E = �2� (��1E 
O�)yields E = R�2����1E L
O�� :Furthermore, the natural map �E between the left-hand-sides of thetwo equations above, is indued by �� ating on the right-hand-sides.Hene, if �� is an isomorphism in Db(OX�X -mod), then �E is an iso-morphism in Db(OX -mod) for all E, and hene T is a tilting bundle.4. Exeptional Sheaves and ColletionsIt an also be a little diÆult, in general, to hek whether a �-nite dimensional algebra A has �nite global dimension, i.e. Condition(ii) of De�nition 1.1. However, there is a simple riterion whih issuÆient for the ases whih we shall enounter in this paper. Thisriterion states that any `triangular' algebra has �nite global dimen-sion [BB℄. An algebra is triangular if its indeomposable projetivemodules P1; : : : ; Pn all satisfy Hom(Pi; Pi) = k and an be ordered insuh a way that Hom(Pj; Pi) = 0, if i < j. If A = End(T ), then theseonditions are equivalent to those obtained by replaing P1; : : : ; Pn bythe indeomposable summands of T . Combining these onditions withCondition (i) of De�nition 1.1, we reover the notion of a `stronglyexeptional olletion' of sheaves. ([DL℄,[GR℄, [Bo℄). ReallDe�nition 4.1.i) A sheaf E is exeptional if Hom(E;E) = k and Exti(E;E) = 0, fori � 1,



TILTING BUNDLES ON SOME RATIONAL SURFACES 5ii) An ordered olletion E1; : : : ; En of sheaves is strongly exeptional ifeah Ei is exeptional, Hom(Ek; Ej) = 0 for j < k, and Exti(Ej; Ek) =0 for i � 1 and all j; k.From the remarks above we immediately obtainLemma 4.2. If E1; : : : ; En is a strongly exeptional olletion, thenE1 � � � � � En is a partial tilting sheaf.In this paper, we shall make do with strongly exeptional olletionsof line bundles, for whih De�nition 4.1 immediately givesLemma 4.3. A olletion of line bundles L1; : : : ; Ln on a variety Xis strongly exeptional ifi) H i(OX) = 0, for all i > 0and eah di�erene (in PiX) D = L_j 
 Lk, for j < k, satis�esii) H i(D) = 0, for i > 0, and H i(D_) = 0, for all i.Note that Condition (i) is birationally invariant and, in partiular, istherefore satis�ed by any rational surfae, beause it is satis�ed by P2.Condition (ii) emphasises the fat that it is the di�erenes that makea olletion exeptional.Remark 4.4. A strongly exeptional olletion whih generates the de-rived ategory, i.e. whih makes up a tilting sheaf, is the essentialingredient, i.e. the `foundation' (or sometimes `thread'), of a helix (see[Bo℄ Theorem 4.1). This notion was introdued by Gorodentsev &Rudakov [GR℄ to study vetor bundles on Pn. An important feature ofthe viewpoint of this paper is that the natural notion of adjaeny be-tween objets in an exeptional olletion is provided by the underlyingquiver of A, rather than the ordering of the olletion.5. Calulating the Derived Tensor ProdutTo make use of Theorem 2.1 and Proposition 3.1, we need an e�etivemethod of alulating the derived tensor produt M L
AN , for a rightA-module M and a left A-module N .One suh method, uses a projetive resolutionP d ! � � � ! P 0 ! Aof A in the ategory of A;A-bimodules, i.e. modules with ommutingleft and right ations of A. Then M L
AN is represented by M 
AP � 
A N , beause M 
A N =M 
A A
A N .Now, any algebra A, that ours as the endomorphism algebra of atilting sheaf T , is a �nite-dimensional algebra, naturally desribed asthe quotient of the path algebra of a quiver by an `admissable' idealof relations. Suh an algebra A has a minimal projetive resolution in



6 ALASTAIR KINGwhih P k = nMi;j=1Aei 
 V ki;j 
 ejAwhere e1; : : : ; en are the orthogonal idempotents orresponding to theindeomposable summands T1; : : : Tn of T , while V kij �= TorkA(Si; Sj) isa �nite dimensional vetor spae, with Si being the simple A-moduleon whih only ei ats non-trivially. The length d of this resolution isthe global dimension of A.In partiular, when T is a tilting bundle, then this means thatT_ L�A T is represented by a omplex whose kth term isnMi;j=1��1T_i 
 V kij 
 ��2Tj:This omplex is thus a loally-free resolution of O�.For a general desription of the minimal resolution of A, see [BK℄.Below, we shall just desribe the resolution when A has global di-mension less than or equal to two, whih is (almost) suÆient for thepurposes of this paper. First, though, we must explain a little aboutthe desription of an algebra and its modules by a quiver and theirrepresentations.Suppose T1; : : : ; Tn are pairwise non-isomorphi indeomposable sum-mands of an objet T in an abelian k-ategory, and A = End(T ). Thenit is very natural to onsider a right A-module as equivalent to a on-travariant k-linear funtor from fTig to the ategory of k vetor spaes.In partiular, the A-module Hom(T;M) is identi�ed with the funtorHom(�;M) restrited to fTig. Now, we an present the ategory fTigopby a quiver with relations. That is to say, we an hoose an abstratset Q0 of verties orresponding to the objets Ti and a �nite set Q1of arrows a : ta ! ha, where ta; ha 2 Q0, representing a maximalset of independent irreduible maps in fTig, but in the opposite sense.Any map an then be written as a linear ombination of `paths' in thequiver, i.e. allowable omposites of the arrow maps, subjet to a �niteset R of relations � : t� � � �h�,� = kXi=1 �iai1 : : : ainiwhere tai1 = t�, hair = tair+1 for 1 � r < ni, and haini = h�, for eahi. An A-module, or a ontravariant linear funtor on fTig, is then justa representation of the quiver in the ategory of k vetor spaes forwhih all the relations evaluate to zero.We an now desribe the minimal resolution of A, as promised.Proposition 5.1. Let A be a �nite dimensional algebra, desribed interms of a quiver Q0; Q1 with relations R as above and let fei j i 2 Q0g



TILTING BUNDLES ON SOME RATIONAL SURFACES 7be a set of indeomposable orthogonal idempotents. Then the followingomplex of A;A-bimodules is the �nal part, i.e. P 2 ! P 1 ! P 0, of theminimal projetive resolution of A.M�2R Aet�
 [�℄
 eh�A �! Ma2Q1Aeta
 [a℄
 ehaA �!Mi2Q0Aei
 [i℄
 eiAwhere [�℄, [a℄ and [i℄ should be interpreted as one-dimensional vetorspaes ating as labels. The maps in the sequene are given byet� 
 [�℄
 eh� 7! kXi=1 �i niXj=1 ai1 : : : aij�1 
 [aij℄
 aij+1 : : : ainieta 
 [a℄
 eha 7! a
 [ha℄
 eha � eta 
 [ta℄
 aThe map from the last term onto A is ei 
 [i℄
 ei 7! ei.Proof. See [BK℄.Clearly, when A has global dimension less than or equal to two, thisomplex is the whole projetive resolution of A.Example 5.2. To illustrate Proposition 5.1, we onsider the tiltingbundle T = O �O(1)�O(2)on P2 (.f. [Ba℄), where O(n) is the nth power of the hyperplanebundle. Notie that O;O(1);O(2) is a strongly exeptional olletion.Then A = End(T ) is desribed by the following quiver with relationss s s---xyz ---xyz yz � zy = zx� xz = xy � yx = 0where x; y; z : O ! O(1) and x; y; z : O(1) ! O(2) are the mapsgiven by multipliation by a basis of setions of O(1). Notie that thearrows in the quiver go in the opposite diretion to the maps. In thisase A = End(T ) has global dimension 2 and Proposition 5.1 yieldsthe following omplex for T_ L�A T O �O3�O(�1)�O� �3�O(�2)�O� d2�! � d1�! O(�1)�O(1)3�O(�2)�O(1)� �O(�2)�O(2)with maps d1 = 0� x[1℄ y[1℄ z[1℄ 0 0 0�x[2℄ �y[2℄ �z[2℄ x[1℄ y[1℄ z[1℄0 0 0 �x[2℄ �y[2℄ �z[2℄1A



8 ALASTAIR KINGand d2 = 0BBBBBB� 0 z[1℄ �y[1℄�z [1℄ 0 y[1℄y[1℄ �x[1℄ 00 �z[2℄ y[2℄z[2℄ 0 �x[2℄�y[2℄ x[2℄ 0
1CCCCCCAwhere x[i℄ means multipliation by the setion ��i x in the ith fator ofthe exterior tensor produt, i.e. x[1℄ = x� 1 while x[2℄ = 1� x.Using the Euler sequenes for the bundles 
i of i-forms,0! 
1 ! O(�1)3 ! O ! 00! 
2 ! O(�2)3 ! 
1 ! 0we an redue this omplex to the more familiar formO(�2)� 
2(2) �! O(�1)� 
1(1) �! O �Othat was given by Beilinson [Be1℄ as a resolution of O�. Indeed, itwas this resolution that was originally used to show that T is a tiltingsheaf. 6. Some Strongly Exeptional ColletionsIn this setion, we desribe strongly exeptional olletions of linebundles on a number of rational surfaes X, namely the rational ruledsurfaes, or Hirzebruh surfaes �n, and the blow-ups P2(m) of theprojetive plane P2 in at m general points, for m � 3. Of ourse, thislatter notation is ambiguous for m � 5, beause suh blow-ups havemoduli, but we will not onsider these surfaes here. In the ase of �n,these olletions have already been desribed in [KN℄.For n � 0, the Hirzebruh surfae �n = P(OP1(�n) � OP1). Suh asurfae an be embedded in P1 � Pn+1 as the subvarietyf(a0 : a1); (b0 : : : : : bn+1) j a0bi = a1bi�1; for 1 � i � ng: (6:1)In partiular, �0 = P1 � P1 and �1 = P2(1). The line bundles on�n are obtained by pulling bak the line bundles on P1 and Pn+1 viathe embedding and one of the projetions �i. Thus, Pi(�n) = Z2,with O�n(p; q) = ��1�OP1(p)�
 ��2�OPn+1(q)�. The anonial bundle isO(n� 2;�2) and the intersetion form is given by the matrix �0 11 n�.Proposition 6.1. Over �n, the line bundles O, O(1; 0), O(0; 1), O(1; 1)are a strongly exeptional olletion.Proof. We simply need to show that the di�erenes O(1; 0), O(0; 1),O(1; 1) and O(�1; 1) satisfy Condition (ii) of Lemma 4.3. Now, thedivisors (1; 0) and (0; 1) are both moving, so any line bundle with nega-tive degree along either one must have H0 = 0. Hene H0(O(p; q)) = 0



TILTING BUNDLES ON SOME RATIONAL SURFACES 9when q < 0 or p + nq < 0, and, by Serre duality, H2(O(p; q)) = 0,when q > �2 or p+ nq > �2. This gives all the required vanishing ofH0 and H2.The Riemann-Roh formula gives�(O(D)) = 12D � (D �K) + 1= 12(2p+ nq + 2)(q + 1)Hene, if D = (�1; 0) or (p;�1), for any p, then H i(O(D)) = 0, for alli. Now, let C 2 jO(0; 1)j be a smooth rational urve (e.g. bn+1 = 0).From the short exat sequene0! O(p; q � 1)! O(p; q)! OC(p+ nq)! 0;we get a long exat sequene in ohomology� � � ! H1�O(p; q � 1)�! H1�O(p; q)�! H1�OC(p+ nq)�:Thus, from the vanishing ofH1�O(�1; 0)�,H1�O(0;�1)� andH1�O(1;�1)�,we an dedue the rest of the vanishing we need.For eah suh surfae X = �n, the algebra A = EndX�O�O(1; 0)�O(0; 1)�O(1; 1)� is given by one of the following quivers with relations:Case (i): �0
s ss s??b0 b1 ??b0 b1--a0a1

--a0a1 a0b0 � b0a0a1b1 � b1a1b0a1 � a1b0b1a0 � a0b1Case (ii): �1
ss s s--a0a1

--a0a1 ����Rb����Rb ?d a1b� ba1ba0 � a0ba0da1 � a1da0Case (iii): �n
ss s s--a0a1

--a0a1 ����Rb����Rb ??...d1 dn a1b� ba1ba0 � a0bdia1 � di+1a0a0di+1 � a1di



10 ALASTAIR KINGfor n � 2 and for 1 � i � n� 1. These generating relations overdeter-mine the relations between the paths joining the extreme verties byn� 2 doubly determined relations:a1dj�1a1 � a1dja0 � a0dja1 + a0dj+1a0for 2 � j � n� 1.Now, let X = P2(m), for m � 3. The �rst two ases P2(0) =P2 and P2(1) = �1 have been overed already in Example 5.2 andProposition 6.1. Let H be the pullbak of the hyperplane divisor inP2 and E1; : : : ; En be the exeptional divisors. These form a basis forPi(X). The anonial bundle is O(�3H + E1 + � � � + En) and theintersetion form is diagonal with entries (1;�1; : : : ;�1).Proposition 6.2.i) On P2(2), the line bundles O, O(H�E1), O(H�E2), O(H), O(2H�(E1 + E2)) form a strongly exeptional olletion.ii) On P2(3), the line bundles O, O(H �E1), O(H �E2), O(H �E3),O(H), O(2H � (E1 +E2 +E3)) form a strongly exeptional olletion.Proof. Working over P2(m), for any m, we an verify Condition (ii) ofLemma 4.3 for O(Ei), for O(Ei � Ej), when i 6= j, and for O(A� B),when A = H or 2H and B = 0; Ei; Ei + Ej or Ei + Ej + Ek, with i; jand k distint. This is done in essentially the same way as Proposition6.1. Using the moving divisors H and H � Ei and Serre duality, weget all the vanishing of H0 and H2. From Riemann-Roh we �nd inaddition that H1�O(pH +P qiEi� = 0, when p = �1 or �2 and eahqi = 0 or 1. Then we use the struture sequene for smooth rationalurves in jHj and jH � Eij to dedue almost all of the rest of the H1vanishing. The one we miss is O(H � (Ei + Ej + Ek)), for whih wealready know that H2 = 0 and � = 0. But now, beause the imagesof Ei, Ej and Ek under blowing down are not olinear, we know thatH0 = 0 and hene that H1 = 0 also.For X = P2(m), the algebra A = EndX(T ), where T is the diretsum of the line bundles in the orresponding exeptional olletion, isgiven by one of the following quivers with relations:Case (iv): P2(2)s s s
s s-f�����3b0QQQQQsa0 ����e1AAAUe2 ���R���Ra0 a1��������b0 b1 fe2b0 � b0a0a1b1 � fe1a1b0a1 � a1b0e1a0 � e2b1



TILTING BUNDLES ON SOME RATIONAL SURFACES 11Case (v): P2(3)ss sss s�����*HHHHHjJJJJJJĴ
e1e2e3HHHHHj�����*






�f1f2f3 ����R����Ra0 a1--b0b1����������0 1

e2b0 � e31e30 � e1a1e1a0 � e2b1f2b1 � f30f31 � f1a0f1a1 � f2b07. The Surfaes as Moduli SpaesIn Setion 6, we de�ned algebras A to be the endomorphism algebrasof ertain vetor bundles over the surfaes X. In this setion, we showthat eah suh surfae X an be reovered from the orrespondingalgebra A as a moduli spae of �-stable A-modules, in the sense of [Ki℄.To speify suh a moduli spae we must give a dimension vetor �, i.e.a non-negative integer �v for eah vertex v of the quiver de�ning A,and a weight vetor or `harater' �, i.e. an integer �v for eah vertex,suh that Pv �v�v = 0. The moduli spae of �-stable A-modules ofdimension vetor � is then the parameter spae for those A-moduleswhih have no proper submodules with any dimension vetor � forwhih Pv �v�v � 0.In eah ase, we will hoose �v = 1, for all v. The harater � will bedepend on the algebra. For book-keeping purposes, the verties of thequiver inherit an order from the orresponding order of the stronglyexeptional olletion. We use this order to write � as a row vetor.For any of the algebras A arising from a Hirzebruh surfae (i.e.ases (i), (ii) and (iii) in etion), take � = (1; 0; 0;�1). For �-stable A-modules, the vanishing of ertain ombinations of arrows is prevented,beause suh vanishing implies the existene a submodule ontraditingthe stability ondition. More preisely:vanishing of ) submod. of dim.a0; a1 (1; 1; 0; 1)a0; a1 (0; 1; 0; 0)Hene, (a0 : a1) and (a0 : a1) are well-de�ned points in P1.Case (i): By symmetry, we also see that (b0 : b1) and (b0 : b1) are well-de�ned points in P1. The relations then imply that (a0 : a1) = (a0 : a1)and (b0 : b1) = (b0 : b1), and that, up to equivalene, these two pointsdetermine the representation. Hene the moduli spae is P1�P1 = �0.Case(ii): Set b0 = da0 b1 = da1 b2 = bb0 = a0d b1 = a1d b2 = b



12 ALASTAIR KINGCase (iii): Setb0 = d1a0 bi = di�1a0 = dia1 bn = dna1 bn+1 = bb0 = a0d1 bi = a0di�1 = a1di bn = a1dn bn+1 = bfor i = 1; : : : ; n� 1.In both these ases, (b0 : � � � : bn+1) and (b0 : � � � : bn+1) are well-de�ned points in Pn+1, beause there are no submodules of dimensionvetor (0; 0; 1; 0) and (1; 0; 1; 1). In addition, the relations imply that(a0 : a1) = (a0 : a1) and (b0 : � � � : bn+1) = (b0 : � � � : bn+1), so we havea point in P1 � Pn+1. By onstrution, it satis�es the equations (6.1)and so is a point in �n, as required.Case (iv): Choose � = (2; 0; 0;�1;�1), and set x0 = e1a1, x1 = e2b0and x2 = e1a0 = e2b1. Then observe that,vanishing of ) submod. of dim.b0; f (1; 0; 1; 0; 1)b0; e1 (1; 0; 1; 1; 1)a1; f (1; 1; 0; 0; 1)a1; e2 (1; 1; 0; 1; 1)e1; e2 (0; 0; 0; 1; 0)a0; a1 (0; 1; 0; 0; 0)b0; b1 (0; 0; 1; 0; 0)From this and the relations, (a0 : a1) = (fe2 : a1) and (b0 : b1) = (b0 :fe1) are points in P1, while (x0 : x1 : x2) = (a1e1 : b0e2 : fe1e2) is apoint in P2. The point we thereby obtain in P1 � P1 � P2 also satis�esa0x0 = a1x2 and b0x2 = b1x1, whih are the equations of P2 blown upat (0 : 1 : 0) and (1 : 0 : 0).Case (v): Choose � = (2; 0; 0; 0;�1;�1), and observe thatvanishing of ) submod. of dim.a0; a1 (0; 1; 0; 0; 0; 0)e1; f1 (1; 0; 1; 1; 1; 1)e1; e2; e3 (0; 0; 0; 0; 1; 0)with similar results for (b0; b1), (0; 1), (e2; f2), (e3; f3) and (f1; f2; f3).The relations then imply that two of the e's or f 's annot vanish simul-taneously. Therefore (x1 : x3 : x3) = (f1e2e3 : e1f2e3 : e1e2f3) and (y1 :y2 : y3) = (e1f2f3 : f1e2f3 : f1f2e3) give a well-de�ned point in P2 � P2satisfying x1y1 = x2y2 = x3y3. This is one desription of P2(3). Therelations imply that the point (a0 : a1); (b0 : b1); (0 : 1) 2 P1�P1�P1is determined by (x1 : x3 : x3); (y1 : y2 : y3), so that the moduli spaeis just P2(3). 8. Some Tilting BundlesIn this setion, we show that eah strongly exeptional olletion de-sribed in Setion 6 atually onsists of the indeomposable summandsof a tilting bundle. By Proposition 3.1 and Lemma 4.2, we must simply



TILTING BUNDLES ON SOME RATIONAL SURFACES 13show that eah olletion an be used to make a loally free resolutionof the diagonal sheaf O� on X � X, in the manner desribed in Se-tion 5. We use the following fundamental lemma to help identify suhresolutions.Lemma 8.1. Let Y be a smooth variety and 0 ! Vd ! � � � ! V0 aomplex of vetor bundles on Y whih is exat over every point outsidea subvariety Z of odimension d. Then the omplex is exat, as asequene of sheaves, on the whole of Y , i.e. it is a loally free resolutionof the okernel of d1 : V1 ! V0.Proof. We prove the result loally. Over any loal ring R = Oy;Y , wehave a omplex of free R-modules, whih we wish to show is exat.For this we an use the standard neessary and suÆient ondition ofBuhsbaum and Eisenbud ([BE℄ or [No℄ Theorem 6.15). Beause theomplex is generially exat, the ranks of the di�erentials are whatthey must be and beause R is regular, and hene Cohen-Maaulay,the determinantal ideal of eah di�erential has depth at least d. Thisis in fat stronger than what is needed for the omplex to be exat.This lemma is the essential ingredient in the following more spei�result.Lemma 8.2. Let X be a smooth variety of dimension d and Vr !� � � ! V0 a omplex of vetor bundles on X �X, with r � d. Then theomplex is a loally free resolution of O� ifi) For i > d, it is exat, as a sequene of bundles, over X �X,ii) For 0 � i � d, it is exat, as a sequene of bundles, over X�Xr�,iii) The okernel of d1 : V1 ! V0, at any point (x; x) 2 �, is anoniallyisomorphi to the �eld k of salars.Proof. Note that, by Lemma 8.1, the ondition r � d is neessary.Now, Condition (i) implies that we an shorten the omplex of vetorbundles to one of length d with the same ohomology. Condition (ii)and Lemma 8.1 show that we have a resolution of some sheaf supportedon �, while Condition (iii) identi�es this sheaf as O�.In the partiular ase whih interests us, this result an be para-phrased in terms of the ohomologial properties of the A-moduleswhih are the �bres of our prospetive tilting bundle T . Note that,by a \family T of A-modules parametrised by X" we mean a vetorbundle T over X and a homomorphism A! End(T ).Lemma 8.3. Let T be a family of A-modules parametrised by a smoothvariety X of dimension d. Then T_ L�A T provides a loally free reso-lution of O�, ifi) For i > d, ExtiA(Tx; Ty) = 0 for all x, y,ii) For 1 � i � d, ExtiA(Tx; Ty) = 0 for all x 6= y,



14 ALASTAIR KINGiii) HomA(Tx; Ty) = (k if x = y0 otherwise.Proof. One simply needs to observe that the �bre over (y; x) 2 X�X ofthe omplex whih alulates T_ L�A T is the omplex whih alulatesthe derived funtor of T_y 
A Tx = HomA(Tx; Ty)_.Now, as observed in Setion 7, in eah of the ases that interestus X is a moduli spae of �-stable A-modules and T is the universalfamily over X. Hene, Condition (iii) of Lemma 8.3 is a onsequeneof Shur's Lemma, sine �-stable modules are simple objets in the fullsubategory of �-semistable modules.Most of the algebras desribed in Setion 6 have global dimension2, and hene Condition (i) of Lemma 8.3 is automatially satis�ed.However, for n � 3, the algebra assoiated to the Hirzebruh surfae �nhas global dimension 3. In this ase, the doubly determined relationsDi = a1di�1a1 � a1dia0 � a0dia1 + a0di+1a0ontribute a fourth term to the minimal resolution of A (see [BK℄ fordetails), namely n�1Mi=2 Ae1 
 [Di℄
 e4Awhih is joined onto the omplex given in Proposition 5.1 by the mape1 
 [Di℄
 e4 7! a1 
 [di�1a1 � dia0℄
 e4 � a0 
 [dia1 � di+1a0℄
 e4+ e1 
 [a0di � a1di�1℄
 a1 � e1 
 [a0di+1 � a1di℄
 a0This gives rise to a map d3 : V3 ! V2 in the prospetive resolution ofO� whereV3 = (O(�1;�1)�O)n�2V2 = (O(�1;�1)�O)2 � (O(0;�1)�O)n�1 � (O(�1;�1)�O(1; 0))n�1



TILTING BUNDLES ON SOME RATIONAL SURFACES 15and
d3 =

0BBBBBBBBBBBBBBBBBBBBBBB�

0 0 � � � 00 0 � � � 0a[1℄1 0 � � � 0�a[1℄0 a[1℄1 . . . ...0 �a[1℄0 . . . 0... . . . . . . a[1℄10 � � � 0 �a[1℄0a[2℄1 0 � � � 0�a[2℄0 a[2℄1 . . . ...0 �a[2℄0 . . . 0... . . . . . . a[2℄10 � � � 0 �a[2℄0

1CCCCCCCCCCCCCCCCCCCCCCCAThis is learly injetive, as a bundle map, sine (a0; a1) 6= (0; 0). Hene,Condition (i) of Lemma 8.3 is satis�ed in this ase as well.Thus, in all ases we have a omplex of vetor bundles on X �XV3 d3�! V2 d2�! V1 d1�! V0with d3 injetive (often 0) and oker d1 = O�. Furthermore, one readilyheks that 3Xi=0 (�1)i rkVi = 0Hene, to show that this omplex is a resolution of O�, we need onlyto hek that, o� �, the map d2 has maximal rank. This we now doin eah of the �ve separate ases. Note that, in eah ase V2 is a diretsum of line bundles, one for eah relation, while V1 is a diret sum ofline bundles, one for eah arrow. The line bundles are always exteriorproduts of line bundles on X. Hene, d2 is a matrix whose entriesare maps between the appropriate exterior produt line bundles. Theywill always be indued by multipliation by setions of line bundleson X and we will use the supersripts [1℄ and [2℄, as in Example 5.2,to indiate in whih fator they at. The olumns of the matries areimpliitly indexed by the relations, ordered as in Setion 6. The rowsof the matries will be expliitly indexed by the arrows.



16 ALASTAIR KINGCase (i): The map d2 is0BBBBBBBBBBBB�
b0 a[1℄0 0 �a[1℄1 0b1 0 a[1℄1 0 �a[1℄0b0 �a[2℄0 0 a[2℄1 0b1 0 �a[2℄1 0 a[2℄0a0 �b[1℄0 0 0 b[1℄1a1 0 �b[1℄1 b[1℄0 0a0 b[2℄0 0 0 �b[2℄1a1 0 b[2℄1 �b[2℄0 0

1CCCCCCCCCCCCAThe �rst 4 rows have rank 4 unless (a0 : a1)[1℄ = (a0 : a1)[2℄, while thelast 4 rows have rank 4 unless (b0 : b1)[1℄ = (b0 : b1)[2℄. Thus d2 hasrank 4 o� �.Case (ii): The map d2 is0BBBBBBBBB�
a0 0 b[1℄ �a1d[1℄a1 �b[1℄ 0 a0d[1℄b a[1℄1 �a[1℄0 0a0 0 �b[2℄ �da[2℄1a1 b[2℄ 0 �da[2℄0b �a[2℄1 a[2℄0 0d 0 0 a[1℄0 a[2℄1 � a[1℄1 a[2℄0

1CCCCCCCCCAThe �rst 6 rows have rank 3 unless (a0d : a1d : b)[1℄ = (da0 : da1 : b)[2℄.On the other hand, the 3rd, 6th and 7th rows have rank 3 unless(a0 : a1)[1℄ = (a0 : a1)[2℄. Thus d2 has rank 3 o� �.Case (iii): The map d2 is0BBBBBBBBBBBBBBBBBBBB�

a0 0 b[1℄ �d[1℄2 �d[1℄3 � � � �d[1℄na1 �b[1℄ 0 d[1℄1 d[1℄2 � � � d[1℄n�1a0 0 �b[2℄ d[2℄2 d[2℄3 � � � d[2℄na1 b[2℄ 0 �d[2℄1 �d[2℄2 � � � �d[2℄n�1b a[1℄1 �a[1℄0b �a[2℄1 a[2℄0d1 �a[2℄0 0 � � � 0 �a[1℄0 0 � � � 0d2 a[2℄1 �a[2℄0 . . . ... a[1℄1 �a[1℄0 . . . ...... 0 a[2℄1 . . . 0 0 a[1℄1 . . . 0... ... . . . . . . �a[2℄0 ... . . . . . . �a[1℄0dn 0 � � � 0 a[2℄1 0 � � � 0 a[1℄1

1CCCCCCCCCCCCCCCCCCCCA



TILTING BUNDLES ON SOME RATIONAL SURFACES 17The last n + 2 rows have rank n + 2 unless(a0 : a1)[1℄ = (a0 : a1)[2℄:In that ase, the last n+2 rows have rank n and the �rst 4 rows, whenrestrited to the kernel of the last n + 2 rows, have rank 2 unless(a0d1 : � � � : a0dn : a1dn : b)[1℄ = (d1a0 : � � � : dna0 : dna1 : b)[2℄Thus d2 has rank n+ 2 o� �.Case (iv): The map d2 is0BBBBBBBBBBBBBB�
b0 fe[1℄2 0 �a[1℄1 0b1 0 a[1℄1 0 �e[1℄2b0 �a[2℄0 0 a[2℄1 0e1 0 �f [1℄a[2℄1 0 a[2℄0a0 �b[1℄0 0 0 e[1℄1a1 0 �fe[1℄1 b[1℄0 0e2 f [1℄b[2℄0 0 0 �b[2℄1a1 0 b[2℄1 �b[2℄0 0f e2b[2℄0 �e1a[2℄1 0 0

1CCCCCCCCCCCCCCAThe �rst 8 rows have rank 4 unless(fe2 : a1)[1℄ = (a0 : a1)[2℄ and (b0 : fe1)[1℄ = (b0 : b1)[2℄ (.f. Case (i)).On the other hand, omitting the 4th and 7th rows gives a martix withrank 4 unless(a1e1 : b0e2 : fe1e2)[1℄ = (e1a1 : e2b0 : e1a0)[2℄:Thus d2 has rank 4 o� �.Case (v): The map d2 is0BBBBBBBBBBBBBBBBBBBB�

a0 0 0 e[1℄1 0 �f [1℄1 0a1 0 �e[1℄1 0 0 0 f [1℄1b0 e[1℄2 0 0 0 0 �f [1℄2b1 0 0 �e[1℄2 f [1℄2 0 00 0 e[1℄3 0 �f [1℄3 0 01 �e[1℄3 0 0 0 f [1℄3 0e1 0 �a[2℄1 a[2℄0e2 b[2℄0 0 �b[2℄1e2 �[2℄1 [2℄0 0f1 0 �a[2℄0 a[2℄1f2 b[2℄1 0 �b[2℄0f2 �[2℄0 [2℄1 0

1CCCCCCCCCCCCCCCCCCCCA



18 ALASTAIR KINGThe �rst 6 rows have rank 5, while the other two 3 � 3 bloks haverank 2. Thus d2 has rank 6 unless(e1f2f3 : f1e2f3 : f1f2e3)[1℄ = (a1b1 : a0b0 : a1b0)[2℄(f1e2e3 : e1f2e3 : e1e2f3)[1℄ = (a0b0 : a1b1 : a0b1)[2℄But this only happens on �.9. Conluding Remarks1) Following J. Rikard [Ri℄, one should extend the notion of a tilt-ing sheaf, to that of a tilting omplex in order to allow more generalequivalenes between Db(OX-mod) and Db(mod-A).De�nition 9.1. An objet 
 2 Db(A;OX-mod) is a two-sided tiltingomplex with inverse e
 2 Db(OX ; A-mod) if and only ifi) R�(
 L
X e
) �= A in Db(A;A-mod)ii) e
 L
A 
 �= O� in Db(OX�X -mod).Sine X is smooth, we may assume that 
 and e
 are omplexes ofloally-free sheaves, so that we may replae L
X by 
X . We may thenalso assume, without loss of generality, that e
 = 
_. The followingproposition is immediate.Proposition 9.2. If 
 is a two-sided loally-free tilting omplex withloally-free inverse e
, then� L
A 
 : Db(mod-A)! Db(OX -mod)and R�(�
X e
) : Db(OX-mod)! Db(mod-A)are mutually inverse equivalenes of triangulated ategories.2) It is natural to ask what is the property of the surfaes onsideredin this paper, that enables them to have a tilting bundle. One featurethey all share is that they are all tori varieties. This feature is alsoshared by Pn, but not by some of the other examples suh as the agvarieties, on whih Kapranov has onstruted tilting bundles. However,for the latter examples the summands of the tilting bundle are not allline bundles, whereas for the tori varieties they are. A. Sho�eld hasalso desribed a tilting bundle on P2 blown up at 4 general points. Thissurfae is not a tori, and indeed the tilting bundle has a summandwhih is not a line bundle.These onsiderations lead us to the following:Conjeture 9.3. Let X be a smooth omplete tori variety. Then Xhas a tilting bundle whose summands are line bundles.Pursuing the idea, one might optimistially go as far as:
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