TILTING BUNDLES ON SOME RATIONAL SURFACES

ALASTAIR KING

1. INTRODUCTION

Let X be a smooth projective variety defined over an algebraically
closed field &, and let DP(X) = D*(Ox-mod) be the derived category
of bounded complexes of coherent sheaves of Ox-modules. A natural
question is: when is DP(X) freely and finitely generated? This was
shown to be the case when X is a projective space, by Beilinson [Bel],
and when X is a quadric, Grassmannian or flag variety, by Kapranov
[Ka]. In this paper, we describe a method for attacking this problem
and illustrate it with the examples of some rational surfaces. In fact,
it is now known from general methods of Orlov [Or] that D?(X) freely
and finitely generated for all rational surfaces X.

This paper elaborates the view-point of Bondal [Bo], who observed
that showing that DP(X) is free and finitely generated by a sheaf
T € Ox-mod amounts to showing that DP(X) is equivalent as a tri-
angulated category to the derived category DP(A) = D"(mod-A) of
finite dimensional right modules over the finite dimensional algebra
A =Homx (T,T). The equivalence is provided explicitly by the pair of
adjoint functors

_®aT : D(A) —s DV(X)
RHomy (T, —) : DP(X) — DP(A)

Following the terminology of representation theory (cf. [Bal), the sheaf
T is called a tilting sheaf or, when it is locally free, a tilting bundle.
The precise definition is as follows.

Definition 1.1. A tilting sheafis a sheaf T' € Ox-mod for which

(i) BExt (T, T) =0 for i > 1,

(ii) the algebra A = Homx (T, T) has finite global dimension,

(iii) 7" generates the derived category DP(Ox-mod).

If T satisfies just the first two conditions then it is called a partial tilting
sheaf.

The search for a tilting sheaf is naturally divided into two steps. First
find a partial tilting sheaf T" with the correct number of summands; this
number being the rank of K(X). Second, show that T" generates the
derived category. The first step appears more ‘mechanical’ than the
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second, since it mainly involves calculating cohomology. However, the
principal observation of this paper is that, at least when T is bundle,
the second step can be made similarly mechanical.

Theorem 1.2. Let X be a smooth projective variety and T be a par-

tial tilting bundle with Homy (T, T) = A. Then T is a tilting bundle
L
if and only if the natural map TV X, T — Oa is an isomorphism in

DP(Oxyxx-mod). Furthermore, this map is an isomorphism if the fi-
bres T, for x € X, regarded as left A-modules, satisfy the following
conditions

i) for all z, Hom4(T,,T,) = k and Ext’,(T,,T,) = 0 for i > dim X,
i) for x # y, Hom(T,,T,) = 0 and Ext’(T,,T,) = 0 fori > 1.

The paper is laid out as follows. In §2 we recall the standard def-
initions and theorems for tilting sheaves. In §3 §5 we describe the
techniques we use in the paper to identify tilting bundles. In §6 §8 we
find tilting bundles on the rational surfaces mentioned above. We con-
clude in §9 with some remarks and conjectures about possible further
developments.

Notation and Conventions. All varieties and algebras are defined over
a fixed algebraically closed field k. In all categories morphisms act on
the left. A ‘sheaf’ on X is a coherent sheaf of Oyx-modules. We shall
not distinguish between a bundle and its locally-free sheaf of sections.
The dual of a bundle T is denoted TV. When X is smooth, we write
D"(X) for D*(Ox-mod), and when A has finite global dimension, we
write DP(A) for D (mod-A).

2. TILTING SHEAVES

In this section, we recall the definitions and basic theorems (with
sketched proofs) for tilting sheaves, based on similar definitions and
results in the theory of tilting between finite dimensional algebras. See
[Ba] for more details.

Recall that an algebra A has finite global dimension, equal to d, if
and only if Ext'(M, N) = 0, for all i > d and for all M, N € mod-A.
Furthermore, T generates D*(Ox-mod) if and only if the latter is equiv-
alent to its smallest triangulated subcategory which contains all the
summands of T'. Since there is no loss of generality in assuming that
the indecomposable summands of T are pairwise non-isomorphic, we
will make this assumption in future.

Theorem 2.1. Let T be a partial tilting sheaf and A = End(T'). Then
the derived functor

RHom(T, ) : D"(Ox-mod) — D"(mod-A).

18 a left inverse of the derived functor

L
—®4 T :DP(mod-A) — DP(Ox-mod)
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Hence, these functors define an equivalence between DP(mod-A) and
the triangulated subcategory of D*(Ox-mod) generated by T.

L
Proof. Observe that A, T = T and RHom(T,T) = A. Hence, the

L
composite functor RHom(7, —®4 T') is the identity on A. But, since
A has finite global dimension, it generates D?(mod-A) and so the com-
posite is the identity on D"(mod-A). O

From this there immediately follows
Theorem 2.2. If T is a tilting sheaf, then the functors RHom(T, —)

L
and — 4T are mutually inverse equivalences between DP(Ox-mod)
and D" (mod-A4).

The existence of a tilting sheaf puts rather a strong restriction on
X, namely that its Grothendieck group Ky(X) = Ky(Ox-mod) is iso-
morphic to Z".

Corollary 2.3. Suppose X has a tilting sheaf T with non-isomorphic

indecomposable summands Ty,---,T,. Then Ky(Ox-mod) is freely
generated by the classes [Ty, ..., [T,].

Proof. The derived equivalence induces an isomorphism between K,(Ox-mod)
and Ky(mod-A) under which [T],...,[T,] correspond to the classes

of the indecomposable projective A-modules, which form a basis for
Ky(mod-A). O

3. TIiLTING BUNDLES AND RESOLUTIONS OF THE DIAGONAL

In general, it is not so clear how to check whether a sheaf T' generates
the derived category D”(Oy-mod), i.e. Condition (iii) in Definition
1.1. In this section, we give an equivalent condition, which can be
verified more easily, at least when 7" is a vector bundle, provided one
can calculate derived tensor products. We give a method for doing this
in Section 5.

First observe that, for any T' € Ox-mod, there is a natural map

Hom(T, E)®, T — E,

for all E € Ox-mod, and hence, taking derived functors, there is also
a natural map
ng : RHom(T, E) (§I§>AT — F,

for all E € D*(Ox-mod). From Theorem 2.1, we see that a partial
tilting sheaf T' is actually a tilting sheaf if and only if ng is always an
isomorphism. The next result shows that it is essentially sufficient to
check that this map is an isomorphism when E = O,, the structure
sheaf of a point z, for all z € X.

Notation: Oa is the structure sheaf of the diagonal A C X x X,
to be thought of as the family {O,}.cx, via the first projection 7 :
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X x X — X; AKX B is the exterior tensor product of A and B in
Ox-mod, i.e. AKX B =7nfA® m;B in Oxyx-mod.

Proposition 3.1. Let T be a partial tilting bundle with End(T) = A.

L
Then T is a tilting bundle if and only if the natural map TV X, T — Oa
is an isomorphism in D?(Ox, x-mod).

Proof. Suppose T is a vector bundle. Then RHom(T,0,) = T,) and

L
so there are natural maps n, : T @, T — O,, for each z € X. These
fit together to give the natural map

L
nAiTV&AT—)OA,

which can be represented by a complex on X x X whose last term is
Ox. If T is a tilting bundle, then each 7, is an isomorphism, i.e. the
complex is exact on each fibre of 7, hence it is exact, i.e. 7a is an
isomorphism.

On the other hand, observe that

L L L
RHom (7T, F)®4 T = Ry, (WTE RmTY @4 7r§T>

while taking derived functors of the equation E = my, (17E ® Oa)
yields

L
FE = Rﬂ'Q* (WIE®0A> .

Furthermore, the natural map nr between the left-hand-sides of the
two equations above, is induced by na acting on the right-hand-sides.
Hence, if na is an isomorphism in Db((’)XXX—mod), then ng is an iso-
morphism in D?(Ox-mod) for all E, and hence T is a tilting bundle. [

4. EXCEPTIONAL SHEAVES AND COLLECTIONS

It can also be a little difficult, in general, to check whether a fi-
nite dimensional algebra A has finite global dimension, i.e. Condition
(ii) of Definition 1.1. However, there is a simple criterion which is
sufficient for the cases which we shall encounter in this paper. This
criterion states that any ‘triangular’ algebra has finite global dimen-
sion [BB]. An algebra is triangular if its indecomposable projective
modules Py, ..., P, all satisfy Hom(P;, P;) = k and can be ordered in
such a way that Hom(P;, P;) =0, if i < j. If A = End(T), then these
conditions are equivalent to those obtained by replacing P,,..., P, by
the indecomposable summands of T'. Combining these conditions with
Condition (i) of Definition 1.1, we recover the notion of a ‘strongly
exceptional collection’ of sheaves. ([DL],[GR], [Bo]). Recall

Definition 4.1. .
i) A sheaf E is exceptional if Hom(E, E) = k and Ext'(E, E) = 0, for
i>1,
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ii) An ordered collection Ey, ..., E, of sheaves is strongly exceptional if
each E; is exceptional, Hom(Ey, E;) = 0 for j < k, and Ext'(E;, E}) =
0 for ¢+ > 1 and all 7, k.

From the remarks above we immediately obtain

Lemma 4.2. If Ey,...,FE, 1s a strongly exceptional collection, then
E,®---® E, is a partial tilting sheaf.

In this paper, we shall make do with strongly exceptional collections
of line bundles, for which Definition 4.1 immediately gives

Lemma 4.3. A collection of line bundles Lq,...,L, on a variety X
18 strongly exceptional if

i) H(Ox) =0, for alli >0

and each difference (in Pic X ) D = L} ® Ly, for j <k, satisfies

i) H' (D) =0, fori >0, and H'(DV) =0, for all i.

Note that Condition (i) is birationally invariant and, in particular, is
therefore satisfied by any rational surface, because it is satisfied by P2.
Condition (ii) emphasises the fact that it is the differences that make
a collection exceptional.

Remark 4.4. A strongly exceptional collection which generates the de-
rived category, i.e. which makes up a tilting sheaf, is the essential
ingredient, i.e. the ‘foundation’ (or sometimes ‘thread’), of a helix (see
[Bo] Theorem 4.1). This notion was introduced by Gorodentsev &
Rudakov [GR] to study vector bundles on P*. An important feature of
the viewpoint of this paper is that the natural notion of adjacency be-
tween objects in an exceptional collection is provided by the underlying
quiver of A, rather than the ordering of the collection.

5. CALCULATING THE DERIVED TENSOR PRODUCT

To make use of Theorem 2.1 and Proposition 3.1, we need an effective

L
method of calculating the derived tensor product M ®4 N, for a right
A-module M and a left A-module N.
One such method, uses a projective resolution

P'—...5P" "> 4
of A in the category of A, A-bimodules, i.e. modules with commuting

left and right actions of A. Then MQ%A N is represented by M ® 4
P*®4 N, because M @4 N =M ®4 A®4 N.

Now, any algebra A, that occurs as the endomorphism algebra of a
tilting sheaf 7', is a finite-dimensional algebra, naturally described as
the quotient of the path algebra of a quiver by an ‘admissable’ ideal
of relations. Such an algebra A has a minimal projective resolution in
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which
Pr=P Ae; @V ®eA
ij=1
where ey, ... ,e, are the orthogonal idempotents corresponding to the

indecomposable summands Ty,...T, of T, while V}} = Tor% (S;, S;) is
a finite dimensional vector space, with S; being the simple A-module
on which only e; acts non-trivially. The length d of this resolution is
the global dimension of A.

In particular, when T is a tilting bundle, then this means that

L
TV X, T is represented by a complex whose kth term is

P =1 @ Vi @ mT;.
ij=1
This complex is thus a locally-free resolution of Ox.

For a general description of the minimal resolution of A, see [BK].
Below, we shall just describe the resolution when A has global di-
mension less than or equal to two, which is (almost) sufficient for the
purposes of this paper. First, though, we must explain a little about
the description of an algebra and its modules by a quiver and their
representations.

Suppose T4, ... ,T,, are pairwise non-isomorphic indecomposable sum-
mands of an object 7" in an abelian k-category, and A = End(T"). Then
it is very natural to consider a right A-module as equivalent to a con-
travariant k-linear functor from {7;} to the category of k vector spaces.
In particular, the A-module Hom(7', M) is identified with the functor
Hom(—, M) restricted to {T;}. Now, we can present the category {T;}°"
by a quiver with relations. That is to say, we can choose an abstract
set Qg of vertices corresponding to the objects T; and a finite set ),
of arrows a : ta — ha, where ta,ha € @y, representing a maximal
set of independent irreducible maps in {7;}, but in the opposite sense.
Any map can then be written as a linear combination of ‘paths’ in the
quiver, i.e. allowable composites of the arrow maps, subject to a finite
set R of relations p:tp--- hp,

k
P = E )\7;(],7;] P (]?m
1=1

where ta;; = tp, ha;, = ta;, 4, for 1 <r < n;, and ha;,, = hp, for each
i. An A-module, or a contravariant linear functor on {7;}, is then just
a representation of the quiver in the category of k vector spaces for
which all the relations evaluate to zero.

We can now describe the minimal resolution of A, as promised.

Proposition 5.1. Let A be a finite dimensional algebra, described in
terms of a quiver Qq, Q1 with relations R as above and let {e; | 1 € Qo}
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be a set of indecomposable orthogonal idempotents. Then the following
complex of A, A-bimodules is the final part, i.e. P2 — P! — PY, of the
minimal projective resolution of A.

@ Aey, ® [p] ® ep, A — @ Aey, ® [a] @ ep, A — @ Ae;®@[i]l®e; A
pPER a€Q 1€Qo

where [p|, [a] and [i] should be interpreted as one-dimensional vector
spaces acting as labels. The maps in the sequence are given by

k n;
€tp X [p] & €hp Z )\z Z A1 - - - Q51 (39 [a,-j] X Qi1 - - - Qg
i=1  j=1

Ca ®[a] @ ens — a® [ha] @ epy — €1 @ [ta] @ a
The map from the last term onto A is e; ® [i] ® e; — ¢;.

Proof. See [BK]. O

Clearly, when A has global dimension less than or equal to two, this
complex is the whole projective resolution of A.

Example 5.2. To illustrate Proposition 5.1, we consider the tilting
bundle

T=08001)®0(2)
on P? (c.f. [Ba]), where O(n) is the nth power of the hyperplane

bundle. Notice that O, O(1),O(2) is a strongly exceptional collection.
Then A = End(T) is described by the following quiver with relations

Xz

lm

— —_— _ _ _ _ _ _
o 4 4w oY L o Yz —2y =2 — 22 =23y —yr =20
z 4

where z,y,2 : O — O(1) and 7,7,z : O(1) — O(2) are the maps
given by multiplication by a basis of sections of O(1). Notice that the
arrows in the quiver go in the opposite direction to the maps. In this
case A = End(T') has global dimension 2 and Proposition 5.1 yields

L
the following complex for TV X, T

ORO
3(0(-1) K O) @

3(0(-2)R0O) & & By 0(-1)RO(1)
3(0(-2) K O(1)) ®

O(—2) K O(2)

with maps

dy= | =z —yl2 2 gl gl 5l
0 0 0o —z¥ —g& —z
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and
0 A -
_ =l 0 gt
5 R 0
2 0 —2 g
212l 0 —z
—yl2 gl 0

where 2!l means multiplication by the section 7}z in the ith factor of
the exterior tensor product, i.e. 2l = 2 X 1 while z? = 1 X 7.
Using the Euler sequences for the bundles Q' of i-forms,

0= =01 =00
0= 0= 0(-2)%= Q' -0
we can reduce this complex to the more familiar form
O(-2)KQ?(2) — O(-1)XQ'(1) —OXO

that was given by Beilinson [Bel] as a resolution of Ox. Indeed, it
was this resolution that was originally used to show that 7' is a tilting
sheatf.

6. SOME STRONGLY EXCEPTIONAL COLLECTIONS

In this section, we describe strongly exceptional collections of line
bundles on a number of rational surfaces X, namely the rational ruled
surfaces, or Hirzebruch surfaces ¥,, and the blow-ups P?(m) of the
projective plane P? in at m general points, for m < 3. Of course, this
latter notation is ambiguous for m > 5, because such blow-ups have
moduli, but we will not consider these surfaces here. In the case of ¥,,,
these collections have already been described in [KN].

For n > 0, the Hirzebruch surface 3, = P(Opi1(—n) & Op1). Such a
surface can be embedded in P! x P**! as the subvariety

{(ag :a1),(bg: ... bys1) | agh; = arb; 4, for 1 < i < n}. (6.1)

In particular, X5 = P' x P' and ¥; = P*(1). The line bundles on
¥, are obtained by pulling back the line bundles on P' and P"*! via
the embedding and one of the projections m;. Thus, Pic(X,) = Z2,
with Os, (p,q) = 7} (Op1(p)) ® 75 (Opn+1(g)). The canonical bundle is

O(n—2,—2) and the intersection form is given by the matrix (? 717) :

Proposition 6.1. Over X, the line bundles O, O(1,0), ©(0,1), O(1,1)
are a strongly exceptional collection.

Proof. We simply need to show that the differences O(1,0), O(0,1),
O(1,1) and O(—1,1) satisfy Condition (ii) of Lemma 4.3. Now, the
divisors (1,0) and (0, 1) are both moving, so any line bundle with nega-
tive degree along either one must have H° = 0. Hence H°(O(p,q)) =0



TILTING BUNDLES ON SOME RATIONAL SURFACES 9

when ¢ < 0 or p+ ng < 0, and, by Serre duality, H*(O(p,q)) = 0,
when ¢ > —2 or p+ ng > —2. This gives all the required vanishing of
H® and H?.
The Riemann-Roch formula gives
1
X(O(D)) = D (D-K)+1

1
— 5(2p+nq+2)(q+ 1)

Hence, if D = (—1,0) or (p, —1), for any p, then H(O(D)) = 0, for all
i. Now, let C' € |O(0,1)| be a smooth rational curve (e.g. b1 = 0).
From the short exact sequence

0—O(p,qg—1) = O(p,q) = Oc(p + nq) = 0,
we get a long exact sequence in cohomology
o= H'(O(p.q — 1)) = H'(O(p,q)) — H'(Oc(p + nq)).

Thus, from the vanishing of H' (O(—1,0)), H'(O(0,—1)) and H'(O(1, -1)),
we can deduce the rest of the vanishing we need. O

For each such surface X = %, the algebra A = Endy (06 O(1,0) @

0(0,1)®0(1,1)) is given by one of the following quivers with relations:
Case (i): g

ao
[ — _ -
aq aobo — boag
bo||Br bol|b  Trbr b
ao bo(L] — bo
[ P— ) bla[] —agbl
ai
E]b - b(],]
bCL[] — aob

aod(],] — a d(Lg

a]b — B(J,]
an — agb

d;ay — dipqag

Qodip — ayd;
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forn > 2 and for 1 <7 <n — 1. These generating relations overdeter-
mine the relations between the paths joining the extreme vertices by
n — 2 doubly determined relations:

aq dj,](],] — a dj(],o — aodj(],] + agd];H(],g

for2<j3<n-—1.

Now, let X = P?(m), for m < 3. The first two cases P?(0) =
P? and P%(1) = X; have been covered already in Example 5.2 and
Proposition 6.1. Let H be the pullback of the hyperplane divisor in

P? and Ey,..., E, be the exceptional divisors. These form a basis for
Pic(X). The canonical bundle is O(—3H + E; + --- + E,) and the
intersection form is diagonal with entries (1,-1,...,—1).

Proposition 6.2.

i) OnP2(2), the line bundles O, O(H—FE,), O(H—E,), O(H), O(2H —
(Ey + Esy)) form a strongly exceptional collection.

i) On P2?(3), the line bundles O, O(H — E;), O(H — E;), O(H — E3),
O(H), O(2H — (Ey + Ey + E3)) form a strongly exceptional collection.

Proof. Working over P?(m), for any m, we can verify Condition (ii) of
Lemma 4.3 for O(E;), for O(E; — E;). when i # j, and for O(A — B),
when A = H or 2H and B =0, E;,E; + E; or B, + E; + E}, with 4, ]
and k distinct. This is done in essentially the same way as Proposition
6.1. Using the moving divisors H and H — FE; and Serre duality, we
get all the vanishing of H® and H?. From Riemann-Roch we find in
addition that H'(O(pH + 3 ¢;E;) = 0, when p = —1 or —2 and each
¢; = 0 or 1. Then we use the structure sequence for smooth rational
curves in |H| and |H — E;| to deduce almost all of the rest of the H'
vanishing. The one we miss is O(H — (E; + E; + Ey)), for which we
already know that H? = 0 and xy = 0. But now, because the images
of E;, Ej; and Ej; under blowing down are not colinear, we know that
H® = 0 and hence that H' = 0 also. O

For X = P?(m), the algebra A = Endx(T), where T is the direct
sum of the line bundles in the corresponding exceptional collection, is
given by one of the following quivers with relations:

Case (iv): P?(2)

bo / N\l‘ feaby — byag
(i ‘1 ag aiby — feim
e— o ° - _
by boar — @1bg
€2
ap \ A( erag — eab;
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Case (v): P?(3)

eabg — ezcy
e3Cy — €1aq
e1ag — eab;
’ fab1 — faco
fzcr — fiag
Jiar — fabo

7. THE SURFACES AS MODULI SPACES

In Section 6, we defined algebras A to be the endomorphism algebras
of certain vector bundles over the surfaces X. In this section, we show
that each such surface X can be recovered from the corresponding
algebra A as a moduli space of #-stable A-modules, in the sense of [Ki].
To specify such a moduli space we must give a dimension vector «, i.e.
a non-negative integer «, for each vertex v of the quiver defining A,
and a weight vector or ‘character’ 6, i.e. an integer 6, for each vertex,
such that ) 6,a, = 0. The moduli space of #-stable A-modules of
dimension vector « is then the parameter space for those A-modules
which have no proper submodules with any dimension vector (§ for
which ) 6,6, <0.

In each case, we will choose a,, = 1, for all v. The character # will be
depend on the algebra. For book-keeping purposes, the vertices of the
quiver inherit an order from the corresponding order of the strongly
exceptional collection. We use this order to write 6 as a row vector.

For any of the algebras A arising from a Hirzebruch surface (i.e.
cases (i), (ii) and (iii) in ection), take § = (1,0,0, —1). For #-stable A-
modules, the vanishing of certain combinations of arrows is prevented,
because such vanishing implies the existence a submodule contradicting
the stability condition. More precisely:

vanishing of = submod. of dim.
T, U1 (1,1,0,1)
ag, A1 (0,1,0,0)

Hence, (ag : a;) and (@ : @) are well-defined points in P'.

Case (i): By symmetry, we also see that (by : by) and (b : by) are well-
defined points in P'. The relations then imply that (ag : a;) = (@ : @)
and (by : b1) = (by : by), and that, up to equivalence, these two points
determine the representation. Hence the moduli space is P' x P! = 3.

Case(ii): Set
b() = dCL(] b1 - dal
E[] — a()d 51 — Eld
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Case (iii): Set

by = dyayg by = d;_1ag = d;a, b, = d,a, bpy1 = b
by = dod bi = ayd;—1 = Wd; b, = @d, bps1 =b
fore=1,... ,n—1. ~ ~

In both these cases, (bg : - : b,y1) and (bg : -+ : byyq) are well-

defined points in P**!, because there are no submodules of dimension
vector (0,0,1,0) and (1,0,1,1). In addition, the relations imply that
(ag 1 a1) = (@ : @) and (by : -+ : buyq) = (bo : =+ : byyy), SO we have
a point in P! x P"*'. By construction, it satisfies the equations (6.1)
and so is a point in ¥,,, as required.

Case (iv): Choose 6 = (2,0,0,—1,—1), and set xy = ejay, 1 = esby
and z9 = ejag = eob;. Then observe that,

vanishing of = submod. of dim.

bo, f (1,0,1,0,1)

bo, €1 (1,0,1,1,1)

a, f (1,1,0,0,1)

51,62 (1,1,0,1,1)

€1, €9 (0,0,0, 1,0)

ag, A1 (0, 1,0,0,0)

bo, by (0,0,1,0,0)
From this and the relations, (ag : a;) = (fey : @) and (b : by) = (bo
fei) are points in P!, while (mo D xy o my) = (@er : boey : ferey) is a

point in P2. The point we thereby obtain in ]P’1 x P! x P? also satisfies
aoTo = a1z and byxe = byx;, which are the equations of P? blown up
t(0:1:0)and (1:0:0).
Case (v): Choose # = (2,0,0,0,—1,—1), and observe that

vanishing of = submod. of dim.

ay, a; (0,1,0,0,0,0)
er, fi (1,0,1,1,1,1)
€1,€2,€3 (070107(]’170)

with similar results for (b(], bl), (C[], Cl), (62, fg), (63, f‘;) and (fl; f2, f‘;)
The relations then imply that two of the e’s or f’s cannot vanish simul-
taneously. Therefore (z; : w3 : x3) = (fieses : €1 faes : ereafs) and (y; :
Yo 1 y3) = (e1fofs 1 freafs : fifaes) give a well-defined point in P? x P?
satisfying x1y; = xoy» = w3ys. This is one description of P?(3). The
relations imply that the point (ag : a1), (by : by1), (co : ¢1) € P x P! x P!
is determined by (z1 : w3 : x3), (y1 : Y2 : y3), so that the moduli space
is just P?(3).

8. SOME TILTING BUNDLES

In this section, we show that each strongly exceptional collection de-
scribed in Section 6 actually consists of the indecomposable summands
of a tilting bundle. By Proposition 3.1 and Lemma 4.2, we must simply
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show that each collection can be used to make a locally free resolution
of the diagonal sheaf Ox on X x X, in the manner described in Sec-
tion 5. We use the following fundamental lemma to help identify such
resolutions.

Lemma 8.1. Let Y be a smooth variety and 0 — Vy — -+ — Vj a
complex of vector bundles on'Y which is exact over every point outside
a subvariety 7 of codimension d. Then the complex is exact, as a

sequence of sheaves, on the whole of Y, i.e. it is a locally free resolution
of the cokernel of dy : 'V} — V4.

Proof. We prove the result locally. Over any local ring R = Oy, we
have a complex of free R-modules, which we wish to show is exact.
For this we can use the standard necessary and sufficient condition of
Buchsbaum and Eisenbud ([BE] or [No] Theorem 6.15). Because the
complex is generically exact, the ranks of the differentials are what
they must be and because R is regular, and hence Cohen-Macaulay,
the determinantal ideal of each differential has depth at least d. This
is in fact stronger than what is needed for the complex to be exact. [

This lemma is the essential ingredient in the following more specific
result.

Lemma 8.2. Let X be a smooth variety of dimension d and V, —
-+ = Vi a complex of vector bundles on X x X, with r > d. Then the
complez 1s a locally free resolution of Oa if

i) Fori > d, it is exact, as a sequence of bundles, over X x X,

i) For 0 < i <d, it is ezact, as a sequence of bundles, over X x X \ A,
iii) The cokernel of dy : Vi — Vg, at any point (x,x) € A, is canonically
1somorphic to the field k of scalars.

Proof. Note that, by Lemma 8.1, the condition r > d is necessary.
Now, Condition (i) implies that we can shorten the complex of vector
bundles to one of length d with the same cohomology. Condition (ii)
and Lemma 8.1 show that we have a resolution of some sheaf supported
on A, while Condition (iii) identifies this sheaf as Oa. O

In the particular case which interests us, this result can be para-
phrased in terms of the cohomological properties of the A-modules
which are the fibres of our prospective tilting bundle T'. Note that,
by a “family T of A-modules parametrised by X7 we mean a vector
bundle T over X and a homomorphism A — End(T).

Lemma 8.3. Let T be a family of A-modules parametrised by a smooth

L
variety X of dimension d. Then TV X4 T provides a locally free reso-
lution of Oa, if
i) Fori > d, Ext',(T,,T,) =0 for all z, vy,
i) For 1 <i <d, Ext}(T,,T,) = 0 for all z # y,
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k ifx=
i) Hom (T}, T,) = o=y
' 0 otherwise

Proof. One simply needs to observe that the fibre over (y,xz) € X x X of

L
the complex which calculates TV X4 T is the complex which calculates
the derived functor of T, ®4 T, = Hom (T, T,)". O

Now, as observed in Section 7, in each of the cases that interest
us X is a moduli space of f-stable A-modules and T is the universal
family over X. Hence, Condition (iii) of Lemma 8.3 is a consequence
of Schur’s Lemma, since #-stable modules are simple objects in the full
subcategory of #-semistable modules.

Most of the algebras described in Section 6 have global dimension
2, and hence Condition (i) of Lemma 8.3 is automatically satisfied.
However, for n > 3, the algebra associated to the Hirzebruch surface ¥,
has global dimension 3. In this case, the doubly determined relations

D; =ad;_ya; —ard;ay — apd;a; + apd;y1a0

contribute a fourth term to the minimal resolution of A (see [BK] for
details), namely

which is joined onto the complex given in Proposition 5.1 by the map

e1® D] ®es = @ ®[dimiay — diag) ® eq — Gy ® [diay — diy1a0] @ ey
+ e Q [God; —a1d, 1] @ ay — ey ® [Gpdir — a1d;] ® ag

This gives rise to a map ds : V3 — V5 in the prospective resolution of
O where

Vi = (O(-1,-1)R0O)"
V, = (0O(-1,-1)R0O)’ & (000, -1)RO)" ' & (0O(-1,-1) R O(1,0))" "

~—~
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and

0 0 0
0 0 0
al o 0
_a[[]u EE”
0 —a 0
. agu
b= 0 —a
(J,[12} 0
_agm agz}
0 —d 0
. agz}
0 0 —al

This is clearly injective, as a bundle map, since (ag, a;) # (0,0). Hence,
Condition (i) of Lemma 8.3 is satisfied in this case as well.
Thus, in all cases we have a complex of vector bundles on X x X

d d d
Vs =5V, ==V — 1,

with d3 injective (often 0) and coker d; = Oa. Furthermore, one readily
checks that

Hence, to show that this complex is a resolution of O, we need only
to check that, off A, the map dy, has maximal rank. This we now do
in each of the five separate cases. Note that, in each case V5 is a direct
sum of line bundles, one for each relation, while V; is a direct sum of
line bundles, one for each arrow. The line bundles are always exterior
products of line bundles on X. Hence, d, is a matrix whose entries
are maps between the appropriate exterior product line bundles. They
will always be induced by multiplication by sections of line bundles
on X and we will use the superscripts [1] and [2], as in Example 5.2,
to indicate in which factor they act. The columns of the matrices are
implicitly indexed by the relations, ordered as in Section 6. The rows
of the matrices will be explicitly indexed by the arrows.
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Case (i):

The first 4 rows have rank 4 unless (ay : a) =
last 4 rows have rank 4 unless (b :

The map ds is

ALASTAIR KING

b (@ o —all oo
T T S B
by | — a%ﬂ 0 a[f} 0
by 0 — a?} 0 aéﬂ
al| o 0 0o 5
al o BT w0
a| o o 0 bl
a\ o0 »ro o

rank 4 off A.
Case (ii): The map d is

ag 0
a 75[1}
b | @
Qo 0
a1 pl2l
b —a?
d 0

[ —adl
0 GodV
—a 0
_pl2] —da!”
0 —da[[f}
(1%2} 0
0 aglal? —alle)

a (ag : @), while the
b1>m = (b[] : b1>[2} Thus dg has

The first 6 rows have rank 3 unless (@od : @yd : b))l = (dag : da, : b)!?.

On the other hand, the 3rd, 6th and 7th rows have rank 3 unless

(@ : @) = (ag : a1)?. Thus dy has rank 3 off A,
Case (iii): The map dy is

ag 0

ay _5[1}

[ 0

a pl2
_J1

b ag [}2}

b | —a;

d;

do

dy,

5[1} _ dg}

0

—pl2

0

_gll

o2
2
ol
0
0

—dy’ —dl)!
1 1
d[g} . dLL
dy
_ d?}
0 0 ay]
_a[[]g] : agu
a? 0 0
2
ol
o a? o

a)

n—1
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The last n + 2 rows have rank n + 2 unless
(50 :61)[” = ((10 . al)m.

In that case, the last n+ 2 rows have rank n and the first 4 rows, when
restricted to the kernel of the last n + 2 rows, have rank 2 unless

(apdy @ - -+ apd, : ard, :E)M = (dyag : -+ : dpag : dyay b)m

Thus ds has rank n + 2 off A.
Case (iv): The map dy is

by [ fell 0 a0
b | 0 a.! 0 —el
bo —agﬂ 0 a[lﬂ 0
el 0 - fma?} 0 agﬂ
ag —Eg” 0 0 PE”
ay 0 —f 6[1” EE} 0
e | FIb2 0 V-
a|l o B 0
f €9 b[[]ﬂ —e (1,22} 0 0

The first 8 rows have rank 4 unless
(feg:a)" = (ag:a)? and  (by: fe)V = (by : b))F  (c.f. Case (i)).

On the other hand, omitting the 4th and 7th rows gives a martix with
rank 4 unless

(5161 :5062 : f@]@g)[” = (6](],] : €2b0 : 6](],0)[2}.

Thus dy has rank 4 off A.
Case (v): The map ds is

a [/ O o 10— o
a|l 0 = o0 0 o
bo| el 0 0 0 o —f"
[ o - AT o 0
ol o Y0 —f" o 0
a| =l 0 0 o 1 o
e 0 —(J,[IQ} (]%2}

e b2 0 =l

€2 —022} cgﬂ 0

fi 0 *(Jg} a?}
f> 0 g

f —o &0
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The first 6 rows have rank 5, while the other two 3 x 3 blocks have
rank 2. Thus ds has rank 6 unless

(exfofs: fieafs : f1f2€3)m = (a1by : agby (llbo)m
(f1€2€3 e faes 6162.103)[1} = (aobo taphy aobl>m

But this only happens on A.

9. CONCLUDING REMARKS

1) Following J. Rickard [Ri], one should extend the notion of a tilt-
ing sheaf, to that of a tilting complex in order to allow more general
equivalences between D(Oy-mod) and D?(mod-A).

Definition 9.1. An object Q € DP(A, Ox-mod) is a two-sided tilting
complez with inverse Q € D?(Oyx, A-mod) if and only if

L ~
i) RI(Q®yx Q) = A in DP(A, A-mod)
~ L
11) Q®A = OA in Db(OXxx—mOd).
Since X is smooth, we may assume that €2 and Q are complexes of

L
locally-free sheaves, so that we may replace ® x by ®x. We may then
also assume, without loss of generality, that Q = QY. The following
proposition is immediate.

Proposition 9.2. If Q is a two-sided locally-free tilting complex with
locally-free inverse ), then

L
—®49Q:DP(mod-A) — DP(Ox-mod)

and
RI(— ®y Q) : D’(Oy-mod) — D"(mod-A)

are mutually inverse equivalences of triangulated categories.

2) It is natural to ask what is the property of the surfaces considered
in this paper, that enables them to have a tilting bundle. One feature
they all share is that they are all toric varieties. This feature is also
shared by P", but not by some of the other examples such as the flag
varieties, on which Kapranov has constructed tilting bundles. However,
for the latter examples the summands of the tilting bundle are not all
line bundles, whereas for the toric varieties they are. A. Schofield has
also described a tilting bundle on P? blown up at 4 general points. This
surface is not a toric, and indeed the tilting bundle has a summand
which is not a line bundle.

These considerations lead us to the following:

Congecture 9.3. Let X be a smooth complete toric variety. Then X
has a tilting bundle whose summands are line bundles.

Pursuing the idea, one might optimistically go as far as:
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Congecture 9.4. Let X be a smooth complete variety that can be writ-
ten as the geometric quotient of a (Zariski) open subset of a vector
space by the linear action of a reductive group. Then X has a tilting
bundle.
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