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Introduction

The primary aim of this thesis is to describe a small piece of an expanding story about geom-
etry in four dimensions, which brings together ideas from both mathematical physics and algebraic
geometry. From physics comes a special class of soliton-type solutions to the Euclidean Yang-Mills
equations. These ‘instantons’ are the vacuum (i.e. minimum energy) solutions of the equations. In
algebraic geometry, one studies holomorphic vector bundles over algebraic varieties. It is natural to
try to construct moduli spaces of such bundles and, in doing so, one is lead to the consideration of

bundles which are stable, in a suitable sense.

The physics is related to differential geometry because the Yang-Mills equations and the in-
stanton condition can be interpreted, over any Riemannian 4-manifold, as curvature conditions on a
unitary connection on a vector bundle. Indeed, they can be so interpreted in all dimensions, but they
are particularly natural in four dimensions, where they depend only on the conformal class of the
Riemannian metric and the instanton condition is equivalent to the self-duality or anti-self-duality
condition. It is by studying the moduli spaces of such instantons that Donaldson has proved some

striking new results on the differential topology of 4-manifolds (see [D4]).

The link with algebraic geometry is provided by the fact that, while a connection is determined a
covariant derivative V, a holomorphic structure is determined by a 8 operator, which is, in a suitable
sense, half the covariant derivative. Over a 4-manifold carrying compatible complex and Riemannian
structures, the anti-self-duality condition on V includes the condition that the associated & operator
defines a holomorphic structure. It is then natural to ask which holomorphic structures are associated
to anti-self-dual instantons. More precisely, since the notion of equivalence for instantons is stronger
than that for holomorphic bundles, we can ask about the map h : Ml — MH from the instanton
moduli space (on a fixed topological vector bundle) to the corresponding holomorphic bundle moduli
space, induced by the association V — 8. It is a special case of a conjecture of Hitchin and Kobayashi
that, over a compact complex surface, h should be a bijection, when MH is taken to be the moduli
space of (Mumford-Takemoto) stable holomorphic bundles. This was proved by Donaldson [D3]
for projective algebraic surfaces, by Uhlenbeck & Yau [UY] for general Kihler manifolds and by
Buchdahl [Bu3] for arbitrary surfaces, equipped with a Gauduchon metric (88w = 0). It is well
known that, in the presence of a hermitian structure on the vector bundle, 8 determines V by the
requirement that it be compatible (i.e. has 8 as one half) and unitary. Thus, the Hitchin-Kobayashi
conjecture can be interpreted as saying that a holomorphic structure is stable if and only if it admits
a hermitian structure which determines an anti-self-dual instanton connection. Furthermore, when

such a hermitian structure exists, it is unique.

Another version of the Hitchin-Kobayashi conjecture, also proved by Donaldson [D1], is for
the (non-compact) affine plane C? with, as a Kahler metric, the flat Euclidean metric. Here the
result is basically the same as the one just stated for a compact surface, but with two differences.

Firstly, the condition that the holomorphic bundle be stable is replaced by the requirement that



it has associated to it an extension to CP?, which is trivial when restricted to the line added in
compactifing C%. Secondly, the hermitian structure that determines an instanton connection is only
unique once it is specified at infinity. These two differences are handled simultaneously by taking
MI to be the moduli space of instantons on S*(= R* U {o0}), with a unitary framing at co, while
MH is the moduli space of holomorphic bundles on CP?(= C? U £ ), with a holomorphic framing
along £o. Then, h : Ml — MH is a bijection, as before.

In this thesis, we shall prove a second example of this type of non-compact Hitchin-Kobayashi
correspondence. In this case it will be over C2, the affine plane blown up at the origin. This carries
a complete conformally anti-self-dual Kihler metric, which has, as a conformal compactification,
the Fubini-Study metric on the oppositely oriented projective plane TP’ =C2u {co0}. The smallest
complex compactification is the first Hirzebruch surface ! = €2 U £o,. Thus, the main result that

we shall prove is

THEOREM. If Ml is the moduli space of anti-self-dual instantons, framed at oo, on a fixed hermitian
vector bundle £ over CP- (with ¢1(€) = 0) and MH is the moduli space of holomorphic structures
on the pullback of € to ¥, framed along £, then the canonical map h : Ml — MH is a bijection.

To describe MI, we use the Euclidean version of Penrose’s twistor theory, which, in general,
converts solutions of differential equations into holomorphic objects. In our case, this relies on the
fact that the Fubini-Study metric on TP is conformally anti-self-dual and, further, has a complex
algebraic twistor space, the flag manifold F = F(C®). The Ward correspondence [Wa] is used to
describe instantons on TP~ in terms of holomorphic bundles on F and the map h : Ml — MH is
induced by restriction to a copy of X! sitting as a hypersurface in F. The relevant moduli spaces of
holomorphic bundles over F and ! are described using monads in special canonical forms determined
by certain linear algebra data. The equivalence of the two spaces follows from a general equivalence

between symplectic and algebraic quotients.

The fact that this version of the Hitchin-Kobayashi correspondence holds for a second non-
compact Kihler surface gives us the hope of generalising it much further. Two particular families
of non-compact surfaces which could also be studied, using some of the techiniques employed in this
work, are the total spaces of Op:(—n) and the blow-ups of C2 in n points, both of which have C2 as
the n =1 case. LeBrun has recently shown that the former family admits conformally anti-self-dual
Kihler metrics [LeB1] and that the latter family does also for n = 2,3 [LeB2]. An intriguing
feature of the above proof is that the method of proving the compact version of the correspondence
is essentially an infinite dimensional version of the same symplectic/algebraic equivalence. The
suggestion is that the non-compact version of the Hitchin-Kobayashi correspondence should be able
to be formulated and proved, using analytic techniques, over a large class of non-compact surfaces
and that the tranformation into linear algebra data is a sort of Nahm transform which works for a
special class of surfaces and preserves the geometric form of the correspondence.

A second interesting feature of the Hitchin-Kobayashi correspondence over, say, a projective
algebraic (hence Kéhler) surface is that the two moduli spaces have, a priori, quite different fea-

tures. In particular, Ml has a Riemannian metric (induced from the L? metric on the space of all



connections) and a natural compactification in a space of ‘ideal instantons’. On the other hand, MH
has a complex algebraic structure and a natural compactification in the space of torsion-free sheaves.
The relationship between these features is, firstly, that the Riemannian and complex structures are
compatible and actually give the moduli space a Kéahler structure (as is true over non-algebraic
Kahler surfaces as well [It]). Secondly, Maruyama [Ma] has shown, at least for rational surfaces,
that one can find a smaller algebraic compactification by taking universal extensions of sheaves and

that this gives the same space as the ideal instanton compactification.

In terms of the explicit linear algebra data descriptions of the moduli spaces, we shall show
that similar results hold for the moduli spaces MI and MH over C2? and C2. Thus, we shall see
that the moduli spaces are complex algebraic Kahler manifolds and that they have completions
— not compactifications, since the underlying manifold is not compact — in both the metric and
algebraic sense, which are identical and can be interpreted in terms of ideal instantons. We note
that the Kahler metric we construct is not necessarily the same as the L? metric, but that there are

indications that it in fact is.

Finally, we shall show that there is an explicit algebraic map from the completed moduli space
over C? to the completed moduli space over C%, which should be interpreted as the direct image
map. We formulate the conjecture that this map is a blow-up and verify this for the simplest moduli
spaces (for bundles with ¢,(€) = 1). This conjecture is a local paradigm for a general conjecture,
due to Peter Kronheimer, that the completed moduli space of instantons/holomorphic bundles over
a blown-up compact complex surface should be the blow-up of the corresponding moduli space over

the original surface.

The layout of the material is as follows. In §1, we set the scene and introduce the two com-
pactifications of C?: the complex one, X!, and the conformal one, ffz, along with its twistor space
F. We also discuss the use of moment maps and the notion of analytic stability, which provide
the key ingredients in proving the main correspondence theorem. In §2, we describe the method,
introduced by Horrocks [Ho], of using monads to classify holomorphic bundles and we show how
they reflect the jumping behaviour of these bundles. In §3, we quote Buchdahl’s monad description
[Bu1l] of the holomorphic bundles on F which correspond to instantons on tT’z, and derive a similar
description of holomorphic bundles on Z!. We show that both these monad descriptions can be
reduced to give a description of the moduli spaces of instantons and holomorphic bundles on €? as
quotients of two closely related spaces of linear maps. We also show that this linear algebra data,
describing the holomorphic bundles, has a natural cohomological interpretation. In §4, we show how
these descriptions of the moduli spaces relate to the general theory of analytic stability and moment
maps introduced earlier. We are thus able to prove the Hitchin-Kobayashi correspondence over C2
as a particular case of the equivalence of algebraic and symplectic quotients and also provide the
moduli space with the structure of a Kéhler manifold. In §5, we describe the metric and algebraic
completions of the moduli spaces over C2 and C2, showing that they are the same and have an ‘ideal
instanton’ interpretation. In §6, we describe the ‘direct image’ map between the moduli spaces and

verify the conjecture that it is a blow-up in the case of the index one moduli spaces.



1 Basic Material

1.1 Geometry in Four Dimensions

In two real dimensions Riemannian geometry and complex geometry are very closely related.
In fact, having a complex structure on a (real) surface is the same as having a conformal structure
and an orientation. In higher dimensions this is no longer the case, but there are still some strong
links, which give four dimensional geometry a special flavour, as we shall now describe. For a more

detailed exposition, see [AHS],[Sa].

Let M, g be an oriented Riemannian 4-manifold. One important feature of four dimensions is
that the Hodge star operator acts on AZ(M), the middle bundle in the de Rham complex, as an
involution, i.e. *? =1, and thus defines a splitting A%(M) = A% (M) @ A% (M). As A*(M) is the
bundle associated to the adjoint representation of SO(4), this fact can also be understood in terms
of the splitting s0(4) 2 su(2) @ su(2), which is a phenomenon unique to four dimensions, i.e. so(n)

is indecomposable for all other n.

One immediate consequence of this splitting is that the Riemannian curvature of M, which is
a section of S2(A2?(M)), can be split up as

_ By By
R_(R.,._ R__

In this decomposition, Ry_ can be identified with the trace-free Ricci curvature and both tr Ry,
and tr R__ with the scalar curvature. The trace free parts of R, and R__ make up the Weyl
curvature W. In particular, this shows how the Weyl curvature splits (W = W, + W_) in four

dimensions, which does not happen in higher dimensions.

Now consider the space of possible complex structures J on TM which preserve the metric and
are compatible with the orientation. We associate to each J a two-form w(+,*) = g(*, J*) and this
identifies the bundle of compatible complex structures Z(M) with the sphere bundle in A% (M). The
fibres of Z(M) are naturally copies of the Riemann sphere and, at a point in a fibre, the horizontal
subspace, defined using the Levi-Civita connection on A2 (M), has a tautological complex structure.

Thus we get an almost complex structure on Z(M), the twistor space of M.

If one is now allowed to conformally rescale the metric g, then the above story does not change
very much. The Hodge star operator is conformally invariant in the middle dimension and so the
decomposition A? = A_z‘_ @ A? remains the same. The compatible complex structures remain the
same, but we now see that Z(M) should be more naturally identified with the set of rays from
the origin in AZ. The almost complex structure on Z(M) is also conformally invariant and the
obstruction to its integrability is, in fact, given simply by W, . Thus a Riemannian manifold which
is conformally anti-self-dual, i.e. has W, = 0, has a twistor space which is a three dimensional

complex manifold. The twistor space also has a real structure, i.e. an anti-holomorphic involution,
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which is given in each fibre by taking any complex structure J to its conjugate structure —J.

Geometrically, this is the antipodal map on the Riemann sphere.

The twistor space is of most use when it is actually an algebraic variety. However, Hitchin [Hil]
has shown that the only compact manifolds with projective algebraic (or, even, Kahler) twistor spaces

are S¢ and TP, whose twistor spaces are CP? and the flag manifold F(C?) respectively.

1.2 Instantons and the Ward Correspondence

The special features mentioned in the previous section also give Yang-Mills theory a special

flavour in four dimensions (see [At] for a fuller discussion).

Suppose that £ is a hermitian vector bundle over a compact Riemannian (or conformal) four-
manifold M and that £ has a unitary connection (or gauge potential) V. The curvature of the
connection (or gauge field) F' is a two-form with values in the endomorphism bundle of £, i.e.
F € A*(M) ® End(€), and thus we can split it into two components F, and F_, determined by the
splitting of A2(M). The total energy of the field F is given by the Yang-Mills action

YM(F) = /M 1P| dy = /M(||F+||2 + IVF= ) g

where we can also write the Lagrangian ||F||?du = — tr(F A #F). The Euler-Lagrange equations for
this system are the Yang-Mills equations: V A *F = 0. The conformal invariance of the Hodge star

on A2 shows that the Yang-Mills equations are conformally invariant in four dimensions.

The quantity
[ uEam) = [ (F_IF - 1Fs 1) du
M M

is a topological invariant of the bundle £ and so it is constant on the space of all connections on
E. This constant is 872k, where k is the characteristic number c; — 3¢. Thus we see that the
Yang-Mills action is minimised on the set of connections for which ¥y = 0 or F_ = 0, depending
on whether k > 0 or k < 0. Such connections are called instantons. The constant k is the indez (or
topological charge) of the instanton and the total energy of the instanton is then 8x%|k|. When the
distinction needs to be made, self-dual instantons are those with xF = F, i.e. F_ =0, and anti-
self-dual instantons are those with *F = —F, i.e. F; = 0. The Bianchi identity VA F = 0 shows
directly that instantons satisfy the Yang-Mills equations, though of course we know they must, being

minima of the Yang-Mills action.

Notice that, as defined above, it is the anti-self-dual instantons that have positive index. This
may be in conflict with some definitions elsewhere. In this thesis, we shall be considering mostly
anti-self-dual instantons and therefore the term ‘instanton’ will be taken to refer to these, if not
otherwise qualified. We shall also restrict our attention to bundles with vanishing first Chern class
and thus the index k will be equal to the second Chern number ¢;. The notions of self-duality and
anti-self-duality can be interchanged by reversing the orientation of the base manifold. However,

this is often not an ‘allowed symmetry’, because the base manifold may have a preferred orientation.
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This is the case for a complex manifold and over such a base manifold it is specifically the anti-self-
dual instantons which are of interest, because of their relationship to holomorphic bundles, as we

now describe.

If M is a complex manifold, then the algebra of complex differential forms is bigraded — the
subspace of forms of bitype (p, q) being generated by simple forms fdz;, ...dz; dz;, ...dz;,. Thus,

A(M;C) = P AP9(M).
ptg=r
Writing Q7 (€) for the space of smooth sections of the bundle A” ® £, a connection on £ is identified
with a covariant derivative V : 20(€) — Q(€), and from this we can define an anti-holomorphic
derivative 8 = V(%1) : Q%(€) — QO1(€). Just as the covariant derivative extends to all Q" (€) and
its curvature is given by V2, so d extends to all Q?9(€ ) and is integrable if and only if 3’ = 0. Under
the complex structure, A%(M;C) splits as A>? @ A%2 @ Al! and, if M is a hermitian manifold, i.e.
has a compatible Riemannian structure, we get a further splitting Al! = (w) @ Aé’l, where A(I,'1 is
the bundle of 1,1-forms orthogonal to w. This decomposition is related to the self-dual/anti-self-dual

decomposition by
AL(M;C) =A@ A% @ (w) and AZ(M;C)= Ayt

Thus we see that, if V is an (anti-self-dual) instanton, then 8 = V(1) will be integrable. Indeed,
V is anti-self-dual if and only if it defines an integrable 8 operator with respect to any local almost

complex structure on M compatible with the underlying Riemannian metric.

Now, suppose that M is not complex, but is conformally anti-self-dual, so that the twistor
space Z(M) is a complex manifold. Then, since the fibres of 7 : Z(M) — M precisely give the
compatible complex structures on 7'M, we see that a connection V on € is anti-self-dual if and only
if the pulled-back connection determines a holomorphic structure on € = =* (€). This procedure of
assigning a holomorphic bundle on Z(M) to an instanton on M is called the Ward transform. The
bundle £ is trivial on all fibres and the unitary structure on £ induces a real structure on £, i.e.
an anti-holomorphic involution on € covering the real structure on Z(M). In fact [At;Thm 2.9],
the Ward transform sets up a one-one correspondence between instantons on M and holomorphic
bundles on Z (M) with ‘positive’ real structures. It is this correspondence that makes it possible to
use algebraic geometry techniques to classify instantons on $* [ADHM] and also on TP [Bul]

(the latter paper actually classifies self-dual instantons on CPZ%, which are the same objects).

1.3 The Hitchin-Kobayashi Correspondence

The study of instantons overlaps more directly with algebraic geometry on a much wider class of

four-manifolds, namely, projective algebraic surfaces through the Hitchin-Kobayashi correspondence:



§1.3

THEOREM 1.3.1. [D3] Let M be a projective algebraic surface. An indecomposable holomorphic
bundle € over M with c,(€) = 0 is stable if and only if it admits a compatible anti-self-dual unitary

connection.

The stability condition occuring here is the one introduced by Mumford and Takemoto [Ta],
namely that, if 7 C £ is any subsheaf of £ with torsion-free quotient, then the quantity p(F) =
¢1(F) - [w]/ tk F should be negative, where [w] is the hyperplane class with respect to the projective
embedding, represented in de Rham cohomology by the Kéahler form w of the restriction of the
Fubini-Study metric on projective space. It is also with respect to this restricted metric that the
notion of anti-self-duality is defined. The compatibility condition between a holomorphic structure
8 and a connection V is simply V(%) =3, In fact (e.g. [We;IIL.2]), 8 and the unitary structure
uniquely determine V. This means that, if we fix a unitary structure, then we can make the full
complex gauge group, which acts naturally on the space of 8 operators, act on the space of all
holomorphic connections, i.e. those with curvature F € Q1 (End £). The extra condition for V to
be an instanton is simply F Aw = 0, which can be interpreted as a ‘moment map’ for the action
of the unitary gauge group. Indeed, Donaldson’s proof of Theorem 1.3.1 (see also [D5]) gives an
infinite dimensional analogue of the equivalence of symplectic and complex quotients which we shall

discuss in §1.5.

The first non-compact version of the Hitchin-Kobayashi correspondence was proved over C2
with the flat Euclidean metric — also by Donaldson [D1]. An instanton on C? (or R?) is an anti-
self-dual connection which has finite total energy. The appropriate notion of equivalence is given by
the action of the group of gauge transformations (sections of GL(E)) which tend to the identity at
infinity. The moduli space MI(C?; r, k) of instantons on C?, of rank » and index k (which is defined
to be the total energy divided by 87n?) is the quotient of the space of all such instantons by the
gauge group just described. The finite action condition means that we can extend an instanton on
C? to one on the conformal compactification S%, and, furthermore, the gauge transformations extend
to ones on S* which are the identity at co (the point added in compactifying). Thus we see that
MI(C?;r, k) is canonically identified with the framed moduli space MI(S*, oo;», k) of instantons on
S* together with an identification £, = C”. The index k is the second Chern number of the bundle

over S* and is therefore an integer.

It is not immediately obvious how one should obtain a moduli space of holomorphic bundles
over C2. From the naive point of view, such bundles have no topological invariant one could call the
index, no notion of stability and, in fact, no moduli. However, by analogy with the instantons, which
extend to a conformal compactification of C2, the solution to all these problems is to ask that the
holomorphic bundles extend to the canonical complex compactification CP? and be holomorphically
trivial on the added line £,,. Indeed, we essentially ask that the extension be part of the information
carried by the bundle, by taking as the gauge group only those complex gauge transformations over
C? which tend to the identity at infinity. The second Chern number of the extension provides the

bundles with an index and gives a moduli space which is an open subset of the moduli space of
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stable holomorphic bundles on CP? (see [Ba]). Thus, the moduli space MH(C?; », k) of “stable”
holomorphic bundles on C? with rank » and ¢; = k is identified with the framed moduli space
MH(CP2, £; 7, k) of holomorphic bundles on CP? with rank 7 and ¢z = k, with a given holomorphic
identification of €|, with the trivial bundle with fibre C*.

Now, the Hitchin-Kobayashi correspondence in this case is proved via the Ward correspondence.
If we consider the twistor space Z(S*) = CP2, the complex structure on C* = $* \ {oo} will give a
section of the twistor fibration away from co. The closure of the graph of this section is a hyperplane
in CP3, i.e. a copy of CP2, and contains the whole of the fibre over co, which will be £,,. The Ward
transform of an instanton on S%, when restricted to this hyperplane, gives a holomorphic bundle on
CP? trivial on £. Furthermore, the restriction of this bundle to C? is just the holomorphic part
of the instanton restricted to C2. The framing of the instanton at oo lifts to a trivialisation of the
holomorphic bundle along £,,. Since the unitary gauge group sits inside the complex gauge group,

we get an induced map

h : MI(C?; k) — MH(C?; k)

which can also be interpreted as being induced by restricting holomorphic bundles on CP2 to a
hyperplane. By constructing both moduli spaces explicitly and using a simple direct proof of the
equivalence of symplectic and algebraic quotients, Donaldson shows that h is a bijection, thus demon-

strating the required correspondence.

The method used to prove the correspondence on C? should also be applicable to Ez, since
its conformal compactification is ﬁz, the other compact four-manifold with a projective algebraic
twistor space. The fact that this method does work and yield a Hitchin-Kobayashi correspondence
for C? is the main result that we prove in what follows, the formal statement being given in §4.3.
The precise definitions of the moduli spaces MI(C?; 7, k) and MH(C?;r, k) will be given in the next
section. They are the direct analogues of the instanton and holomorphic bundle moduli spaces on
C? with the added restriction that the underlying vector bundle should have vanishing first Chern

class.

1.4 The Geometric Environment: C2, @z, ! and F

We now describe the various spaces which are associated to the problem we are going to study.

The blow-up of the affine plane at the origin, €2, has a natural complex description as the set
{((21, 22), [21,22]) c Cz X CPI | Z1®p = 2221}

We thus get two projections m : (SN C?, which is the blowing-down map onto the first factor,
i.e. is a bijection except that it maps the whole of one line, the exceptional line E, to 0, and
my : C2 — CP!, which is a fiberation with fibre C and identifies €2 with the total space of the

tautological bundle Op1(—1). The exceptional line E is the zero section, with self-intersection —1.
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The above description also provides a K&hler metric on c? by restriction of the product of the flat
metric on C? and the Fubini-Study metric on CP!. If we write { = z1/22, then this metric is
. _ B d¢d{

4 (L+][¢]12)?

where R is a parameter giving the ‘radius’ of the exceptional line.

ds + dz1d%, + dz2%2,

By analogy with the C? case, we must now find two compactifications of €2: one conformal and
one complex. We first describe the conformal one, using the orientation reversing map

[[l2l?,21,22] ifz#0

C? — CP%: ((21, 22), [21, z2]) {[0, 21, 23] ifz2=0

This map is clearly well defined and injective and its image is CP2 \ {[1, 0, 0]} Furthermore, it is
an isometry with respect to the Fubini-Study metric on CP? and the conformally rescaled metric
(1+ ||:|=||2)—2d.92 on C2. Thus we see that, taking into account the orientation, C2 has a conformal
compactification ﬁz, equipped with the Fubini-Study metric. Now the Fubini-Study metric on CP?
is conformally self-dual ([AHS]) and so TP is conformally anti-self-dual. Thus C? is conformally
anti-self-dual, which we could have seen also by calculating that its scalar curvature is zero and
using the well-known result that a K&ahler metric is anti-self-dual if and only if it has zero scalar
curvature. Thus we can identify the moduli space MI(Ez;r, k) with Ml(@z, oo; 7, k), the moduli
space of instantons on @2, framed at oo, whose underlying vector bundle has rank », ¢; = 0 and
cs = k.

Secondly, we describe the canonical complex compactification. Since C? is the total space of a
line bundle over P!, it is natural to take the associated projective line bundle obtained by adding a
point at infinity in each fibre, i.e. aline £,,. More explicitly, the ‘projectivisation’ of a general vector
bundle £ over X is the projective bundle P(Ox @ £). Thus we see that the complex compactification
of C? is the Hirzebruch surface !, where the general Hirzebruch surface =" is the total space of
the projective line bundle P(Opl @ Op: (—n)). Therefore, essentially by definition, we identify the
holomorphic moduli space MH(E’;T, k) with MH(X1,£,;7, k), the moduli space of holomorphic
bundles on X!, with a trivialisation along £, and whose underlying vector bundle has rank r, ¢; = 0

and ¢; = k.

Finally, we describe the twistor space of TP’ and identify a copy of X! sitting inside it. This
description comes originally from [D2]. The twistor space is the flag manifold F = F(C?) and is
constructed as follows. Let P, = P(C®) and P} = P(C?®*). Then

F={([=],[4]) € P2 x P} | y(z) =X =i = 0}

and thus we have two canonical holomorphic projection maps 7y : F — P, and m : F — P¥, If
we consider C? to be equipped with the standard hermitian inner product (given by an anti-linear
isomorphism C® — C* i ®), then we can define a further ‘projection’, which we shall write as

wz:F— TP’ to emphasize the fact that it is not holomorphic,

Tz : ([z], [y]) — [z]l Nkery
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The fibres of this ‘projection’ are the lines
to = {([=],[4]) € F | é(z) = y(w) =0},

which are clearly preserved by the real structure o : ([z], [y]) — ([4], [2])-

If we now choose co = [0,0,1] € C_Pz, then the hypersurface ! C F with equation ys = 0
contains the whole of £, but otherwise 77 gives a one-one correspondence between ! \ £, and
P\ {00} = C2. The restriction of ; realises X! as a ruled surface over the line ys = 0 in PJ.
The restriction of m; is the blowing down map to P;, with the exceptional divisor E given by the
equations 2; = 0 and 2, = 0. We also identify two more divisors which are projective lines: H = L

and F, which is a typical fibre of the projection x,.

The above information is summarised in the following diagram:

The line bundles on F are given by

OF (P, @) = 7 O, () ® 73 Op(q).
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The coordinate functions #;,25,23 can be interpreted as a basis for the space of sections H°(Op, (1))
and thus of H° (0.: (1, 0)) Similarly, the dual coordinate functions y;,y2,ys can be thought of as a
basis for H?(Og(0,1)).

The line bundles on T! are given by the restrictions of O (p,g), and thus H°(Og:(1,0)) also
has basis #1,22,#3, while H°(Og1(0,1)) has basis y1,52. The linear system |02:(0,1)| consists of
the fibres of 73, e.g. F, and the linear system Iozl(l: O)I consists of the inverse images of lines in
P2, e.g. H. When the line in P; passes through [0, 0, 1], its inverse image consists of the exceptional
fibre and one fibre of w2, demonstrating that, up to linear equivalence, H = F' + E. We can also
easily write down the various intersection relationships of these divisors:

H*=1 F2=0 E2=-1
H.-F=1 H.-E=0 E.-F=1
We observe that F € Ing(l,—1)| and that there is indeed a section 8 = z2/y1 = —21/y2 (well
defined because z1y; + 22y, = 0 on X!) which vanishes on E. Since F is exceptional, we must
have H%(Og1(1,—1)) = (s). Finally, we note that the canonical bundle on P; x P3 is O(—3,—3)
and so the adjunction formula tells us that the canonical bundles of F and X! are Op (-2, —2) and
Oxz:1(—2, —1) respectively.

1.5 Moment Maps and Analytic Stability

We now present a short discussion of holomorphic actions of reductive groups on Hodge mani-
folds. We describe the réle played by moment maps for such actions and the relationship with the
analytic notion of stability. In what follows, X will denote a Hodge manifold. That is to say that X
is a Kahler manifold (with Kéhler form w) over which there is a hermitian line bundle L equipped
with a unitary connection whose curvature is —iw. Since —iw is a 1,1-form, L is a holomorphic
bundle and, as usual, the holomorphic and hermitian structures together determine the connection.
Thus, given X (as just a complex manifold) and the holomorphic line bundle L, the Kéhler metric
is determined by the hermitian structure on L, which we can think of as a global Kahler potential.
Locally, we can pick a non-zero section f of I and define the familiar local K#hler potential as the
function ¢ = log||f||* which gives w = i88¢.

Now let G be a compact Lie group with complexification G¢c. The complex Lie group Gg¢ is
then reductive and has Lie algebra g = g @ ig, where g is the Lie algebra of G. As a real manifold,
Gc 2 TG = G x g, via the map G x g — G¢ : (9, 4) — ge*4. Thus we can identify P = G¢ /G
with g. In fact, since P is a symmetric space, while g is a vector space, it would be more natural to
identify g with the tangent space TpP at the point 0 € P corresponding to the coset G itself. The

map A — Ge'4 is then the metric exponential map.

In this section, we shall be considering specifically actions of G¢ on X by holomorphic transfor-
mations, for which G acts by isometries. Thus, G acts symplectically with respect to w. A moment
map for such an action of G is amap u: X — g*, which is equivariant with respect to the co-adjoint

action and satisfies
du(A) = ilw (1.5.1)

11
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where i; denotes interior multiplication by the vector field A which gives the infinitesimal action of
A € g. If we have a moment map g, we can lift each vector field A on X to a vector field on the
total space of L

A0y = h(A) — ipa(A),

where ¢ € L, and h(A) is the horizontal lift of A determined by the connection on L. Under
mild topological assumptions, this infinitesimal action of g will generate a linear unitary action of
G on L, covering the original G-action on X. This can then be extended to a linear G¢-action
which covers the G¢-action on X. Such an action of G¢ on L, for which G acts unitarily, will be
called a linearisation of the G¢-action on X. Note that this is slightly stronger than in the general

holomorphic or algebraic case, where the extra condition on the G-action is inappropriate.

As a converse to the above, if we start with a linearisation of the G¢-action on X, then we can

define a moment map from it as follows. For each point z € X, define the function

llg - <1l
¢t

where ( is a non-zero point in the fibre L, and the norm is induced by the hermitian inner product

My, :Gc —+R:g+—log

on L. This function is clearly independent of ¢ and constant on cosets of G, so it induces a function
my, : P — R. Given the earlier identification, we can define a map p: X — g* by p, = dm,(0).
The map g is then a moment map for the G-action and, by the earlier procedure, gives back the
initial linearisation. We can further consider the second derivative D?*m,(0), which we take to be
the quadratic form on g which assigns to an element A € g = Tp P the second derivative of m, along
the geodesic through 0 with tangent vector A. This is given by A — 2||4,||? and, hence, if 2 has
no infinitesimal stabiliser (i.e. {4 € g¢ | Az = 0} = {0}), then m, will be strictly convex at 0 € P.
Conversely, if m, is strictly convex at 0, it cannot be constant on any geodesic through 0 and so =
can have no infinitesimal stabiliser. Note that, if m, is strictly convex at 0, then my, will also be,

for any h € G¢, and hence m, will be strictly convex on the whole of P.

Now, when one has a moment map u for a free symplectic G-action on any symplectic manifold
X, one can define the Marsden-Weinstein reduction X = u~1(0)/G, which is again a symplectic
manifold — also called the symplectic quotient of X by G. We shall now describe how, on a Hodge
manifold with a holomorphic G¢-action as above, there is a sufficiently nice subset for which the
symplectic quotient is equal to the set-theoretic quotient under the Gg¢-action and is (almost) a

smooth Kahler manifold. The precise notion of “sufficiently nice” is given by analytic stability.

DerINITION 1.5.1. A point # € X is analytically stable, with respect to a linearised G¢-action, if,

given any non-zero € L., the function g + ||g - {|| is proper, i.e.

[lg-¢|| > o0 as g — oo in Ge.

Clearly, if # is analytically stable, then so is g - z for any g € G¢, so that analytic stability is a
property of G¢ orbits in X.

12
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PROPOSITION 1.5.2. An orbit G¢ - C X is analytically stable if and only if it has no infinitesimal
stabilisers and it contains a point on which u = 0. Furthermore, if it does contain such a point, then

the set G¢ -z N pu~1(0) will consist of a single G orbit.

Proor. Consider the function m, : P — R as defined above. Since G is compact, # is analytically
stable if and only if m, is proper. But, if m, is proper, then there can be no geodesic through 0
along which it is constant, so # can have no infinitesimal stabiliser. Hence, m, is a strictly convex
proper function and has precisely one critical point, which is a minimum. Now, the critical points

of my correspond to the G orbits on which g = 0, and thus most of the proposition is proved.

To show the converse, note that if m, is strictly convex and has a critical point, then this must

be a minimum and a strictly convex function with & minimum is necessarily proper. O

THEOREM 1.5.3. Let X4, be the setl of analytically stable poinis of X with respect to a linearised

G -action with moment map . Then
X.,/Gc = X., Np~1(0)/G
and, if the Gg-action on X,, is actually free, the quotient is a smooth Kaihler manifold.

ProoF. The two quotients are equivalent by Proposition 1.5.2 and, in general, smooth when the
action is free. The compatibility of the complex and Riemannian structures on the quotient follows
from the moment map condition (1.5.1), which ensures that the subspace of T, X, tangent to p~1(0)
and orthogonal to G - 2, is a complex subspace complementary to G¢ - . This is the subspace on
which the tangent space to the quotient is modelled. For the existence of a Hodge structure on the

Marsden-Weinstein reduction in this case see e.g. [HKLR, §3]). a

In order to be able to identify analytically stable points, it is useful to have the following analytic
version of Hilbert’s criterion (¢f. [Mu,Thm2.1]).

LEMMA 1.5.4. A point z € X is analytically stable with respect to a linearised G¢-action if and only
if it is analytically stable for the resiricted action of all real one parameter subgroups A: R — G¢ :

t— et for A cig.

ProoF. This lemma is equivalent to the statement that m, : P — R is proper if and only if it is
proper when restricted to all geodesics through 0. The “only if” part is immediate. The “f” part
follows from the fact that a strictly convex function on P is proper if its values on some sphere,
centered at 0, are all greater than its value at 0. The compactness of the set of geodesics through
0, together with the fact that m, is proper when restricted to all of these, implies that we can find
such a sphere. O

REMARK 1.5.5. Kempf & Ness [KN] have shown that the notion of analytic stability coincides
with the usual notion of stability in geometric invariant theory [Mu] when X is a projective variety,

equipped with the standard Kéhler metric coming from the restriction of the Fubini-Study metric
on CPY,

13



2 Monads

In this chapter we shall introduce monads and explain their use in describing families of holo-
morphic vector bundles. Monads were first introduced by Horrocks [Ho] and further developed by
Barth and Hulek [BH,Ba)] as tools in the classification of vector bundles on projective space (in
particular on CP2). They were combined with twistor methods by Atiyah et al [ADHM] to give a

classification of instantons on R%. For a more detailed discussion of monads, see [0SS].

2.1 Introduction to Monads

A monad is a complex of holomorphic vector bundles
0o—utvE2w_o

which is exact at & and W, so that it has cohomology only in the middle position and thus defines a
vector bundle £ = ker B/im A. Put another way, a monad is a short two-sided resolution of a vector

bundle.

The power of monads lies in the fact that we can describe whole families of vector bundles (e.g.
all stable bundles on CP? with fixed rank and Chern classes) using monads in which the terms U,y
and W remain fixed and only the maps .A and B vary. Furthermore, we can hope to find &,V and W
of a particularly simple form, e.g. direct sums of line bundles. We will then have a fairly concrete
description of the spaces Hom(U,V) and Hom(V,W). The family of vector bundles can then be

described as a subset of
{(A, B) € Hom(U, V) x Hom(V,W) | BeA =0, Ais injective and B is surjective }

modulo a notion of equivalence which we now describe.

A map from one monad M : i{ — Y — W to another M' : U’ — V' — W' is simply a map of
complexes, i.e. a triple (¢, %, x) making the following diagram commute

u A v 22 ow

o bk

u' _-Ai. Y _BL' w!

Thus the category of monads is a full subcategory of the category of all (bounded) complexes. Since
A and A’ are injective and B and B’ are surjective, ¢ and x are uniquely determined by %, as long

as 1t in turn satisfies

Y(imA) CimA' and (kerB) C ker B'.

Then 9 induces a map H(y) : £ — £'. The process of taking cohomology of a complex is, in
general, functorial, so that two monads which are isomorphic (in the usual categorical sense) define

isomorphic vector bundles. Therefore, the natural notion of equivalence on the set of monads with

14
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fixed terms U,V and W is given by the action of the group Aut(M) = Aut(U) x Aut(V) x Aut(W),

which will also have a fairly concrete description when U,V and W are direct sums of line bundles.

It is clearly important to know whether all automorphisms of a bundle £ are induced by auto-
morphisms of the monad M defining it, i.e. whether the quotient by Aut(M) necessarily determines
an effective parametrisation. To this end we can ask the slightly more general question: when is the
map H : Hom(M, M') — Hom(E, ') surjective? We should also like to know what its kernel is, at

least in the good case when the map is surjective.

2.2 Some General Properties

In this section, we shall use the following shorthand notation, which was introduced in [Rul].
We shall write (X | Y ) for Hom(X,Y) and (X | Y') for Ext(X,Y), so that °(X | Y) = (X | V).
Further, we shall write |8) : *(X |Y) — {(X | Z) for the natural map induced by 6 : ¥ — Z,
(p: (X |Y) - W |Y) for the map induced by ¢ : W — X and (¢ |6):} (X |Y) =W | Z)
for the map induced by 6 and ¢ simultaneously. Recall that *(s | «) is a bifunctor, contravariant in

the first place and covariant in the second place.

The relationship between a monad and the bundle it defines is conveniently represented by the

display of the monad, which is a commutative diagram of short exact sequences:

0 0
0 » U 2 Kk %N g S0
I
A Ja
0 — U == Q — 0 (2.2.1)

— <
-]
(_.
w,
»

o «— 3
o «— 3

in which X = ket B and @ = coker A.

Suppose we have twomonads M : Y -V — W and M': U' — V' —» W'. We can use the extra
spaces and maps provided by their displays to give a simple description of Hom(M, M') as a subset
of (V| V'). Indeed, for ¥ € (V | V') the condition ¥ (im.A) C im A’ is simply 7 € ker (A | 5 ), while
Y(ker B) C ker B’ if and only if ¢ € ker (i | B'). Thus,

Hom(M, M') =ker (A ]| j3) Nker (is | B') C (V| V').

15
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In addition, by considering the diagram

0 0 0

l l l

0 — (£]|€&) — (K|&) — U[E) -

! Ll
0 — (£1Q) - (K1@) 2 wie) -

l lu:) l

0 = (EIW) - (K|W) — @IW) -

l l l

we can identify Hom(€, £’) with ker({i; |) N ker(|74)) € (K | Q'). Under the above identifications
the map H : Hom(M, M') — Hom(&, £') is the restriction of the map (is | j3): (V | V') = (K | Q")

and, furthermore,

(is | 45) " (Hom(E, £')) = Hom(M, M'). (2.2.2)
We are now in a position to prove

PROPOSITION 2.2,1. Suppose M :U -V - W and M' : U' - V' — W' are two monads defining

vector bundles € and €' respectively. If
Ext'(W, V') = Ext'(V,U") = Ext*(W,U") = 0,
then the map H : Hom(M, M') — Hom(E, £') is onto. If further
Hom(W,V') = Hom(V,U') =0,
then ker(H) can be identified with Ext'(W,U’).
ProoF. The pair of short exact sequences

0=X =2V —oW=0 and 0-U o>V 5 Q —0
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induce the following exact diagram of Hom/Ext groups:

0 0 0

l l l l

0 - WU) - Wp) — W) - wu) -

o~ iy - vy ZEowiey - iy -

| T

0 - (k|uU) - (K[V) 2, (K|Q)y — HEu') -

- Wiy - YWy — Ywe) - W) -

- ) -

The first vanishing conditions in the proposition show that
(ia]32): (VV') - (K| Q')

is onto, in which case (2.2.2) means that H : Hom(M, M') — Hom(&, £') is onto and has the same
kernel as (i3 | j5 ). Given the additional vanishing conditions in the proposition, the above diagram

allows us to identify this kernel with 1(W | U'). O

COROLLARY 2.2.2. Let M : U —V — W be a monad defining a vector bundle £ and suppose that
Ext'(W, V) = Ext'(V,U) = Ext*(W,U) = 0.

Then another monad M' : U — YV — W defines a bundle isomorphic to € if and only if M' is
isomorphic (as a monad) to M.

The natural problem to consider next is that of reversing the above procedure, i.e. of finding
monads of a particular form which define vector bundles with given properties. Although not so
much can be said about this in general, we can make a few simple observations arising from the
monad display (2.2.1).

Firstly, the additivity of the Chern character ch on short exact sequences gives the following

relationship between the topological invariants of 4,V,W and &:

ch(€) = ch(V) — ch(U) — ch(W).

17
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In particular, this means that

tk(€) = tk(V) —tk(U) — k(W) and c1(€) = c1(V) — er(U) — ea(W).

Secondly, we can see that the double extension
0-u-hx 2o i woo (2.2.3)
represents the trivial class in Ext*(W,U). This is a corollary of the following proposition

PROPOSITION 2.2.3. Suppose we are given two ezlensions

0—-uULxiheo (2.2.4)
| JEN Lo JE LWL VYR ) (2.2.5)

Then we can fit them into a completed monad display (2.2.1) if and only if the double eztension
(2.2.3), i.e. their Ezt-product, is trivial in Ext*(W,U). Furthermore, any two ways of completing
the display differ by a natural action of Ext'(W,U).

ProoF. The second sequence (2.2.5) induces a long exact sequence of Ext groups

oo ) Zh @ Uy e () AW U

and & maps the first extension (2.2.4) to the double extension (2.2.3). Thus, it is precisely when the

double extension is trivial that we can find an extension
A Ja
0-U-SYVSQ—-D

in 1(Q | U ) which is mapped to (2.2.4) by (i4 |. This will entail there being a (uniquely determined)

map i3 : X — V such that
0O0—- U — K — & —0

[ Lss Lid
00— U — YV — Q@ — 0

commutes. Finally, setting B = j;°j2 we get the sequence required to complete the display:
0Ky Ewoo.

By this procedure, the completions of the display are identified with a coset of (js | (*{(W |U))
in 1(Q |U), i.e. an affine space carrying a transitive action of 1(W | U). In fact, 1(W | U) acts
naturally on the space of all monads with ends ¥ and W, and the monads which occur in this

particular completed display form one orbit under this action.

Notice that, as one would expect from the symmetry of the proposition, there is a “mirror

image” proof which starts by considering the long exact sequence induced by the first extension

18
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(2.2.4), but which encounters the same obstruction and the same ambiguity as in the proof given

above. O
Observe that the obstruction to completing the display automatically vanishes if Ext? w,u) =
0, which will be the case in practice, because we will be looking for monads which satisfy the

hypotheses of Proposition 2.2.1.
With the help of the two propositions proved above, we have the following general method of

constructing monads for describing families of vector bundles (as used by [At] and [Bul]):
1) Choose suitable bundles & and W for the ends of the monad, which satisfy Ext?(W,U) = 0.
2) Choose suitable extensions 0 = U - X - € —+0and 0 =€ - Q- W — 0.
3) Observe, by Proposition 2.2.3, that the display can be completed, yielding a monad 4 — V —
W.
4) Identify the middle term by cohomological considerations. This is where one requires the “suit-

ability” in (1) and (2) and the special properties of the bundles in the family.
5) Check that Ext!(V,U) = Ext'(W, V) = 0, so that Corollary 2.2.2 holds.

The monads that we shall construct to classify holomorphic bundles on the Hirzebruch surface
! will have U = PU; ® £; and W = @ W; ® L, for vector spaces U; and W; and line bundles
L;, and we shall actually be able to deduce that V is trivial. The construction will be dealt with in

detail in the next chapter.

2.3 Monads and Jumping Behaviour

One important phenomenon that helps in studying holomorphic vector bundles on some al-
gebraic surfaces — particularly rational surfaces and ruled surfaces (c.f. [Brl,Br2]) — is that of
jumping. Suppose we are considering a vector bundle £ on a surface S, and that we have an algebraic
family {L, | p € V} of subvarieties of S, all of which are projective lines. Then c;(€) determines
the topological type of £|r,, which is independent of p, since all the lines are homologous. By

Grotendieck’s classification, we know that €|y is, algebraically, a direct sum of line bundles

rtk €
Elz, = D O, (&),
i=1

where the unordered sequence {d;} is the splitting type of € along L,. The topological considerations
only fix ¥ d; = x(£|1,,(—1)), but we can, in fact, typically expect the splitting type to be constant
(and in some sense minimal) for generic p € V. The lines along which the splitting type is not
generic are called the jumping lines of the bundle £. Now, isomorphic bundles clearly have the same
jumping behaviour and bundles which are direct sums of line bundles clearly have no jumping lines.
Hence, the jumping behaviour of £ in some way measures the extent to which £ is not a direct sum

of line bundles.

We shall mostly be concerned with bundles with ¢;(€) = 0, which are trivial on generic lines.

Triviality of a bundle on a line has the following simple cohomological characterisation.
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LEMMA 2.3.1. A bundle £ on P! is trivial if and only if

H°(g(-1)) = H'(£(-1)) =0.

ProoF. Immediate from the Grotendieck classification and the identity

HO(E(-1)) + H'(E(-1)) =} |dil,

where {d;} is the splitting type of £. d

If we wish to study the jumping behaviour of a bundle defined by a monad, then it is very
convenient for the terms of the monad to be direct sums of line bundles, because then the restrictions
of the monad to the lines of an algebraic family will have essentially constant terms. Another
convenient feature is for the monad to have a trivial middle term, because we then have the following

result.

PROPOSITION 2.3.2. Suppose that £ is a holomorphic vector bundle on P! which is defined by
a monad U — V — W with V trivial. Then there is a naturally induced map ¢ : H* (U(-1)) —
H® (W(—l)), which is an isomorphism if and only if £ is trivial.

ProOF. The monad display, twisted by the tautological bundle Opi(—1), induces, after some

rearrangement, the following exact commuting diagram

0 — EK(-1) — EV(-1)
! !
H(E(-1) = H°(E(-D)

l l

H'(V(-1) — H(Q(-1) — H'@U(-1)) — H'(V(-1)

I l l |

H'(V(-1) — H°(W(-1) — H'(K(-1)) — H'(V(-1))

l l

HU(E(-1) = B'(E(-1)
l l
B(V(-1)) — EYQ-1)) — 0

The triviality of V implies that H?(V(—1)) = 0, for i = 0,1. Hence we can reduce the above diagram

to the single exact sequence
0 — HO(£(~1)) - H (U(-1)) 2> HO(W(-1)) — H(E(-1)) = 0

and the result follows from Lemma 2.3.1. O
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REMARK 2.3.3. If we call a bundle € over P! generic when at least one of H(€£(—1)) and H!(£(-1))
vanishes, then Proposition 2.3.2 can be generalised to say that ¢ has maximal rank if and only if £
is generic. The use of the term generic is justified by the Semicontinuity Theorem for cohomology
[Ha;III.12].
If we are in the special case when U = U @ O(—1) and W = W ® O(1) for vector spaces U and
W then
¢:U Q@ H'(0(-2)) » W H°(0).

Now, H°(O) = C and H!(O(—2)) can be identified with A%(X)*, where X is the two dimensional
vector space such that P! = P(X). We can also identify H°(®(1)) with X*, so that the monad
maps A:U — V and B:V — W can be thought of as elements of X* ® Hom(U,V) and X* ®
Hom(V, W) respectively. Combining these to get an element of X* ® X* ® Hom(U, W), we observe
that the condition BoA = 0 means that this element is alternating in X, i.e. it is an element of
A?(X)* ® Hom(U, W) and, in fact, it is just ¢. Thus we get the following lemma (also proved in
[0SS]):

LEMMA 2.3.4. If [p] and [g] are two (distinct) points on P!, then a bundle £, defined by a monad of
the form

Ue0(-1) -4 veo 2weoQ),
18 trivial if and only if B(p)°A(q) : U —» W is an isomorphism.

PROOF. Since p and q are independent, p A g spans A?(X) and so B(p)-A(q) is essentially ¢. The

lemma then follows from Proposition 2.3.2, O
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3 The Construction of the Moduli Spaces

3.1 Cohomology of Line Bundles over !

Before we proceed with the monad construction, it will be useful to have a ‘cohomology map’
of Pic(X1!), i.e. to know where various cohomology groups of line bundles on 3! vanish and to know

their dimensions in some cases where they do not vanish.

On an algebraic surface the primary tools are the Riemann-Roch formula
x(0(D)) = %D -(D-K)+1+pa
and one instance of Serre duality
H*(O(D)) = H°(O(K — D)).

Here D is any divisor, O(D) is the associated line bundle, K is the canonical divisor and p, is the
arithmetic genus.

As we determined in §1.4, on £! we have O(1,0) = O(H) and O(0,1) = O(F), where H =1,
H.F =1 and F? = 0. Furthermore, K = —2H — F and, since 3! is rational, p, = 0. Hence we

derive the following versions of Riemann-Roch and Serre duality on X1:

x(0(p9)) = %(p+ 1)(p+2g+2) (3.1.1)
h?(O(p,q)) = B*(O(—2 — p,—1 - g)). (3.1.2)

Now we observe that, on any line (i.e. smooth rational curve) in the linear system |O(1,0)|
(resp. IO(O, l)I) the bundle O(p, g) restricts to Op1(p+ q) (resp. Op1(p)). But the set of all lines
in either linear system sweeps out a dense open set in X! and so, when p+¢ < 0 or p < 0, O(p,q)
has no non-zero sections, i.e. H°(O(p,q))=0. In all other cases, H°(O(p, q))# 0, because O(0,1)
and O(1,—1) are effective. Using Serre duality, we can also identify the region in Pic(X'), where
H? (O(p, q)) # 0 and, using the Riemann-Roch formula, we can identify a further region in which
H!(O(p,q)) = 0, for all i. We summarise this information in the following diagram:
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where o denotes a value of (p, g) for which H*(O(p,q))= 0, for all i.

To identify the region ‘H! # 0’, consider the long exact sequence

= H(On(p+q)) - H (0(p—1,9)) - H'(O(p,9)) — H'(On(p+9)) = -+

This allows us to transfer the condition ‘H!(O(p, g)) = 0’ to the left if p+ g < 0 and to the right if
p+q+1>—2. Thus we get the completed ‘cohomology map’

u L] " H0¢0
p—,

H' #0

To show that H?! (O(p, q)) is indeed non-zero throughout the labelled regions, we need to use

the structure sequence for F to show that
HC (O(p, q)) =~ O (O(p +q, 0)) for ¢ < 0,

and then Riemann-Roch to calculate the dimension of H1.

In fact the information we shall need from the above diagram is just the vanishing information

and the fact that k! (O(0,—2)) = 1, which follows from (3.1.1).

3.2 Preliminary Results

In this section we prove two results which are important in determining the form of the monads
which we shall construct in the following section. The first concerns the cohomology groups which
are the basic building blocks of the monad; the second gives a criterion for determining the triviality

of a holomorphic vector bundle over 1.

PROPOSITION 3.2.1. Let £ be a holomorphic vector bundle over £ of rank v, with ¢ (€) = 0,
c2(€) =k and such that €|y, is trivial. Then

e = {3 120

k oifi=1

for (p,q) = (-2,0), (-1,0), (-1,-1)or (0,-1).



§3.3

PRroOF. First observe that O(1,0) and O(0, 1) both restrict to O(1) on £o. Therefore, the fact that
Ele,, is trivial implies that, when p+ ¢ < 0, any section of £(p, g) vanishes along £o. But the set
{D € |0(1,0)| : £|p is trivial} is open and the set of points on some such D is open in !, Hence

a section of £(p, g) must vanish on a non-empty open set and so must be identically zero. Thus
HO(E(p,q))=0 forp+4g<0.

By Serre duality—because £* is also trivial on £,—we get
Hz(E(p,q)):O forp+q> -3.

Finally, the Hirzebruch-Riemann-Roch theorem [Ha;A4] combined with (3.1.1) gives

1
x(E(p9) = 5+ 1)(p+ 20+ 2)r —F,
which implies that h'(€(p,q)) = k for the values of (p,¢) under consideration. O

LEMMA 3.2.2. Let V be a holomorphic vector bundle over T! with ¢1(V) =0, cz2(V) = 0 and such
that V|, s trivial. Then V is trivial.

ProoF. We extend the triviality of V on £, to I by considering the sequence
0-V(-1,0) =YV > V|, —0
and its cohomology sequence
H°(V(-1,0)) = H°(V) = H°(V|.) — H'(V(-1,0)) — ---

Proposition 3.2.1 tells us that H°(V(-1, 0)) = H*(V(-1, 0)) = 0 and thus that the restriction map
on sections induces an isomorphism H°(V) = H°(V|,_). Now h°(V|._ ) =1k V), so picking a basis
for H°(V) determines a map 8 : (Og:1)"*Y — V. But ¢;(V) = 0 and X! is regular, so det(V) = Oxa
and therefore det(3) is constant. Now f is already an isomorphism over £, because V|,,, is trivial,

so @ is actually an isomorphism over the whole of £, as required. O

REMARK 3.2.3. In addition to being useful later on, this lemma shows us that the moduli space
MH(E’; 0,7) consists of a single point, representing the trivial bundle, and so is the same as the
moduli space MI(EZ; 0,7) which consists of a single point, representing the trivial connection (the

only flat connection).
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3.3 Construction of Monads

We start this section by quoting Buchdahl’s construction of monads on the flag manifold F which
classify self-dual instantons on CP2, or equivalently anti-self-dual instantons on TP°. We then give
a compatible construction of monads on X! which is the key to proving our main correspondence

theorem.

THEOREM 3.3.1. Let £ be a holomorphic vector bundle over F of rank r, which is the Ward transform

of an (anti-self-dual) instanton on TP of indez k. Then there ezists a monad
u-tv 2w,
with cohomology €, in which V is a trivial bundle of rank 4k + »,

1 1
I,{:@U,-@ﬂ,' and W=@Wi®£?,
i=0

=0
where U; and W, are complez vector spaces of dimension k and the line bundles Ly and L, are
Of(-1,0) and Op(0,—1) respectively.
ProoF. [Bul]

THEOREM 3.3.2. Let £ be a holomorphic vector bundle over B! of rank », with ¢1(£) =0, c2(E) =k
and such that €|, 1is trivial. Then there exists a monad
uty EZw,

with cohomology £, in which V is a trivial bundle of rank 4k + r,

1 1

U=@PuieL; ad W=FPwWecr,

=0 i=0

where U; and W; are complez vector spaces of dimension k and the line bundles Lo and L1 are

Osg1(—-1,0) and Og1(0,—1) respectively.

ProoF. We proceed in the standard manner described in §2.2 to construct the monad display:
0 0

l

0 - U — K — — 0
[ !
0 —- U —i* y — — 0

1B

W =

l

0

© «— T — O — ™ —

The proof relies heavily on the results of §3.1 and §3.2 and we shall not always make specific reference

to these results when they are used.
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Stage 1
We start by choosing
U; = Bxt' (€, L:)* = H' (€ ® L} (K)),
Wi = Ext’ (C},€) = HY(E® L;).
Notice that £3(K) = ©(—1,~1) and L{(K) = O(-2,0), so, by Proposition 3.2.1, the U; and W;
have dimension k as required.
Stage 2
Now choose 0 —» U — K — € — 0 to be the ‘universal’ extension given by the canonical element
1®1lin
1
Ext'(£,U) = @D End (Ext (£, £s)).
i=0

Similarly, choose 0 — £ - @ — W — 0 to be the universal extension 1® 1 in

Ext'(W, €) = Ql; End (Ext!(L], £)).

i=0

The effect of this choice of extension is that if we twist the extension by £; then, in the long exact

cohomology sequence, the coboundary map
8: HW® L) — HY(E® L;)
is given by 8 = 89 + 01, where
8 HH(E® L;) @ HY (L] ® L;) — HY (€ ® L3),

for j = 0,1, are the natural multiplication maps. In particular, if j = i then 8; is essentially the
identity map.
Stage 3

We find that

Ext?(W,U) = H*W*oU) =P W' @ U; ® H*(L; ® £;) =0
i,j
and so, by Proposition 2.2.3, we can automatically complete the monad display. Observe that
the recipe described above is natural with respect to duality, in the sense that if we apply the same
procedure to £* we derive a display which is dual to a display derived for £. To see this, first observe,
by Serre duality, that the ends of the monad we would write down for £ * say U' and W', are simply
W* and U*, the duals of the ends of the monads for £. The rest follows from the fact that the
natural isomorphism Ext"(A*, B*) = Exti(B ,A) is the one induced by dualising extensions, so that
the universal extensions correspond correctly, as do the obstruction to and ambiguity in completing

the display.
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Stage 4

To complete the proof of Theorem 3.3.2 we need to show that the middle bundle in the monad
can be chosen to be trivial. We can immediately see that ¢1()’) = 0, because the first Chern class is
additive on short exact sequences. A more careful calculation shows that ¢z(V) = 0 as well, so that
VY is topologically trivial. The fact that it is holomorphically trivial will then follow from Lemma
3.2.2 provided we can show that V|, is trivial. This, in turn, is reduced to a cohomology vanishing

condition on V itself as follows.
LEMMA 3.3.3. IfV can be chosen so that H°(V(0,—1)) = 0, then V|, is trivial.

ProoOF. Certainly, V|,_ is topologically trivial, so it suffices to show that H®(V|,_(—1)) = 0, since
then H'(V|..(-1)) = 0, by Riemann-Roch, and thus V|, is holomorphically trivial, by Lemma

2.3.1. This required cohomology vanishing can be deduced from the long exact sequence
ceo = HO(V(0,-1)) = H°(Vle, (-1)) = H'(V(-1,-1)) — -+

induced by the structure sequence 0 — O(~1,—1) — O(0,—1) — O|,_(—1) — 0, provided that we
can also show that H! (V(—l, —1)) = 0. But this holds for any choice of V, as we can see from the
diagram

HYU(-1,-1) — HY(K(-1,-1)) — H'(£(-1,-1) -5 H(U(-1,-1))

l
H'(V(-1,-1))
l
H (W(_l’ "1))

induced by the monad display, since H* (U(-1,-1)) = H! (W(-1,~-1)) = 0 and we chose the exten-
sion 0 - U — K — £ — 0 at Stage 2 so that the connecting homomorphism é was an isomorphism.

a

Since we know that H® (Ll (0, —1)) = 0, a cohomology sequence induced by the extension 0 —

U—-Y — Q — 0includes
0 — H°(V(0,—1)) — H(Q(0,-1)) -+ H* (U(0, 1)) — ---

and we are lead to the requirement that we can choose this extension so that 8 is injective. Now,
HY(U(0,-1)) = U, ® H* (O(O,—2)) and so has dimension k. Furthermore, H°(Q(0,—1)) also has

dimension k, because it is isomorphic to Wo @ H® (O(l, —1)), as we see from the long exact sequence
HO(£(0,-1)) — H®(Q(0, -1)) — HO(W(0,—-1))--H*(£(0,—1)) — ---

in which § : Wp ® H°(O(1, —1)) ® Wy, — W, has the identity map as its second component (by
construction) and H°(£(0,—1)) = 0, by Proposition 3.2.1. Hence, we really want to show that 8

can be chosen to have maximal possible rank, k.
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As shown in Stage 3, the freedom we have in the choice of the extension 0 -1 =V — @ — 0

is provided by an action of
Ext!(W,U) = H*(W* @U) = W} ® U1 ® H'(0(0,-2)).

This action can be described by saying that an element of H'(W* ® U) acts, by cohomology multi-
plication, as a map ¢ : H(W® L) — H}(U ® L) (for an arbitrary line bundle £), which modifies the
connecting homomorphism 8 : H*(Q ® £) — HY(U ® L) by 8 — 8 + ¢ j., where j, is the naturally

induced cohomology map
H°(Q®L)

| N
HWeL) 2 H'WUSL)
In our case, where £ = O(0,—1), we can fix a non-zero section s € H°(O(1, —1)) and then identify
j» with the inclusion Wy «— W, & Wy of the graph of the cohomology multiplication map s, :
H'(£(~1,0)) — H(£(0,—1)). Since, the map ¢ can be any map which factors through the second
projection, it follows that we can modify 8 by adding on any map with rank < rk s,. Therefore, we
can choose 8 to be of maximal rank if and only if, for an arbitrary choice of 8, tk 8 4tk s, > k. This

inequality is proved by means of the following sequence of lemmas.
LEMMA 3.3.4. H°(K|g(-1)) =0

PRroOF. The cohomology sequences coming from the product of the sequences 0 U - K — € — 0
and 0 — O(—-2,0) — O(-1,-1) — Og(—1) — 0 include
B (U(-1,-1)) B (U(-2,0))
! ol
H°(K(-1,-1)) — H°(K|g(-1)) — H®(K(-2,0))
H°(£(-1,-1)) H'(&(-2,0))
s
H?(U(-2,0))
But the extension 0 — U — KX — £ — 0 was chosen so that the connecting homomorphism § is in-
jective. In addition, H®(U(—1,-1)) = HO(E(-1,-1)) = H* ([U(-2, 0)) =0, from which the lemma
follows. .

LEMMA 3.3.5. Let g : H°(Q|p(~1)) — H'(U|p(-1)) be the boundary map induced by the ez-
tension 0 = U — K — Q — 0, when it is restricted to E and twisted by Op(—1). Then tk8g >

h(€|g(-1)).
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ProOF. Use the previous Lemma and the following part of the exact grid of cohomology sequences

induced by the monad display, restricted to E and twisted by Og(-1).
H°(K|s(-1)) — H°(€le(-1) — H'Uls(-1))

l | |

H(V[s(-1) — H(Qls(-1)) 2 H'(u|s(-1))

d
COROLLARY 3.3.6. rks, +rkdg > k.
ProoF. Follows from the previous Lemma and the sequence
0 — H°(E|p(-1)) - H'(£(-1,0)) >~ H'(£(0,-1)) — H'(€|p(-1)) = 0
where the zeroes at the ends are provided by Proposition 3.2.1. O

Lemma 3.3.7. H°(Q(-1,0)) = H(Q(-1,0)) =0

ProoF. Since H°(£(—1,0)) = H! (W(—I,O)) = 0, the extension 0 — £ —+ @ — W — 0 induces

the following long exact sequence
0 — H(Q(—1,0)) — H®(W(-1,0))-»H(£(-1,0)) — H*(Q(~1,0)) — 0
in which the connecting homomorphism § is an isomorphism, by construction. O

COROLLARY 3.3.8. tkd =rkdg

PRroOF. In fact, 8 can be identified with 85 by the restriction map induced by the structure sequence
0 — O(—1,0) — O(0,—1) — Og(—1) — 0, as we see from the diagram
H(Q(-1,0) — E°(Q(0,-1) - H°(Qls(-1) — H'(Q(-1,0)
l le Loa l
H'(U(-1,0) — H'U0,-1)) — H'(@Uls(-1) - HU(-1,0)
because the four spaces at the corners of the diagram all vanish. O
The two Corollaries above provide the inequality that we had shown was necessary to complete
the proof of Theorem 3.3.2.
Stage 5
Finally, we observe that Ext!(V,U) = Ext’ (W, V) = 0, because H'(L;) = 0 for i = 0,1. There-

fore we can apply Corollary 2.2.2 to deduce that the monads of the form given in the theorem do
effectively parametrise the bundles in which we are interested, once we have taken into account the

monad automorphisms.
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3.4 Reduction of Monads on I}

In the previous section, we gave a monad construction for holomorphic vector bundles on X!,
trivial on £,,. However, this does not, as it stands, give a particularly convenient description of
the moduli space of such bundles. One reason is that this description involves taking the quotient
by a large symmetry group—the group of automorphisms of the monad. In this section, we find a
canonical form for the monad which reduces the symmetry group, incorporates the triviality on £

and yields a much simpler description of the moduli space in terms of a system of linear maps.

Suppose we are given, as in Theorem 3.3.2, a monad of the form
uty 2w

which describes a holomorphic bundle £ on X! with €|, trivial. Let V denote the vector space on

which the trivial bundle V is modelled and choose bases for the folowing spaces, as in §1.4:
Ho(‘C:) . Ho (021 (1) 0)) & (311 22, 33)
Ho(ﬁf) =H° (OE‘ (07 1)) = (yla yz)
HO(LY ® £1) = H*(Oz1(1,-1)) = (s)

where 8y; = 23 and sy, = —2;. Note also that
HO(LY ® Lo) = H*(Og1(-1,1)) =0

We now observe that

1
A € Hom(U, V) = P Hom(U;, V) ® HO(L])
=0
1
B € Hom(V, W) = @D Hom(V, W;) ® H°(LY)

i=0
and therefore we can write
A= (A[l,a:1 + A%ZZ + Agﬂ!a A%yl + A%yz )
B= (3331 + Bgﬂ!z + Bgz;,)
" Blyi + By,

where A'j :U; - V and B;:" :V — W;. We also observe that the automorphisms of the monad are

GL(Up 0
Aut(U) = (Hom(Uo,(Ul))® (8) GL(UI))

Aut(V) = GL(V)

GL(Wo) Hom(W;, W) ® (3))
0 GL(W:)

given by:

aut(w) = (

We start the reduction process by considering the implication of £ being trivial on £o,. If we

choose two points p and ¢ on £y e.g.

»=(1,0,0), (0,-1)] and ¢=[(0,1,0), (1,0)]
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then, by Lemma 2.3.4, the triviality condition can be expressed as
B(q) A(p) = -B(p) A(g) = D (3.4.1)

where D : Uy @ Uy — Wy @ Wy is an isomorphism. Since, in addition, the monad conditions tell us
that B(p) A(p) = B(q) A(g) = 0, that A is pointwise injective and that B is pointwise surjective, we

can make the following direct sum decomposition:
v=v®gvWev,

where V(®) = im A(p), V(9 = im A(g) and Vi = ker B(p) N ker B(q).
Note that we have a natural identification V,, = H® (€|4”). Thus a holomorphic framing of £
along £, is equivalent to an isomorphism V,, = C".

Now observe that, without loss of generality, we can assume

0 Dn
D=
(Dw D11) '
because the off-diagonal parts of Aut(U) and Aut(W) effectively allow us to replace Up by a com-

plement of both U; and D~1(Wp) in Up & Ui, and then to replace Wy by D(Up). Thus, if we write

out condition (1) as

BjAy —BjA\ _ (—BiA; -BjAl\_( 0 Da
B}A} —BlA? B?A} Bi}Al ) T \Dwo Du )’

and observe that Dy : Uy — Wy and Dyo : Up — Wi are isomorphisms, we see that we can make a

further direct sum decomposition
V® = ker(B)) @im(4}), V@ =im(Al) @ ker(By),

where Fi = B}|y) and F(I, = B}|y (). We then use the following diagrams, in which all the maps

are isomorphisms, to identify all the spaces involved:

P im(A}) B r im(A} =
1 /) Doy AN o / Do N\
U]_ Wo Uo S Eaad W1
—a\ /" B3 42\ /B2
ker(ﬁi) kef(ﬁtlj)

Thus, we can make the identifications
U = Wi, U, = W, V=WoaWieoWodW1 0V,

and, writing Dy, as d : Wy — Wy, we arrive at the following canonical forms:

0 0 0 -7
1 0 0 0
Ab=10]| A2=]o]| al=|1| Al=]| o0
0 1 0 0
0 0 0 0
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By=(0 0 -1 0 0) Bl=(d 1 0 0 0)
Bi=(1 0 0 0 0) B=(0 0 4 1 0)

The remaining variables

Ad=| a; and Bi=(B1 B, B B, b)

can be reduced by using the vanishing of the coefficients of 23 in the equation Bo.A = 0.

(z123) BiAY + BaA3 =0 = pBi=a,
(3323’3) BSA?, + .B("';A3 =0 = ﬁ; =—m
(n123) B%A3 = BgAi =0 = daj+a;=0=0
(v22s) BIA3=B3A} =0 = day+a)=p1 =0
(=3?) B3Ai=0 = Zﬂ.-a.- + Z,B,faé +bc=0
i i
Thus we get the remaining forms
ay
—day
Ag: [ 2 Bg:(O a 0 —ay b),
—da;
¢

which means that the canonical form of the monad is given by:

a &3 —Y2
&1 — da,1 X3 0
A= az 3 N
23 —dazzg 0 (c1)
cag 0
B= ( T2 Az &3 —21 —a1x3 bil:3)
T \dyr wm dy Y2 0

where a; : Wi — Wy, b: Voo — Wy, c: Wi — Vi and d: Wy — Wi. This ‘linear algebra data’ must

satisfy the one remaining equation coming from (z3%)
aldaz — azda]_ + be = 0. (I)

We shall call a configuration (ay, az, b, ¢,d) integrable if satisfies the condition (I). This condition
is equivalent to BeA = 0 for the monad in canonical form, which, in turn, is analogous to the
integrability condition 3” = 0 for an almost holomorphic structure.

The residual symmetry group consists of those monad automorphisms which preserve the canon-
ical form. Since we wish to describe the moduli space of framed holomorphic bundles, we further re-
quire that the automorphisms preserve an identification Vo, = C*. Thus the correct notion of equiv-
alence for linear configurations (a1, az, b, ¢, d) is provided by the natural action of GL(Wy) x GL(W1),
in which a typical element (go, g1) acts as follows:

-1
(90,1 :{“‘H””’”‘ e (4)

d gidgyt cregrt
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There now only remains to impose the non-degeneracy condition, namely that, at every point
of X1, the monad maps .A and B should be injective and surjective respectively. This is already
guaranteed on £, (i.e. 3 = 0) so we need only consider points of the form z = (A1, Az,1), y =

(21, p2) # (0,0). Hence, for the linear algebra data to give a non-degenerate monad, we require that

¥ (A1, Az), (11, p2) € C? such that Aqpy + Aapz = 0 and (p1, p2) # (0,0),

a1 — 2
Al - da.1 0

az I is injective, and
Az . daz 0

c 0

( /\2 as —A]_ —al b

md py pad  po 0) is surjective.

One easily checks that this condition is equivalent to the following:

Y (A1, A2), (1, p2) € C? such that Aypy + Azpz = 0 and (u1, p2) # (0,0),

da1 v = A]_ v (ulal + uzaz)'v =0
#v € W, such that (N1)
dasv = Ay v cv=0
d*afw=M\w (p10f + p2a3)w =0
and 3w € W such that (N2)
° {d*a;‘wzkzw b*w=0

We have shown above that we can realise any holomorphic bundle on !, with a framing along
£, as the cohomology of a monad in the canonical form (C1). Thus we have derived a description

of the holomorphic moduli space over C? in terms of linear algebra data, as follows:

THEOREM 3.4.1. Given complez vector spaces Wy, W1 of dimension k, we can construct the moduli

space MH(Ez;r, k) = MH(Z!, £oo; 7, k) as the quotient of the set of configurations of linear maps
(a,b,¢,d) € Hom(Wy, Wy)? @ Hom(C", Wy) @ Hom(W,, C") ® Hom(Wo, W1)
satisfying conditions (I), (N1) and (N2), by the action (A) of GL(Wy) x GL(W1).

3.5 Reduction of Monads on F

The monads we have on F to describe anti-self-dual instantons on CP~ are similar to those we
have just dealt with on ©!. We can therefore hope that reducing them to an analogous canonical
form will yield a description of the instanton moduli space over Ez’ which is closely related to the

description of the holomorphic moduli space in Theorem 3.4.1.

We start in precisely the same manner as before, but we observe that this time

Ho([':) = HO(OF(LO)) = (21,22, %3)
Ho(ﬂr) = HO(OF(Osl)) = (yhyz,ya)
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HO(LE ® £4) = H°(Op(1,-1)) =0
H(Lo® £T) = H*(Op(-1,1)) =0
and therefore we have

A= (Abzy + Adzs + Ad2zs  Aly + Aly, + Alys)
8= (B(l,zl + Blzy + Bgza) .
Biy1 + Biy: + Biys
Furthermore, the automorphism group of the monad is smaller because Aut(Y/) and Aut(W) have no
off-diagonal parts. This increase in degrees of freedom, due to the increase in variables and decrease
in automorphisms, is compensated for by the imposition of a reality condition on the monad which
is induced by the reality condition on the bundle it defines, namely that there is a positive-definite
isomorphism o*(£) = £*, where £* is the hermitian adjoint of £ and o is the real structure induced
by the map (z,y) — (-7, %).
Since an instanton bundle £ on F is trivial on all real lines, in particular on £.,, we can consider

the same points p and ¢ as in §3.4 and equation (3.4.1) will still hold, giving the isomorphism

D :Uy® U; — Wy @ W; as before. Thus we can make the same direct sum decomposition
V=v® gv®degV,.

In this case, Vi should be interpreted as the fibre at co of the instanton bundle on TP Hence, the

‘framing at infinity’ is again given by an identification V, =2 C*. Imposing the reality condition on

the monad
Uo@O(—l,O) % - W0®0(1,0)
@ — Vo0 — <2]
U1 ©0(0,-1) W, ® 0(0,1)

is equivalent to requiring the following:

1) Up = Wy* and U = Wp* (since o* (0(1,0)) > 0(0,1) etc).
2) There is a positive-definite isomorphism V = V*.
3) Given the identifications in (1) and (2), B = —A{* and B = A{;*.
The first observation to make is that, because of (3), the direct sum V = Ve ev@ eV, is

an orthogonal direct sum with respect to the inner product of (2). Secondly, we observe that D is

self-adjoint and, indeed,
— Al* 42 _ px — Al* 41 — Al* 41
Dop = A7 A = D7y, Do1=A; A] and Dy = 4; Ay,

so that Do and Dy, are actually self-adjoint isomorphisms, because A} and Al are injective. There-

fore, we can make a further orthogonal direct sum decomposition

V) =ker(By) @im(4}) V@ =im(4}) @ kex(By).
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where -17: = Bl|yw) and F(I, = B}|yw. Now we can use the following diagram, in which all the

maps are isomorphisms, to identify the spaces involved:

im(A})

- 4 Do, \‘_B;
U]_ _ WO
—Aa\ /" B2

ker(B))

Thus, making the identifications
Up=Wo, V =Wo®im(4})® Wodker(Bo)® Voo

and writing D;; as d : Wy — Wj, we get the following partial canonical forms:

Doo 0 0 ==
ad 0 0 0

Al=1] o A= | Do | Al=]1]| 4i=] 0
0 al 0 0
0 0 0 0

Bi=(0 0 -1 0 0) Bl=(d B} 0 0 0)
BX=(1 0 0 0 0) Bi=(0 0 d B2 0)
where ﬂ{:a{,* and D10=dDoo +,B%a6=dDoo+ﬂ12a(2).
Doo -1
1

a5 O
isomorphisms. Therefore, we can use the following diagram to identify all the spaces involved:

But, by the definition of V), is an isomorphism, so a} and, similarly, a2 are both

im(43)
ay /‘ " \‘pl
Uo W
o3 /82

ker(B,)

where A = Dyg — DuDgllDoo. Thus, with the additional identifications
Up = W1, V=WoaoWoWod W, 0 Vs

we arrive at the canonical forms

a* 0 0 -1
1 0 0 0
Ay=1] 0 A= | a* Al=|1 AZ=1| 0
0 1 0 0
0 0 0 0

Bi=(0 0 -1 0 0) Bl=(d 1 0 0 0)
Bi=(1 0 0 0 0) Bf=(0 0 d 1 0)
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The remaining variables are reduced exactly as before, setting to zero the coefficients of the
expression BA involving exactly one of 3 and yg (half of these equations are actually the complex

conjugates of the other half). This gives the remaining canonical forms

a1
—da1 " "
Ad=| a; |, B3=(0 a2 0 —a; b), A?=-Bf, B?=4},
—da;
¢
and thus
d*z1+ar2s -y
zy —daj 23 —ajys
A=|d"z2+azzs Y
2z —dazzz  alys (c2)
ceg b* ya
B= ( T2 az &3 —21 —ay @3 bzs )
T \dntatys yi—(dar)*ys dy2+alys yz — (daz)*ys c*ys

where a; : W; — Wy, b: Voo — Wy and ¢ : Wi — V, as before. The remaining conditions on this
linear algebra data come from the coefficients of 3% and 23 y3 in Be.A = 0 (the y3? equation is the

conjugate of the z3? one). These conditions are
ayda; — azda; +bc =0 (N

a1a1* + aza* + bb* =1 (u0)
ar*(1 + d*d)ay + a2* (1 + d*d)az + c*¢ = 1+ dd*

Here (I) is the same as the integrability condition in §3.4. Using (10) we write this last equation in
the form

[day, (dai)*] + [daz, (daz)*] — a1*a1 — az*az + db(db)* — c*c = —1, (p1)
which is more suitable for the purposes of the next chapter.

Thus we see that the canonical form for monads on F which give instanton bundles is determined
by the same linear algebra data (a1, a2, b, ¢,d) as for the monads on X, satisfying the same equation
(I) and two further equations (10) and (u1). One will notice that the restriction of a monad in
canonical form (C2) to 1, given by setting y3 = 0, is not a monad in canonical form (C1) from
§3.4. However, the restricted monad only differs from one of the required form by the automorphism
(over 1)

1 0 10
((d*a 1) » 1 (0 1)) € Aut(U) x Aut(V) x Aut(W)
and thus all is well at the bundle level. That is to say, the bundle on F determined by the data

(a1, a2, b, ¢,d), satisfying the necessary conditions, restricts to a bundle isomorphic to the one deter-

mined on I! by the same data.

Now, for a monad with real structure, one only needs to check the non-degeneracy condition

at one point on each fibre of the twistor space and so we immediately see that the non-degeneracy
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condition for the canonical monad on F is the same as the one for the canonical monad on X!,
because I! meets every fibre.

Finally, we observe that, since we are in a situation now where the vector spaces Wy and W;
have inner products, the residual symmetry, which determines when two such sets of maps give
equivalent monads, is given by restricting the earlier action (A) to U(Wp) x U(W1). As before,
the automorphisms do not act on V., because the data is supposed to determine a framing of the
instanton at oo.

In this section, we have shown that we can describe any instanton on @2, with a framing at
00, in terms of a monad on F in the canonical form (C2). Thus we have derived a description of the

instanton moduli space over €? in terms of linear algebra data as follows:

THEOREM 3.5.1. Given hermitian inner product spaces Wy, W, of dimension k, the moduli space
MI(C?; 7, k) = Ml(@z, oo; 7, k) is the quotient of the set of linear maps

(a,b, ¢c,d) € Hom(W;, Wy)? ® Hom(Veo, Wo) & Hom(Wy, Vo) @ Hom(Wo, W)
satisfying conditions (I), (N1), (N2), (u0) and (u1), by the action (A) of U(Wo) x U(Wh1).

THEOREM 3.5.2. The Hitchin-Kobayashi map h : MI(C?; 7, k) — MH(C?;7,k) is induced by the
inclusion

{(a,be,d) | (2), (1), (32), (40), (u1)} € {(a,be,d) | (1), (W), (N2)}.

Therefore, to show that the restriction map is actually a bijection, we must simply show that
each orbit of GL(Wy) x GL(W1) in the second set meets the first in precisely one orbit of U(Wo) x
U(W1). This step will be undertaken in the next chapter.

3.6 Interpretation of the Linear Data

In §3.4, we have shown how to describe the moduli space of holomorphic bundles on C? in terms

a collection of linear maps
(a,b,¢,d) € Hom(Wy, Wp)? & Hom(Veo, Wo) & Hom (W1, Vo) & Hom(Wo, W1)

If one restricts the corresponding monad (in canonical form) to the exceptional line E € |O(1, —1)|,
then one can use the results in §2.3 to see that the holomorphic bundle, defined by the monad, is
trivial along E if and only if d : Wp — W is an isomorphism. Similarly, restricting to any of the
lines in IO(O, 1) |, i.e. the fibres of the projection X' — P!, one sees that the bundle is trivial on the
fibre over [y, 2] € P! if and only if u;a; + paaz is an isomorphism.

Thus we can describe the rdle of the maps ai, az and d, but they are still simply some maps
which occur in a canonical form for a monad. Now the vector spaces Wy, W and V,, actually have
a more natural interpretation arising from the construction, namely

Wo = H(£(-1,0)) = H'(£(-2,0)),
Wy = H*(£(0,-1)) = H'(£(-1,-1)),
Voo = H°(Ele.) = H'(Ele..(-2))-
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We shall now show that the linear maps a1, a2, b, ¢ and d can be interpreted as natural cohomology

maps between these spaces.

Starting with the map b : Vo — Wy, we claim that this is the coboundary map
8 : H°(€|...) — H'(£(~1,0))
associated to the short exact sequence obtained by tensoring £ with the structure sequence
0—-0(-1,0) =0 — O, —0 (3.6.1)

To see that b does have this interpretation, we first observe that, combining (3.6.1) and the monad

sequence 0 = U — K — £ — 0 yields

0 - HYK) — H(Kl,) 25 H'(K(-1,0) — --

i L L
0 - H°E) — HOEl) 2% H'(E(-1,0)) — -
where the vertical maps are isomorphisms because U has all the relevant cohomology vanishing. Thus

we identify 8¢ with 8x. Next, if we combine (3.6.1) with the monad sequence 0 = X -V - W — 0

we get

HYK) — HK|.) 2% H'(K(-1,0)

l l l

0 — v =— y — 0

| o]
0 - H°(W(-1,0)) — H°W) — H°(W|..)
l l

H'(K(-1,0)) — HYK)

l

0

This diagram naturally yields two maps ker — H? (K (-1, 0)) by ‘chasing’ from the middle to the
top right or the bottom left respectively. It is a straightforward lemma in homological algebra that
these maps are actually the same. But the first map is simply the map 8x, while the second is the
part of the map B: V — H%(W), whose domain is Vo, (i.e. H°(K|c.)) and whose codomain is the
component of H®(W) corresponding to z3. But this is just the map b, demonstrating the above

claim.

Dually, the map c can be identified by observing that c* is the coboundary map H°(£*|, ) —
H'(£*(-1,0)), so that ¢ : H! (8*(—1,0))* — H°(£*|¢m)*. By Serre duality, this is the same as
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the map H'(£(-1,—1)) — H'(€|..(—2)) which is induced on cohomology by the restriction map
10 £Loo.

We next identify the map d : Wy — W; as the map H!(£(—1,0)) — H'(£(0,—1)) induced by

multiplication by the section —s of O(1, —1) in the short exact sequence
0 — £(=1,0) — £(0, —1) — £|g(—1) — O.
This fits d into an exact sequence
0 — H°(€|5(-1)) — H' (£(-1,0)) B (£(0,-1)) — H'(£](~1)) — 0

and thus gives a more natural demonstration of the fact that £ is trivial on E precisely when d is

an isomorphism.

We start by observing that, since the monad sequence 0 — £ — @ — W — 0 is a universal

extension, the map 6 in the sequence
0 — H(Q(0,-1)) — H°(W(0,-1)) - H(£(0,-1)) — -

is given by the map (s, id) : Wy @ Wy — W; where s is the non-zero section of O(1,—1), introduced
in §1.4., acting by multiplication on cohomology. Thus the image of H°(Q(0,—1)) is {(wo,w:) €

Wo® W, | swe = —wl}. However, restriction to £4, yields the following commuting diagram

0 0

l l

HY(U(0,-1)) < H°(Q(0,-1)) — H°(W(0,-1))

L ! l

~

H' Ul (-1)) — H°(Qle(-1)) — H°(Wle.(-1))

where, given the canonical identifications, ¢ : Wy — W1 @ Wy is the inclusion into the second factor

and D: Wy & Wy — Wy & Wy is given by the matrix ((1] ‘li) Thus im(H° (Q(O,—l))) is also

identified with the space {('wo, w) € Wo ® Wy | wy = dwg}. In other words, dwy = (—8)wo for all

wo € Wp, as required.

Finally, we note that the maps a;,a; : Wi, — Wy are the maps
H'(£(-1,-1)) - H'(£(~1,0))
induced by multiplication by the sections —y, and y;, respectively, of ©(0,1) in the sequence

0— &(-1,-1) > £(-1,0) — E'|p” — 0,
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where F, is the fibre of the projection ! — P! over p € P, This fits a; into an exact sequence
0 — H(€|p(-1)) — H(E(-1,-1)) =M H(€(-1,0)) — H(€|F(-1)) — O,

which gives a natural demonstration of the réle of the a; in describing the jumping behaviour of £
along the fibres of the projection. Indeed, this exact sequence is canonically matched to the exact

sequence from §2.3,
0 — H(€lr(-1)) — H'(U|r(-1)) - H°(Wir(-1)) = B (€|r(-1)) — 0,

in which a; and az, as originally defined, actually occur. We can see this using the same type of

homological algebra lemma as when identifying b, but applied to the diagram
0

|

H(E|r(-1)) — H'Y(E(-1,-1)) — HY(£(-1,0))

l l i

0 — HY(U|p(-1) - H2(U(-1,-1)) — 0
l Loy
0 - HY(K(-1,0) — H'(K|p(-1)) - 0

l l

HY(E(-1,0)) — HY(€|r(-1))

l

0

3.7 Relation to Existing Constructions

We conclude with two remarks on the nature of the constructions we have used in this chapter

and their relation to constructions already in existence.

Firstly, Buchdahl [Bu2] has given a description of the moduli space of stable bundles on any

Hirzebruch surface ™ using monads of the form
1®0(1,-1)
U®O0(0,-1) — ® — W 0(1,0).
.®0

While these differ from our monads, in particular by having a non-trivial middle term, they are in
some ways quite similar. Buchdahl’s monads come from a degenerate Beilinson spectral sequence
arising from a Koszul resolution of the diagonal in X" x X". Thus they are constructed in a rather
more natural way than our monads have been. It seems that the way of providing a more natural
construction of our monads — and at the same time relating them more closely to Buchdahl’s —

may lie in the newly developed theory of exceptional bundles and helixes [GR,Ru]. To explain
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very briefly, a helix is a special configuration of exceptional bundles on an algebraic variety, which,
starting with any bundle on the variety, can be used to generate spectral sequences which converge
to that bundle. It should be possible to find a helix on £ which would generate two degenerate

spectral sequences which yield Buchdahl’s monads and ours.

Secondly, Brosius [Brl,Br2] has described all possible rank 2 bundles on all ruled surfaces
(not just the rational ones) as extensions of certain mildly singular sheaves by other basic bundles.
One key ingredient of his description is the jumping behaviour of the bundle along the fibres. As
we saw in the previous section, such jumping behaviour is captured by the multiplication maps on
cohomology. In addition, Hurtibise [Hu] has shown explicitly, for holomorphic bundles over C?,
how the linear algebra data of [D1] is equivalent to the jumping data long a family of parallel lines.
Brosius’ work thus supports the general philosophy, employed by Barth [Ba] in describing stable
bundles on P2, that a stable bundle € on a surface S should be essentially captured by the module

@ HY(E®L) over the ring @ H(L).
LEPic(5) CePic(S)
In fact, we should be able to reconstruct £ from the ‘central core’ of this module. The question of
what exactly constitutes this ‘central core’ must be closely related to the problem of constructing

helixes on the surface.

We have shown, in the previous section, that this philosophy works in classifying our bundles on
T!, where the ‘central core’ is provided by the line bundles O(—1, —1), O(—1,0) and O(0, —1)—note
that the maps b and ¢ only really provide the extra information required to specify the framing along
£oo. Indeed, had we followed Barth’s approach more closely, we could have written down the maps
(a1, az, b, c,d) initially as maps on the cohomology of £ and then built them into a monad to show

that we could reconstruct £ from them.

The feeling that the linear algebra data provides the most natural description of the moduli
space of holomorphic bundles will be further strengthened in the next chapter, when the equivalence
of the holomorphic moduli space with the instanton moduli space is proved with reference only to

this data.
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4 The Main Theorem

In this chapter we prove the main theorem on the equivalence of the moduli spaces of instantons
and holomorphic bundles on C2.

Recall that, in the previous chapter, we derived a description of both moduli spaces in terms of

the following configuration of linear maps:

ay,a2
W, E&——— W

v St e B
d
NA
Cf
where W and W; are hermitian inner product spaces of dimension k. We now introduce the following

notation:
R = Hom(Wy, Wp)? x Hom(C", Wy) x Hom(W;,C") x Hom(Ws, W1),

Gc¢ = GL(Wy) x GL(W,), G = U(We) x U(W1).
Note that G¢ is indeed the complexification of G and has Lie algebra gc = g®ig. In particular, note
that ig is the space of pairs of hermitian endomorphisms. Let X C R be the space of configurations
(a,b,¢,d) € R which satisfy the integrability equation
aiday —azday +bc=0 (I
and also the non-degeneracy conditions

V (A1, Az), (1, p2) € C? such that Ajpg + Azpz = 0 and (p1, u2) # (0,0),

dayv=2XAv (n101 + p2az)v =0
3v € W such that (N1)
dazv=2XA2v cv=0
d*afw=\w (10T + paa)w =0
and fw € W such that (N2)
° {d*a:wzz\zw *w=0

As we showed in the previous chapter, the moduli space of holomorphic bundles on €? is the quotient
of X by the canonical action of G¢. Furthermore the moduli space of instantons on CZis the quotient
by G of the subset X,, C X satisfying the real equations

Z a;a;* +b0F =1 (MO)
i

Z [das , (das)*] - Z ai*a; + db(db)* — e = 1. (1)

To prove the equivalence of these two moduli spaces we use the results of §1.5. To apply these results
we must find a linearisation of the G¢-action on X and a suitable Kahler potential such that (N1)
and (N2) imply analytic stability and (40) and (1) correspond to the vanishing of the associated

moment map.



§4.1

4.1 Non-degeneracy and Stability

We start with a lemma in linear algebra.

LEMMA 4.1.1. Let Vo and V; be finite dimensional complez vector spaces with V; non-trivial and

dim Vp < dim V;. Suppose that we have linear maps ay,az2 : Vi — Vp and d : Vo — Vi satisfying
a1da2 el azda1 =0. (411)

Then there is a non-zero vector v € V; and points (A1, A;), (81, #z) € C2, with Aypy + Azuz = 0 and
(#1, 12) # (0,0), such that

da;(v) = Xv (i =1,2) and (a1 + peaz)v = 0.

ProOF. From (4.1.1) we see that da; and da; commute and hence have at least one pair of
simultaneous eigenvalues (A1, A;). The pairs which occur will include all the eigenvalues of da; and
da; (though not all pairs of eigenvalues will necessarily occur) so we can only encounter one of the
two cases
i) For some eigenvector v # 0 the eigenvalue pair (A1, A2) # (0,0). Then, applying (4.1.1) to »,
we can satisfy the lemma with (p1, p2) = (A2, —A1).
ii) Both da; and da, just have the single eigenvalue zero, so they are both nilpotent and we then
need to show that there is some (u1, 2) # (0,0) such that

kerda; Nkerda; Nker(pyay + paaz) # 0

This case further subdivides into two cases:
a) There exists vg € V; such that da;(vo) = 0 but vy = day(vo) # 0. Since da, and da, commute,
we know that v; € kerda; and indeed that
vn = (daz)™(vo) € kerda;.

But da; is nilpotent so there is some m for which vp, # 0 and v,n4q = 0. Applying (4.1.1) to

Ym-1 We see that a;(vm) = 0, so we can satisfy the requirements of the lemma by choosing
v = vy, and (p4, p2) = (1,0).

b) We have kerda; C kerda; and so we simply need to show

kerda; Nker(pia; + paaz) #0 for some (pq, p2) # 0

Write &@; : kerda; — kerd for the restriction of a;. We observe that n(da;) > n(d), where
n(d) = dim(kerd), because, by the rank-nullity formula,

n(da;) — n(d) = tk(d) — tk(day) + dim(V;) — dim(Vp)

Now, if n(da;) > n(d) then p,d; + pyd; has non-trivial kernel for all (pg, y1;). Alternately, if
n(da;) = n(d), we must solve the equation det(u1d; + p2d;) = 0 to find a suitable (11, B2)-

Thus the lemma can be satified in this case as well. O
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REMARK 4.1.2. If we suppose that the vector v, found in the above lemma, does not satisfy a;(v) =
az(v) = 0, then the values of (A1, A;) and (p1, p2) are uniquely determined, upto rescaling (p1, p12).
Since Ajp; + Azpz = 0, this means that they determine a point in C2 (as described in §1.4), which
we can think of as an ‘eigenvalue’ for the configuration of maps (a1, az,d), just as a point in C2
is an ‘eigenvalue’ for a pair of endomorphisms. In fact, even if a;(v) = az(v) = 0, we can still
take the ‘eigenvalue’ of v with respect to (ay, az,d) to be the ‘point’, in the scheme-theoretic sense,

corresponding to the exceptional line in ¢z,

The lemma above is the key to proving the next result.
PROPOSITION 4.1.3. On the set {a € R | (I)}, the open condition (N1) is equivalent to

(s1) 3 subspaces Vo C Wy, V4, C Wy, withV; # 0 and dimVp € dim V3,
S1
such that a;(V1) C Vo (i = 1,2), d(Vo) C V; and V; C kerec.

Similarly, the condition (N2) is equivalent to

(52) ﬂ subspaces Vo C Wy, Vi C W1, with Vo # Wy and dim Vy < dim V7,
S2
such that a;(V1) C Vo (i = 1,2), d(Vo) C V; and imb C Vj.

ProoF. To prove the first equivalence, we observe that “(N1) = (S1)” follows immediately from
the lemma above. To show “(51) => (N1)”, suppose that we have a non-zero v contradicting (N1).
Then taking V; = (v) and Vg = (a1v, a2v) contradicts (S1), because V; is at most one-dimensional.

Now, we observe that, by considering dual spaces and annihilating subspaces (i.e. setting
Vst =ann Vo = {0 € W' | 6(V,) =0} and Vi = ann V;) condition (S2) is equivalent to

3 subspaces V;* C W, V& C W, with V@ # 0 and dim V* < dim Vs,
(52)* 1 1» Yo 0 0 1 0
such that af (V§*) C V{® (i = 1,2), d*(V}®) C V¢ and V§ C kerdb*.

But conditions (N2) and ($2)* are just (N1) and (S1) with different variables, so the second

equivalence follows from the first. O

REMARK 4.1.4. The requirement “dim Vg < dim ¥;” in (S1) and (S2) can be replaced by “dim V, =
dim V1" without, in fact, changing the condition, because we can always replace V, by V{, with
Vo C Vg Cd~1(W), or Vi by V{, with d(Vp) C V{ C W4.

In the light of the proposition above, we can ignore the condition (I) for the moment and prove
the stronger result that, on the whole of R, conditions (S1) and (S2) are equivalent to analytic
stability with respect to a suitable linearised action and (10) and (u1) correspond to the vanishing

of the associated moment map.

Before proceeding, we introduce a second space of linear maps

R' = Hom(W1, Wy)? ® Hom(C", Wy) ® End(W;)? @ Hom(C", W;) @ Hom(W;,C")
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and a map
p:R = R':(a1,a2,b,¢,d) — (a1,az,b,day, das, db,c)
Note that R’ carries a canonical G¢-action and that p intertwines this action with the G¢-action
on R.
Now let L be the trivial line bundle over R with fibre C. Lift the G¢-action on R to L by

letting (go,91) act on the fibre as multiplication by (det g;)/(det go), i.e. take the linearisation of
G¢ given by

g:RxCoRxC:(a,z)— (g-a,detglz).

T (4.1.2)

Define a hermitian structure on L by
(@] = lapelietenr (413)

where the norm on R' comes from the hermitian structure which is the direct sum of the standard
structure, (4, B) = tr(A*B), on each summand.

REMARK 4.1.5. The hermitian structure (4.1.3) is a global Kéhler potential for the ‘metric’ on R
pulled back under p from the Euclidean metric on R'. This ‘metric’ is partly degenerate because
p is not an embedding. However, p is injective when restricted to the open subset of R given by
configurations for which a1, az and b are jointly surjective. Note that, if a1, a; and b are not jointly
surjective, then Vo =ima; @ima; ®imb and V; = W; gives a pair contradicting (S2). Thus, when
we, in fact, restrict our attention to {a € R | (1), (52)} the hermitian structure on L will define a

genuine Kéhler metric.

PROPOSITION 4.1.6. A configuration o € R satisfies (S1) and (S2), if and only if, for all real

one-parameter subgroups A : R — G¢ : t — e*4 with A € ig,
[Ae(et,2)|| = 00 as t— oo,
where 2z i3 any non-zero element of C.

PROOF. Suppose we consider the one-parameter subgroup A : R — Gg¢ given by the pair of hermitian
endomorphisms (Ag, 4;) € ig. We can decompose Wy and W, into eigenspaces for Ao and 4,
respectively, i.e. we can write
VV,-:@VV,-(") i=0,1,
neR
where A; acts on W"-(") as multiplication by n. Clearly, W"-(") = 0 for all but finitely many n and
Y e dim W™ = k. Let
A=Y n(dimw™ — dim W)
neR
so that A; acts on the fibres of L as multiplication by e!2. We also introduce the notation

W = @ wim,

i
m<n
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Decompose all the components of a as follows:
asm") : Wl(") — Wém) b™ . Cm — Wl(m)
dmn) . Wé") — Wl("') ™ . Wl(") -Cr

and also write
Zd(mk)ag’m) = (da.')(m") : Wl(") — Wém)
]
3 dmRp®) = (@)™ : cm — W™
]

Then, with the above notation, we have ||,\¢(oz,z)"2 = | z|? e!A+H (12) where

N(t,a) = Z et(m—n)"a'(mn)”2+ Z et(m—n)"(da‘)(mn)nz

i,mmn i,mn

+ 30 bP 4+ e (@) + 3 e e
m m n

Thus we see that ||A;(a, z)|| = oo ast — co when A > 0and also when A < 0 aslong as N (t,a) — oo
as t — oo. This last condition will fail if and only if
Vm>n a™) = (da;))™) =0 (i=1,2)
Vm >0 5™ = (db)™) =0
Va<0 ™ =0
These in turn are equivalent to the conditions that, for ¢ = 1,2 and Vn € R,
b:C" — Wéso)
db:CT — Wi (4.1.4)
c: Wl(s_l) —0

So, if we choose Vp = Wégﬂ) n d‘lWl(S") and V; = I(Sn)’ for any value of n, we will have

imbCV ifnz=0

%V =V, d:Th—-N 8'nd{Vlgkerc fan<0’

Therefore, we have a contradiction to either (51) or (S2) as long as we can find a value of n which
makes dim Vp < dim V; and also ensures that Vp is proper (n < 0) or V; is non-trivial (n > 0). To

see that this is possible, recall that we are considering the situation in which A < 0, i.e.

3 ndimwM > 3 ndimw™.

neER neR

But we also know that

Y dm W™ = Y dimw™,
ner neR

and from these last two equations it is clear — thinking of dim VV,-(") as a finite measure on R — that
there is indeed a real number n for which dim W{™ < dim W{<™, and hence dim V5 < dim V4, as

required.
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Thus we have demonstrated one half of the implication in the proposition, namely that when «
is stable all orbits of real one-parameter subgroups diverge to infinity. To prove the converse, suppose
that a is unstable. Choose complements V! to the destabilising subspaces V; to get W; = V; @ V/

(i =0,1). Then define a one-parameter subgroup A: R — G¢ : ¢ — et as follows:

i) If o fails (S1), 4; = (‘01 g) for i=0,1.
) . 0 0y, .
ii) If o fails (S52), A.-:(o 1) for i =0,1.

In both cases A = dim V5 — dim V; < 0 and the conditions (4.1.4) are satisfied, therefore
||/\t(a,z)” oo as t— 0o,

i.e. there is a real one-parameter subgroup whose orbit through o does not diverge to infinity. O

COROLLARY 4.1.7. A configuration a € R is analytically stable with respect to the linearised G-
action (4.1.2) if and only if it satisfies (S1) and (S2).

Proor. Follows immediately from the preceeding proposition by Lemma 1.5.4., O

4.2 The Real Equations as a Momentum Map

We now show that the the real equations (10) and (u1) can be interpreted as the vanishing
of the moment map associated to the linearised action on R described in the previous section. We
thereby prove the equivalence of the two moduli spaces as a particular example of the equivalence

of symplectic and algebraic quotients.

Consider a configuration « € R and define the function, as in §1.5, which measures the variation
of the norm on L under the action of G¢
st 2|
lers2)]]

for some z # 0 (the function being otherwise independent of 2). Explicitly,

detgy| 1 1
:detg:| + 3 letsa))* = Zlle()]*

As in general, M, descends to a function m, on the quotient P = G¢/G. The tangent space of

M, :Gec —+R:g—log

Ma(gO) 91) == 108

P is naturally identified with ig and the moment map is given by po = dmq(0). We can of course
evaluate this derivative by just taking the derivative of M, in the ig directions in G¢. Thus, if hg

and h; are hermitian endomorphisms of Wy and W, respectively,
dMq(0)(ho, h1) =trhy —trho + » _(hoai — a; hy, a;) + (ho b, b)

+ Y (k1 da; — da; by, das) + (hy db, db) — (chy, c)
i
= <ho, Z a;a;* + bb* — 1)
+ (h1, Y _[das, (das)*] = > ai*a; + db(db)* — c*c +1).
i i
Thus we have proved the following

LEMMA 4.2.1. Equations (u0) and (p1) correspond to the vanishing of the moment map associated
to the linearised action (4.1.2) of G¢ on R.
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4.3 Statement of the Theorem and Summary of the Proof

We now combine the various results from the previous sections and earlier chapters to prove

our main theorem giving the Hitchin-Kobayashi correspondence for C?

THEOREM 4.3.1. The map h: MI(C?;r,k) — MH(C?; 7, k), given by taking the holomorphic part of

the instanton connection, is a bijection.

ProoF. The moduli space MH(éz; 7, k) is the quotient of the variety X C R by the complex group
Gc¢ (Theorem 3.4.1), while MI(EZ; 7,k) is the quotient of a real subvariety X,, C X by G (Theorem
3.5.1). Furthermore, the map h is induced by the inclusion of X, in X (Theorem 3.5.2). Now,
all the orbits of G¢ in X are analytically stable with respect to a suitable linearisation of the G¢-
action (Proposition 4.1.3 & Corollary 4.1.6) and X, = u~*(0) for the corresponding moment map
p (Lemma 4.2.1). Hence, the fact that h is a bijection is an application of Theorem 1.5.3. O

4.4 The Kihler Structure of the Moduli Space

Now that we have completed the proof of Theorem 4.3.1, we can talk simply of the moduli
space M(Ez;r, k) and mean either the moduli space of holomorphic bundles or of instantons. As
stated in Theorem 1.5.3, in general, this dual description means that we have more structure on
the moduli space than we had a priori from either description. Specifically, the complex structure,
which we would expect on X/Gc, and the Reimannian structure, which we would expect on X, /G,
are compatible and yield a Kihler structure on M(Ez; r,k). In fact, since we started with a Hodge
structure on X, we can define a Hodge structure on the quotient, i.e. we can find a global Kéhler
potential for the quotient metric. The linearised action enables one to take a quotient of the total
space of the line bundle L to get the total space of a line bundle on the quotient. The G¢ quotient
gives this bundle a holomorphic structure, while the G quotient makes it hermitian. For a more
details, see [HKLR],[GS].

REMARK 4.4.1. In our case we observe that the holomorphic line bundle L on M(éz;r,k), which
carries the Kéhler potential, has a canonical section induced by det d, a G¢-invariant section of L.
Furthermore, the dual bundle L* has a two-dimensional space of sections induced by det(uy ay +
p2az2). In the light of the discussion in §3.6, this shows that L and L* are natural bundles to
consider, in that their sections determine the ‘jumping divisors’ in M(Ez; 7, k), i.e. the subvarieties
corresponding to holomorphic bundles over C? which jump over fixed lines. Such jumping divisors

are important in the analysis of Donaldson’s new polynomial invariants for complex surfaces [D7].

REMARK 4.4.2. Itoh [It] has shown, in general, that the moduli space of instantons on a compact
Kihler surface has a Kahler metric, induced by the L? metric on the space of connections. This

metric is most easily described by its Kahler form

(a,b) — Z—Iﬂ-/tr(a/\b)/\w
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where a,b € Q!(End £), the tangent space to the space of connections on £. This metric is also
defined over a non-compact Kahler surface, as long as one restricts ones attention to finite action
instantons, and so we get an L? metric on M(Ez; 7, k). The natural question to ask is whether this
is the same as — or at least a multiple of — the K&ahler metric we have induced on the moduli
space by our finite quotient description. While we cannot answer this question here, we can give
some reasons why we might expect the answer to be “yes”. Firstly, there is the naturality of the
transformation to the linear algebra data, as indicated by §3.6 and the remark above. There is,
further, a formal similiarity between this transformation and the Nahm transform for instantons on
a four-dimensional torus, for which there is an analogous result on the equivalence of metrics [BvB].
Secondly, the metric has one particular property, which we shall discover in the next chapter, which
is known to hold for the L? metric. This is the fact that the metric completion of the index one

moduli space is obtained by adding an isometric copy of the base at infinity [GP].
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5 Completing the Moduli Spaces

As shown in the previous chapter, the moduli space M(Ez;r, k) carries a Kihler metric as a
result of its description as both a complex and symplectic quotient. The metric is induced by a
Euclidean metric on the configuration space R’, restricted to a real quasi-affine subvariety Y’ C R’,
under the quotient by a compact group G of isometries of R’. Since this real subvariety is not
closed, but the isometry group is compact, the metric on the quotient is not complete. However, we
can easily construct its completion by taking the quotient by G of the closure ?’, i.e. the (possibly
singular) subvariety obtained by dropping the non-degeneracy conditions in the definition of Y'. We

call the quotient Y /G the completed moduli space ﬁ(éz; r k).

The aim of this chapter is to show that both this completion and the analogous one ﬁ(cz; k),

s

over the affine plane, have the form that one expects in general (see [D5;III(iii)]). Working over a

general base manifold Z, there should be a stratification
k
H(Z; 7, k) = U Sk,'
1=0

where Si; is naturally contained in M(Z;r,k) x S*-!(Z) and S*-!(Z) is the set of unordered
(k — l)tuples of points in Z. In other words, a point in the stratum Sj; is an “ideal instanton”,
(As;p1,. .+, Pr-1), given by an ordinary instanton A; of index I together with the (not necessarily dis-
tinct) points p1,...,pr—1 € Z, which should be thought of as singular instantons with delta-function
curvatures concentrated at those points.

Now, when Z = C?or C?, we shall see that Sx; = M(Z;r,k) x $*~/(Z). In particular, when
k =1, we then get

M(Z;71) = M(Z;r1)UZ

and we can show further that the boundary of this moduli space, i.e. M(Z;r,1)\ M(Z;n,1), is
actually isometric to Z, which, of course, started with a canonical Kéhler metric.

We shall also show that the completions M(C?;r,k) and M(C?;r,k) are algebraic, by showing
that they arise as quotients in the sense of geometric invariant theory. Thus, there is an action by

a complex algebraic group Gic and the quotient is formed by additionally identifying orbits whose

closures intersect, i.e. it consists of equivalence classes under the relation

2~y < Ge-2NGe-y#£0.
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5.1 The Index 1 Moduli Space over C?

We begin by looking just at the incomplete moduli space M(Ez; 7,1), regarded as the moduli
space of holomorphic bundles, i.e. as the complex quotient X/Gc, in the notation introduced at the
beginning of §4. Identifying W, and W, with C, we havea € C%, d€ C,b€ (C")* andceC'. In

this case, the integrability condition (I) reduces to
be=0 (5.1.1)
and the stability conditions (S1) and (S2) reduce to
c#0 and b#0. (5.1.2)

We can write the action of G¢ = C* x C* in a slightly modified form by setting (go, g1) = (Ao, 1/A1),

for A; € C*, so that

a— ApAra
b — Aob

e Ac

d— (AoAl)_ld
We see, from (5.1.1) and (5.1.2), that, up to the symmetry (5.1.3), the pair (b, c) simply determines

(Ao,Al) H (5.1.3)

the point (imc, kerb) in the Grassmannian of partial flags
6 =61,-1(C") ={(V, Vic1) W C V1 € C", dimV; = i}.

Furthermore, the quotient map {(b,¢) € (C")* x C" | (5.1.1), (5.1.2)} — G can be thought of as the
principal C* x C* bundle with the associated family of line bundles

06 (p,9) = 7} (O(p)) ® 73 (O(2)),

where the 7; are the natural projections
P(C") <=6 2 P((CT)*).

[c.f. the quotient C™*! \ {0} — P™ determines a principal C* bundle, with associated line bundles
Opn(d), for d € Z. The total space of Opn(d) is the quotient of (C"+! {0}) x C by the action
(v,¢) = (Av,A%).] Thus, we see that the quotient description of the moduli space M(Ez;r, 1) is
simply the natural description of the total space of the bundle Og(1,1)2Og(—1,—1). When r = 2,
there is some simplification, because G = P! and the moduli space M(C?;2, 1) is then the total space
of the bundle Op1(2)? @ Op:1(—2).

Now, to find the completed moduli space _IW(EZ;T, 1), we must introduce the moment map

equations (u0) and (p1). In the case of index 1, these reduce to the conditions

llal? + lb]* = 1

(5.1.4)
1Bl + [1db][* = ||e]?
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The moduli space M(Ez;r, 1), regarded as the moduli space of instantons, is the quotient of Y =
{(ayb,c,d) € R | (5.1.1),(5.1.2),(5.1.4)} by G = U(1) x U(1), acting as in (5.1.3). The metric
on M(Ez;r, 1) is induced by the embedding p: Y — R’ from the Euclidean metric on R’, so the

completed moduli space, in this case, is given by
M(C%r,1) = p(Y)/G.
To describe the boundary of the moduli space, i.e. the set we have to add to complete it, we simply
set b= 0 (or ¢ = 0), while retaining the moment map equations (5.1.4) as well as the equations that
define the image of p. Hence, the boundary is the quotient of the set
{(a,0,2,0,0) € R' | @22 — az2, =0, |[a|]* = 1}
under the action a — ApA; @, z > z. In other words, it is the set
{(la],2) € CP' x C? | ay 23 — az2, = 0},
where CP! and C? are equipped with the Fubini-Study and flat metrics respectively. This is precisely

the description we had in §1.4 of the anti-self-dual Kahler metric on (‘fz’ so we have now proved the

following

PROPOSITION 5.1.1. The boundary of the indez 1 moduli space over C? is isometric to C? with its
canonical anti-self-dual Kdhler metric.
We can begin to build up more of a picture of the moduli space "M(f:’;r, 1) with the aid of

the two functions induced by the G-invariant functions ||b|| and |d|, which are defined on Y, but

clearly pass to p(Y) and extend to p(Y'). Thus, with a slight abuse of notation, we can speak of the
functions s
|[bl] : M(C?;7,1) — [0,1]
|d| : M(C?;7,1) — [0, c0).
We can further see that |d| is proper since, by (5.1.4), ||a|| and ||b|| are bounded and a bound on |d|

determines a bound on ||c||.

As observed above, the set ||b|| = 0 is the boundary of the moduli space and is a copy of C2
with its canonical anti-self-dual K&hler metric. At the ‘other side’ of the moduli space, we can look
at the set [[b|| = 1, on which a = 0. From the earlier holomorphic description of M(Ez;r,l), we can
then see that what we have is total space of the bundle Og(—1,—1) or, in the case » = 2, the bundle

Op1(—2). Metrically, this latter case is the quotient of the set

by —y2b1 =0, be=yc =0
0b,01 yC Y102 Y201 } y
{02059 1 i 23 o =1+ Tl

by the U(1) x U(1)-action b - Agb, ¢ — Ajc and y — AT 'y. This determines a Kahler metric which
is related to — but not equal to — the Eguchi-Hanson metric (the canonical hyper-Kahler metric on

Op1(—2)), in that the latter has a quotient description similar to (5.1.5), but with the b parameter

(5.1.5)

missing (see [Hi2]).

The importance of the function |d| is essentially given by Remark 4.4.1, which shows that the
set |d| = 0 (i.e. d=0) is the jumping divisor for the exceptional fibre of the blowup C? — C2.
In fact, as we shall see in the final chapter, the divisor {d = 0} is itself the exceptional fibre of a
blow-up.
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REMARK 5.1.2. The index one moduli space of anti-self-dual instantons on TP’ is known to be a
cone on CP~ ([D2],[Bul]). Since M(Ez; r1)= Ml(@z, oo; 7, 1) is a framed moduli space, we must
take the quotient by U(r), acting on the fibre at oo, to obtain the unframed moduli space. This
quotient is realised, at the level of the linear algebra data (satisfying (5.1.4)), by the map

az

a,bcd H(-a—l — E)
(@bed) = e o ¢)

which gives us the unframed moduli space as the quotient of C® by the scalar action of U(1), as
required.

5.2 The Higher Moduli Spaces over C?

Before looking at the higher index moduli spaces over Ez, we first consider the analogous spaces
over C2. The discussion over C? will generalise fairly directly the one given here and, once we have
both, we will be able to describe explicitly the relationship between the two moduli spaces. We start
by recalling Donaldson’s description [D1] of the moduli space M(C?; 7, k).

Given a hermitian inner product space W of dimension k consider the set of all configurations
(a,b,¢) € R = End(W)? @ Hom(C", W) @ Hom(W,C")
satisfying the integrability equation
a1a3 — az0y +bc=10 (5.2.1)

and subject to the non-degeneracy conditions:

$0 # v € W with a;(v) = A\ v and ¢(v) = 0, (522)
2.2
30 # v € W* with af (v') = A ' and b*(v') = 0.

The moduli space M(C?;r,k) is then the quotient of this space by the natural action of GL(W)
or, equivalently, the quotient by U(W) of the real subspace satisfying the additional moment map
equation

ay,a’] + [ag, a¥] 4+ bb* —c*ec=0. 5.2.3
1 2

A configuration (a,b,c) describes a holomorphic bundle on C?, with an extension to CP? trivial at

infinity, via a monad of the canonical form
A ry B
wS(WeweC) —W

with

A= 22—ay B=(—-2z3+a; 21—a; b) (5.2.4)



$5.2

REMARK 5.2.1. The non-degeneracy conditions (5.2.2) are precisely those required to ensure that
A is pointwise injective and that B is pointwise surjective. It was observed by Helmke [Himn], with
reference to linear control theory, that there is a more general pair of non-degeneracy conditions on
the space of all configurations, which is equivalent to (5.2.2) for integrable configurations. This pair
of conditions can be written

IV C W with V£ W, a;(V) CV and imb C V,

FV C W with V #£0, a;(V) C V and V C kere,
and gives precisely the condition of stability for the action of GL(W) on the space of all configura-

tions.

In the case k = 1, the map (a,b,c) — (a,cb) € C? @ End(C") realises the quotient and thus
identifies the moduli space M(C?;,1) with C? x A, where N = {8 € End(C") | BE=0, tkA =1},
equipped with a product metric in which the first factor is the Euclidean metric on C2. The set A/
has an obvious completion AV obtained by relaxing the condition rk 3 =1 to rk 8 < 1, i.e. adding 0.
Thus, we get the completed moduli space M(C?;»,1) = C? x N/, obtained by adding a copy of C?,
with the Euclidean metric.

To handle the completions of the higher index moduli spaces, we must first introduce some
notation, to ease the discussion, and also the notion of complete reducibility of a configuration,
which provides the link between the symplectic quotient description and the algebraic quotient
description. The motivating example is that of a single endomorphism a : W — W of some hermitian
inner product space W. The moment map equation in this case is u(a) = [a,a*] and, if p(a) = 0,
then a can be diagonalised by a unitary automorphism of W. Alternatively, one has the notion
of complete reducibility, which requires that, whenever a preserves a subspace V C W, it also
preserves a complement V! C W. A linear endomorphism is completely reducible if and only if it
is diagonalisable by some linear automorphism of W, which in turn is the case if and only if it
satisfies the moment map equation with respect to some inner product on W. Since we can write
any endomorphism a : W — W in lower triangular form, with respect to a suitable basis, we can
apply the one-parameter subgroup A, = diag(1,7,7%,...) and see that lim,_,o AraA;! is diagonal.
In other words, the GL(W)-orbit of any endormorphism contains, in its closure, a (unique) orbit of
completely reducible endomorphisms. Thus, the algebraic quotient of End(W) by GL(W) is equal to
the set-theoretic quotient of the set of completely reducible endomorphisms, which is in turn equal

to the quotient of the set p=1(0) by U(W).

DEFINITION 5.2.2. A subspace V C W will be called special, with respect to a configuration (a,b,¢c) €
R, if one of the following holds:

a(V)CV (i=1,2) and imbCV (5.2.5)

a;(V)CV (¢=1,2) and V Ckere (5.2.6)

Thus, by Remark 5.2.1, the non-degeneracy conditions (5.2.2) are equivalent to requiring that

there should be no special subspaces other than the necessary ones: W, in the case of (5.2.5), and

{0}, in the case of (5.2.6). In any other situation, the subspace V' will be called properly special.
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DEFINITION 5.2.3. We shall call a configuration completely reducible if, for every V' C W, which is
special in the sense of one of the equations (5.2.5) or (5.2.6), there is a complement V' C W, which

is special in the sense of the other equation.

With this terminology, we have the following results:

LEMMA 5.2.4. If a configuration (a,b,c) satisfies the moment map equation (5.2.3), with respect to

some hermiiian inner product on W, then it is completely reducible.

PRrROOF. Given any orthogonal decomposition W = V @ V', we can write a;, b and ¢ in block form
(11) (12) (1)
a: a: b
(azzl) a:gzz)) (b(z)) (1) @),

Taking the trace of the (11) component of the moment map equation gives
(a2 + |BM[? = [|aCV|? + (]2,

where the norm comes from the usual inner product (z,y) = tr(z*y) and we use the shorthand
[aMD|? =3, ||a‘(12)||2. Thus we immediately see that V is special in the sense of (5.2.5) if and only
if V' is special in the sense of (5.2.6). Hence, the orthogonal complement of a special subspace is

also special (in the other sense) and so the configuration is completely reducible. O

LemMA 5.2.5. If (a,b,c) is completely reducible and integrable, then we can find a canonical decom-
position W =V @ V' with respect to which

red red
a; = (a'.o OA) b: (bo ) c:(c”d 0), (52.7)

a;

where a and af are simultaneously diagonalisable and the reduced configuration (a"",b"d,c"d)

18 non-degenerate and integrable.

PROOF. Speciality, in the sense of (5.2.5), is preserved by intersection, so we can find a minimum such
special V. Since (a,b, ¢) is completely reducible, there will be a complement V', which is special in the
sense of (5.2.6). Writing a;, b and ¢ in block form with respect to the decomposition W = V@V’ gives
the required form (5.2.7). The fact that the reduced configuration is non-degenerate follows from
the minimality of V' and the complete reducibility of the original configuration. The integrability
equation (5.2.1) reduces to exactly the same equation on V', while on V"' it gives [alA, a.zA] = 0. Hence,
a® and a2 will have a simultaneous eigenvector. Complete reducibility provides a complementary

subspace and so shows, by induction, that ¢® and a2 can actually be simultaneously diagonalised.

O

COROLLARY 5.2.6. If a configuration is completely reducible and integrable, then we can find a

metric on W with respect to which it satisfies the moment map equation.
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Proor. If we take the decomposition (5.2.7), the reduced configuration is integrable and non-
degenerate, so we can find an appropriate metric on V. This is an alternate way of formulating our
main result Theorem 4.3.1. If we extend it to W by requiring that the simultaneous eigenvectors of
the a® be all orthogonal (to each other and to V), then we will satisfy the moment map equation
on the whole of W. O

Lemma 5.2.5 provides an explicit way of seeing the anticipated stratification of the completed

moduli space:
k
ﬁ(Cz;r, k) = U Sh,l-
=0

In our algebraic description, the stratum S, is the quotient of the set of configurations for which
the minimum special subspace V has fixed dimension I. Such a configuration determines (and is
determined by) the non-degenerate reduced configuration (a"", bred, c"‘i), of index I, together with

the k — I points in C? given by the eigenvalue pairs for a®, a2. In other words, as we expected
Sk = M(C?%; 1) x S*-H(C?).

Lemma 5.2.4 and Corollary 5.2.6, above, show that the completed moduli space ﬁ(cz; r,k) is
also the set-theoretic quotient by GL(W) of the space of integrable, completely reducible configura-

tions, This then enables us to prove the promised result

THEOREM 5.2.7. The completed moduli space M(C2; 7, k) is the algebraic quotient by GL(W) of the

set of integrable configurations (a,b,¢) € R and, hence, is an algebraic space.

Proor. With the above lemmas, the theorem follows from the fact that every orbit contains, in
its closure, a canonical completely reducible orbit (i.e. orbit of completely reducible configurations)
and that completely reducible orbits have disjoint closures.

We can prove the first of these facts by induction, taking a general integrable configuration
(a,b,¢) and finding a one-parameter subgroup A, : C* — GL(W), whose orbit converges to a com-
pletely reducible configuration. If (a,b,c) is non-degenerate then A, = 1 will do. If not, then there
is a decomposition W = W' & (v) such that

either ) a.-=(‘35 :)b=('g)c=(c' ‘)
& (i) a.-:(‘f f)bz(‘f)cz(a 0).

Our inductive hypothesis is that we can find a one-parameter subgroup A, : C* — GL(W') such
that lim,_,q AL (a},d', ¢') is completely reducible. Setiing

(A0
A‘r - ( 0 TN) 1
we see that im,_,o Ar(a;, b, ¢) is completely reducible, provided N € Z is chosen so that
either (3) N<oO0and 7 VA -0 (in End(W") as 7 — 0
or (%) N>Oand‘rN(/\'T)_1—>0as‘r—>0.

These conditions are easily satisfied, because A, can be written as a diagonal matrix diag(r™¢) and

the set of n; is finite, hence bounded above and below. O
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5.3 The Higher Moduli Spaces over c?

We now present an directly analogous description of the completed moduli spaces ﬁ(ﬁz; r k).

Hence, we return to considering configurations
(a,b,¢,d) € R = Hom(Wy, Wp)? x Hom(C", Wp) x Hom(W;, C") x Hom(Wy, W1),
which satisfy the integrability condition
aidas — azda; + be = 0. (5.3.1)
In this case, we have two moment map equations

> aia* +bb* =1 (5.3.2)

Z [da; , (das)*] — Z ai*a; + db(db)* — ¢*e = -1, (5.3.3)
i i

corresponding to the fact that the automorphism group is the product of two general linear groups.
As in the previous section, we can describe the completed moduli space in a manner which is
independent of the metric, using a notion of complete reducibility together with an extra condition,

which we have encountered before.

DEFINITION 5.3.1. Given a configuration (a,b,¢,d) € R, we say that a pair of subspaces Vo C Wy,
V1 C W is special if dim Vy = dim V; and one of the following conditions holds

a‘i(Vi) C Vo, d(%) CW,imbCV (5.3.4)
at'(Vl) g Vb, d(I/O) g I’l) I,1 c kerc (5'35)

By Remark 4.1.4, the non-degeneracy conditions (S1) and (S2) of §4.1 state that there are no
propetly special pairs (Vp, V1) (i.e. other than (Wo, W;) for (5.3.4) and (0, 0) for (5.3.5)).

DEFINITION 5.3.2. A configuration will be called completely reducible if for every pair (Vp, V4),
which is special in the sense of one of the equations (5.3.4) or (5.3.5), there is a pair of complements

(Vo, V), which is special in the sense of the other equation.

DEFINITION 5.3.3. A configuration (a,b,c,d) will be called effective if a;, a; and b are jointly
surjective, i.e. ay(W;) @ a(W1) @ b(C") = Wp.

Recall that, in §4.2, we introduced a second space of configurations R’, and a map p: R — R'.
The completed moduli space is more naturally a quotient of a subspace of R'. However, the space
of effective configurations in R is precisely the set on which p is injective and so, for effective

configurations, we can equally well work in R (cf. Remark 4.1.5).

We now prove the analogues of Lemma 5.2.4, Lemma 5.2.5 and Corollary 5.2.6 over the blownup

plane €2,
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LEMMA 5.3.4. If a configuration (a,b,c,d) satisfies the moment map equations (5.3.2) and (5.3.3),

then it is completely reducible and effective.

Proor. We immediately see that (5.3.2) implies that the configuration is effective. Indeed, given
any metric on Wi, a configuration is effective if and only if there is a metric on Wy with respect to
which it satisfies (5.3.2). To see that the configuration (a, b, ¢, d) is completely reducible, we consider

a general orthgonal decomposition W; = V; @ V; and write the configuration in block form:
(1) _(12) (1) (11)  (12)
a; a; b d d
(aZn) a(zz)) ( b(z)) (M) @) ( 21 d(zz)) .
] ]
Taking the trace of suitable components of the equations (5.3.2) and “(5.3.2) + (5.3.3)” yields

a2 + (a2 + |pD|? = dim Vo,
a1 + 112D |? + B * = dim V5,
and
”d(u)a(u) +d(12)a(22)”2 + ”a(u)”z + ”b(l)llz + ”d(ll)b(l) +d(12)b(2)”2
- ”d(ZI)a(ll) + d(zz)a(n)”z + ||a(21)||2 o ”c(1)||2

from which we see that a(?1) = d(21) = ¢(1) = ¢ if and only if a(1?) = d(12) = p(1) = 0. In other words,

(Vo, V1) is special in the sense of (5.3.5) if and only if (Vy, V) is special in the sense of (5.3.4). O

LEmMMA 5.3.5. If (a,b,c,d) s completely reducible, effective and integrable, then we can find a
decomposition W; = V; @ V; with respect to which
a,"."d 0 bnd . dred 0
a,-:(‘o a'iA) b=( 0 c=(c*? 0) d= 0 dA (5.3.6)

a"", b‘red’ fed’ dred)

with a® and d* simultaneously diagonalisable and the reduced configuration ( c

non-degenerate and integrable.

Proor. Choose a pair of subspaces (Vp, V1), which is special in the sense of (5.3.4) and has minimum
dimension among all such special pairs. Since the configuration is completely reducible we can find
a pair of complements (Vy, V{'), which is special in the sense of (5.3.5). Thus we have decompositions
of Wy and W;, with respect to which we can write (a,b,¢,d) in the required block form.

The reduced configuration is non-degenerate because (Vp, V1) is minimal and the original con-
figuration is completely reducible. The integrability equation (5.3.1) reduces to the same equation
for the reduced configuration, so this is also integrable. On the other hand, if we restrict (5.3.1) to
Vs and VY, then we get the equation

AgA A _ AgA_ A _
a; d® ay' —ayz d® a7 =0.

Now, Lemma 4.1.1 and Remark 4.1.2 provide us with a generalised notion of a simultaneous eigen-
value for such a triple of maps (alA, ad, dA). The general ‘eigenvector’ should be a pair of non-zero

vectors vg € Vg, v1 € V{ such that a'-A (v1) is proportional to vo and da (vo) is proportional to v,.
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The lemma only explicitly gives us v;, however we can simply take vo to be a non-zero vector in
(af (v1), a8 (v1)) or, if this is trivial, in (dA)—l('v1). As long as (a(v1),af (v1)) # 0 (which is in
fact the case here) such an ‘eigenvector’ has a well defined ‘eigenvalue’, which is the point in c? given
by (A1,A2) and [py1, po] from the lemma. Since the original configuration is completely reducible,
there exist complements to (vo) and (v1) in Vg and V{, which are preserved by a? and d® and thus,
by induction, these can be diagonalised. The fact that the configuration is also effective prevents

the space <a1 (v1), a,z(vl)) from ever being trivial. O

COROLLARY 5.3.6. If a configuration is completely reducible, integrable and effective, then we can

find metrics on Wy and W, with respect to which it satisfies the moment map equations.

ProoF. In the decomposition (5.3.6), the reduced configuration is integrable and non-degenerate, so
we can find appropriate metrics on Vg and V;. If we adjust all the pairs (vo, v1) so that a;(v1) = pivo,
with |p1]? + |uz|> = 1 and then extend the metrics to Wo and Wi so that the vos and vs are
orthonormal and orthogonal to Vp and V; respectively, then the full configuration will satisfy both

the moment map equations. O

Thus, we see that the completed moduli space can be described as the quotient of the space
of all completely reducible, effective and integrable configurations by the full group of automor-
phisms. Furthermore, just as in the case of C2, we see an explicit description of the stratification of
M(Ez; 7, k). Here the stratum Sy is determined by those configurations for which the spaces of the
minimal equidimensional special pair (V, V1) both have dimension I. For such configurations, the re-
duced configuration determines a true instanton with ¢; =1 and the ‘eigenvalues’ of (a,lA, ad, dA),as

described in Lemma 5.3.5, determine k — ! points in C?, showing that
Sk = M(C%n1) x S*(C?).

We should note here that this product decomposition of the strata does not seem quite as canonical as
in the case of C%, because the pair (Vp, V1) is strictly just minimal, rather than minimum. However,
the pair (V, V{) is in fact canonical, being spanned by ‘eigenvectors’ of the configuration and so,
in the presence of the metrics on Wy and Wj, we have a canonical choice for (Vp, V1) given by the

orthogonal complements.

Finally, we have the analogue of Theorem 5.2.7:

THEOREM 5.3.7. The completed moduli space M(Ez;r, k) is the algebraic quotient by GL(W,) x
GL(W1) of the set of effective integrable configurations (a,b,c,d) € R and, hence, is an algebraic

space.

PRrOOF. As before, we show that, for every effective integrable configuration a,b,c¢,d), there is
a one-parameter subgroup A, : C* — GL(W,) x GL(W1), whose orbit converges to a completely
reducible configuration. In addition, the completely reducible orbits have disjoint closures, so the al-
gebraic quotient is the set-theoretic quotient of the space of completely reducible, effective, integrable

configurations, as required.
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If (a,b,c,d) is non-degenerate, then we can take A, = 1. Otherwise, from the original non-
degeneracy conditions (N1) and (N2) at the start of §4, we can find decompositions W; = W @ (v;)
such that

either (i) a.-:(c:):' :)bz(’;)w(c' *)d=(‘f)' :)
o (i) a.-=(‘ff 2)5:(';') —-— o)d:(‘f 2)

Our induction hypothesis is that we can find a one-parameter subgroup A} : C* — GL(W,)x GL(W;)
such that lim,_,o AL (a’, b, ¢',d’) is completely reducible. Setting

= (e ) (5 ).

we see that lim,_,¢ A-(a, b, ¢,d) is completely reducible, provided that (No, N1) € Z x Z is chosen so
that

either (i) Np<O0andr ™ (Ar)g — O, 7T (A7), —#0asT—0
or (i) No > 0and ™ (/\:_)1_1 — 0, 7M1 (/\',);1 —0as7—0.
As before, both these conditions are easily achieved. O

REMARK 5.3.8. The fact that we can complete the moduli spaces M(CZ?; 7, k) and M(C?;~, k) by
adding points that look like ideal instantons does not hold simply at the level of the linear algebra
data, but can also be seen when we look at the corresponding monads. A completely reducible,
but degenerate, configuration defines a three-term complex which splits into the direct sum of two
complexes. The first is the monad determined by the reduced configuration, which gives the “true
instanton” part of the ideal instanton. The second is a complex which is exact except over those
points in the base which make up the singular part of the ideal instanton. Indeed, this complex
further splits into complexes (one for each point) which are resolutions of the structure sheaves of
the singular points. To be more explicit, over C2, each summand is of the form
o0t
with
a=<:;:;:), B=(—22+az #1—a1),
which resolves the structure sheaf of the point (a;,a;) € C2. Similarly, over C?, each summand is
of the form
0a0o(-1)-% 0t L oe0Q)

where O(1) is the restriction of Og:(0,1) and, now,

ai —Y2
P T1 — da1 0 ,3 . T2 az —¥1 —a1)
- as n |’ T\dyr o dyz w2

Lo — daz 0

This complex is a resolution of the structure sheaf of the point ([a;, a5], (day,da,)) € €2 c CcPlxC2.
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REMARK 5.3.9. We can see from the previous remark that it would be appropriate to define an “ideal
holomorphic bundle” with ¢; = k to be a pair (£, A), where € is a holomorphic bundle with ¢; =1
and A is the direct sum of the structure sheaves of k —I (not necessarily distinct) points. Note that,
as the two-term complex of coherent sheaves, with £ in position 0, A in position 1 and the trivial
map between them, this does indeed have ¢z = k and, by the previous remark, it is the cohomology
of the three term complex defined by a degenerate, completely reducible configuration. It is a
trivial observation that the Hitchin-Kobayashi correspondence extends to an equivalence between
the spaces of ideal instantons and of ideal holomorphic bundles. The results of this chapter have
demonstrated that these spaces are, in fact, natural completions of the instanton and holomorphic

bundle moduli spaces.
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6 The Effect of the Blow-Up on the Moduli Spaces

In this chapter, we relate the moduli spaces over C? and C? by exhibiting a surjective map
o ! m(éz;'r, k) — M(C?;,k), which is a birational equivalence. We show how this map should
be interpreted as taking the direct image under the projection = : ¢z - c? (or its extension = :
! — P?). We observe that, in the case k = 1, m, is a blow-up of M(CZ?;7,1) at the boundary
point corresponding to 0 € C? and we make a suitably generalised conjecture concerning the case

for general k.

8.1 The Direct Image Map

At the level of the linear algebra data, a map my : R — R presents itself very naturally, namely
wy : (a,b,¢,d) —+ (da,db, c),

where we take the space W in R to be W; in R. Indeed, this map has already appeared as part
of the map p: R — R’ of §4.1. We can easily see that wx preserves the notion of integrability
and that it is equivariant with respect to the respective GL(Wy) x GL(W1) actions (the action on
R being trivial for the GL(W)) factor). Due to the results of Theorems 5.2.7 and 5.3.7, these two

conditions are sufficient to ensure that w4 induces a map
Ty : M(C?;7, k) — M(C?; 7, k).

Indeed, these conditions would have to suffice, since 74 does not preserve the moment map equations

nor the notion of complete reducibility.
To see that w, should be interpreted as a direct image, we have to look at the relationship
between the respective monads. Let us write
M(a,b,c,d) ULV E W
M(a,b,c) : U2y 2w
for the monads over C? and C? (or £! and CP?) in the canonical forms (C1) (of §3.4) and (5.2.4).

For the purposes of the subsequent discussion, we shall include the cases where the linear data is

degenerate and shall call the resulting three term complexes degenerate monads. Thus

17 =W ® 021(—1, 0) O Wo®O0Om (0, —1)

V=WooW10We®W:6C") ® Ox:
W = Wo ® 05:1(1,0) @ Wy ® Og:1(0,1)
ai &3 —Y2
A= an” w | e 8- (52 oms om —mm b,
2y —dazzs 0

cag 0
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while
U=w;® Op:(—-l)

Y= (W1$W1@C') ® Opa
W=w;® Op:(l)

%1 —a; 23
A= | 23 —az23 and B=(—(2z —az23) (®1—a123) bzs).

c&3

Given this notation, we can write down a monad map
O : M(a,b,c,d) — =* M(da,db,c)

given by = % ~ s
u — — W
lx

y
b
U T4 v T5 ow

where, noting that #*Opa(1) = Og:1(1,0), we take

01 0 00
é=(1 0) =10 0 0 1 0 and x=(d®1 1®(-3)).
0 0 0 01

Now the map © has the following important property.

PROPOSITION 6.1.1. Fiz p € &' and denote n(p) by q. Suppose that Hp(a, b, ¢, d) is non-degenerate
and that either s, # 0 or d is an isomorphism. Then Mg (da,db,c) is non-degenerate and ©, induces

an isomorphism between the respective cohomology spaces.

Proor. Firstly, considering the forms of A, and .Z,,, we see that the condition that .Z,,(a, b, c,d) be
injective includes the condition that A,(da,db,c) be so. Secondly, if Ep and x, are both surjective,
then B, must also be. But x, is surjective if either s, # 0 or d is an isomorphism. Finally, observe

that ker B, Nker 4, is identified with
{(u,v) € Wo x Wols(y1u + y2v) = d(31u + 32v) = 0}

If either s, 3 0 or d is an isomorphism, then this is just {(u, v)|y1u+y2v = 0} and, since (y1,y2) # 0,
this space has dimension k. However, this contains 1m.Z,, Nker 4,, which also has dimension k, so
these two spaces are the same. Thus, the map (1,6,,). : (ker B/im /T) — (ker B/ im \A) is injective and

hence an isomorphism, since the dimensions agree. O

This proposition has two immediate consequences. Firstly, suppose that the bundle £ over B1is
the cohomology of the non-degenerate monad M (@, b,¢,d) and that d is an isomorphism. As shown
in §3.6, this means that £ is trivial on the exceptional line E in T, but we can now see more, namely
that £ & n*€ , where £ is the vector bundle over CP? defined by the monad M (da,db,c). Hence,

Ty (E) = £ and, thus, on the open subset of M(Ez;r, k) given by detd # 0, m, does correspond to
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taking the direct image. Secondly, even if d is not an isomorphism, on the set on which s # 0 (i.e.
on X! \ E) we still have £ = 7*E. Of course, here 7 is actually a bijection, so we are really just

saying that £ 2 £ away from where the blowing-up occurs.

Observe further that, if we have an ideal holomorphic bundle/instanton Ay = (A;p1y .oy Pr-t),
then, by considering A} as given by linear algebra data in the comletely reduced form (5.3.6), we
see that my(4s) = (me(41); 7(p1), - .., 7(pk_1)). From the previous observation, m,(4;) is an ideal
bundle, which can only be singular at 0 € C2, and whose true part is isomorphic to 4; away from
the blowing-up. At the level of ideal bundles, this is as much as one could hope to mean by saying

that =, is the direct image map.

6.2 The Relationship between the Moduli Spaces

We now look in more detail at the map n, :WI—(EZ;r, k) — M(C?; »,k) induced by (a,bd,¢c,d) —

(da, db,c) on the linear algebra data. The following facts are now easy to see

ProrosiTION 6.2.1.

(i) m is a bijection between the open sets U C M(Ez;r, k), determined by the condition “d is an
tsomorphism?”, and U C ﬁ(Cz;r, k), determined by the condition “a;, az and b are jointly
surjective”,

(ii) m, maps the complement of U onto the complement of U.

(iii) For A € m(éz;r, k), the multiplicity of the singularity of «, (Xk) at 0 € C? is at least the

corank of d.

ProorF.

(i) Restricted to the open subset of R on which d is an isomorphism, 7 : R — R is onto and
precisely realises the quotient by GL(Wp). In other words, d gives an identification Wy = W,
and thus reduces the linear algebra data to precisely that in R. Under this quotient, there is an
exact correspondence between the GL(W,) actions, the integrability conditions and, especially,
the notions of complete reducibility. Hence, we must simply impose the effectivity condition on

R to see that U and U are really identical, with the natural identification given by m,.

(ii) If d is not an isomorphism, then clearly da;, da; and db cannot be jointly surjective. To see
further that =, is onto, we observe that an ideal bundle (4;;q1,...,qx_1) over C? is equal to
Ty (1r‘ (41);p1y- .-y p;._;) over C2, provided that x(p;) = ¢;, which can easily be arranged.

(iii) If A, € I\_II-(EZ; 7, k) is determined by the linear data (a, b, ¢, d) then im d will be a special subspace
for (da, db, c) and, hence, for a completely reducible configuration (a’, ¥, ¢') representing , (4}),
there will then be a complement of im d on which a’, b’ and ¢’ all vanish, providing at least as

many singular points at 0 € C? as the codimension of im d. O
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REMARK 6.2.2. The “at least” in part (iii) cannot be strengthened to “exactly”, as is shown by the

following completely reducible configuration for I\_II'(Ez; 2,3):

01 01 0 1 0 O
0 0 az=|0 0 1 d={0 0 0
1 0 1 0 0 0 0 0
0
b=| -1 0 c=(g (1) (1))
0 1

The completely reducible configuration equivalent to (da,db,c) is (0,0,0), so that the multiplicity

ay =

o OO

of the singularity at 0 is 3, while the corank of d is 2. At the level of sheaves, this means that,
to determine the singularity of the direct image of a bundle down a blow-up, it is not sufficient to
know the restriction of the bundle to the exceptional line. Friedman & Morgan [FM;Rem 5.4]
have observed that, in the case of rank 2 bundles, when the splitting type £|g = O(—n) @ O(n) is
determined by n = corank d, the multiplicity of the singularity at 0 lies between n and n?2.
Proposition 6.2.1 shows that M(C2;», k) and M(C?; r, k) are birationally equivalent and that the
subset of M(C?; r, k), on which this equivalence fails to be a bijection, consists precisely of those ideal
instantons which have at least one singular point at 0 € C2. This set is just a copy of M(C?;r, k —1)
embedded by adding a singularity at 0. Denote this subset by M(C?; 7,k — 1;0). Then we actually

believe that a much more precise result is true.
CONJECTURE. The map =, : M(C?;# k) — M(CZ;»,k) is a blow-up of the latter space along the
subspace M(C?; 7,k — 1;0).

This conjecture can certainly be verified in the case k& = 1, when M(Cz;r,O;O) is just the

boundary point 0.

PROPOSITION 6.2.3. The map =, : M(C?;7,1) — M(C?;7,1) is a blow-up of the latter space at the
point 0 in the boundary C2.

PROOF. We need to show that the link of 0 in M(C?;r,1) is the same as x;1(0). Now, from §5.1,
this set is simply the quotient of

{(a,b,0,0,c) € R' | bc =0, (a,d) # (0,0)}

by the C* x C*-action a — AgA1a, b — Agb and ¢ — Ajc. If we apply the transformation (a,b,c) —
(a, cb), then we see that we have described precisely the C* quotient of the space (C2 x A) \ (0, 0),
which is precisley the required link, since M(C?;7,1) = C2 x N. O
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