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Abstract

In the theory of random walks, it is notable that the central bi-
nomial coeflicients (2:) count the number of walks of three different
special types, which may be described as ‘balanced’, ‘non-negative’
and ‘non-zero’. One of these coincidences is equivalent to the well-
known convolution identity
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This article brings together several proofs of this ‘ubiquity of central
binomial coefficients’ by presenting various relations between these
classes of walks and combinatorial constructions that lead to the
convolution identity. In particular, new natural bijections for the

convolution identity based on the unifying idea of Catalan factoriza-
tion are described.
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1 The ubiquity of central binomial coefficients
A (random) walk of length N is a sequence w = (£,)N_; of elementary

steps € € {+1,—1}, which we shall call, respectively, up-steps and down-
steps. The lattice path corresponding to the walk is given by the partial



sums S,(w) = Y.I_, &; with diagonal steps as shown in Figure 1. The
usual convention is that the initial value/level is So = 0, although we shall
occasionally speak of walks starting at levels other than 0. It is notationally
convenient to encode a walk as a binary word, i.e. a sequence w = (an)"_,
of letters a € {1,0}, by writing 1 for +1 and 0 for —1.

Figure 1: The lattice path of the walk w = 1100011011.

For the purposes of this article, we introduce the following terminology
for certain special types of walks.

Definition 1 A walk w of length N is

(i) balanced if Sy(w) = 0, i.e. it contains the same number of up-steps
as down-steps. Hence, a balanced walk has even length.

(i) non-negative if S,,(w) > 0, for 1 <n < N, i.e. the level of the walk
never falls below its initial level.

(iii) non-zero if S, (w) # 0, for 1 <n < N, i.e. the walk never returns
to its initial level. A non-zero walk is either positive or negative de-
pending on whether S, (w) > 0 or S,(w) < 0 for all n > 1. Reversing
all the steps, i.e. reflecting the graph in the horizontal axis, provides
a natural bijection between the positive and negative walks.

Figure 2 shows all the balanced, non-negative and non-zero walks of
length 4 as lattice paths and illustrates the following general result, well-
known in the theory of random walks (cf. [1]).

Theorem 1 The central binomial coefficient (2:’) counts the number of
(i) balanced walks of length 2n,
(ii) mon-negative walks of length 2n,

(iii) non-zero walks of length 2n.

Proof Put A, = (2:) The number of balanced walks is clearly equal to

A,,, because we must choose precisely n of the 2n steps as up-steps. A com-
mon way to prove the rest of the theorem is via the ‘ballot problem’ setting



Balanced walks:

Non-negative walks:

Figure 2: Three special types of walks of length 4.

([1]). By a standard reflection argument, the number of non-negative walks
with m up-steps and k down-steps, where k < m, is

m+k m+ k
B = - . 1
i = (") - (0 ) (1)
We can then easily count all non-negative walks of length 2n, obtaining
> B@2n - k,k) = A,.
k=0

Furthermore a positive walk of length 2n consists of an up-step followed by
an arbitrary non-negative walk of length 2n — 1. Therefore the number of
positive walks of length 2n is equal to the number of non-negative walks of
length 2n — 1, which is

n—1
Y B@n -1 kk)= (2” - 1) = 14,.

n
k=0
Hence the number of non-zero walks of length 2n is also A4,,. a

The problem of counting non-negative walks also arises in the repre-
sentation theory of the symmetric group. In this context, such walks are



known as (two-letter) Yamanouchi symbols ([3] Chap. 7), and (1) gives the
dimensions of certain irreducible representations of the symmetric group
Sntm-

A more combinatorial proof of Theorem 1, which constructs explicit
bijections between the sets of walks, is sketched by Feller ([1] Problem
I11.10.7) and attributed to E. Nelson.!

Proof [Nelson’s combinatorial proof of Theorem 1]

First, we describe a bijection between balanced walks and non-negative
walks. Take the ‘initial’ segment of a balanced walk to be the part that ends
at the first time it reaches its minimum value. Take the ‘final’ segment of a
non-negative walk to be the part that starts from the last time it takes half
its final value. The bijection takes the initial segment of a balanced walk,
reverses the signs and order of the steps, and places it at the end of the
walk. The inverse bijection takes the final segment of a non-negative walk,
reverses the signs and order of the steps, and places it at the beginning of
the walk.

Second, we describe a similar bijection between balanced walks and non-
zero walks. Take the ‘initial’ segment of a balanced walk to be up to the
first time it reaches either its minimum value, for walks that start with
a down-step, or its maximum value, for walks that start with an up-step.
Take the ‘initial’ segment of a non-zero walk to be up to the last time it
reaches half its final value either with an up-step, for positive walks, or with
a down-step, for negative walks. The bijection and its inverse reverse the
signs and order of the steps in the initial segments. a

The bijections described above are constructed by factorizing one walk
into two pieces and using the pieces to construct a new walk. In the process,
significant global changes are made to the walks. The main goal of the
present article is to describe are more subtle factorization of a walk called
Catalan factorization, which may be used to construct bijections that only
make local changes to the walks, i.e. only reverse the signs of certain critical
steps.

2 Factorization and convolution identities

Before describing Catalan factorization, we discuss some other aspects of
the relationship between factorization and enumeration of walks.

As a first example, observe that any walk w of length IV has a unique
factorization w = wwv into a balanced walk u of length 2k followed by a
non-zero walk v of length N — 2k. This is done by finding the ‘last return

IStrictly, only the first argument is sketched, but the two are sufficiently similar to
reasonably attribute both to Nelson.



to 0°, i.e. the last value of k for which Sox(w) = 0. For example, for the
walk w in Figure 1, we get v = 11000110 and v = 11. If N = 2n, we may
use Theorem 1 to deduce the convolution identity

> ApAn g =22 (2)
k=0

as follows. In the sum, the first factor counts the number of balanced
walks of length 2k, while the second counts the number of non-zero walks
of length 2n — 2k and the total 227, of course, counts all walks of length
2n. A moment’s thought shows that (2) is actually equivalent to the fact
that A,,_ counts the number of non-zero walks of length 2n — 2k, because
whatever this number is, it is the unique correct second factor for this
convolution identity.

Now (2) has an entirely independent proof as follows. If we introduce
the generating function A(t) for the central binomial coefficients

A(t):ZAnt":1+2t+6t2+20t3+---,

n=0

then (2) is equivalent to the identity A(t)%2 = (1 —4¢)7!, or

A(t) = (1— 41)°3, (3)

But now we may simply apply Newton’s expansion formula, i.e. the bino-
mial theorem with fractional powers, to the right-hand-side of (3) and see
that the coefficient of t" is A4,,.

A second example is the use of factorization to count excursions.

Definition 2 An excursion is a walk which is non-negative and balanced.
These are also known as Dyck paths. The corresponding binary words are
Dyck words.

It is well-known, e.g. as a special case of (1), that the number of excursions
of length 2n is the n-th Catalan number

C, An. (4)

_ 1
 n+1

We include here the standard derivation of the generating function for the
Catalan numbers for completeness.

Note that excursions may be counted recursively, starting from the ob-
servation that every excursion w has a unique factorization w = 1s0t, where
s and t are excursions of shorter length. In this case, the point at which ¢
starts is the first time that the excursion returns to 0. An example of such
a factorization is illustrated in Figure 3.



Figure 3: Factorizing an excursion into two shorter excursions.

Thus, if we chose to define C), to be the number of excursions of length
2n, we would have the convolution identity

" t) —1
Y CiCrnk=Cnpy = C(t) = e -1

k=0

(5)

where C(t) = ), <, Cnt™ is the generating function. This equation for C(t)
is easily solved to give

1—(1—4t)2
Clt) = ————— 6
(v - (6)
and Newton’s expansion formula then recovers (4).
It is worth noting in passing that the factorization w = 1s0¢ gives rise
recursively to the well-known bijection between excursions of length 2n and
binary trees with n internal nodes (cf. [2] and [5] 2.3.1 Exercise 6).

There are two other convolution identities which involve C,, and A,
and which follow from factorizations. Before describing them, note that
reflecting the whole walk gives a bijection between the number of balanced
walks that start with a down-step and those which start with an up-step.
Hence the number of balanced walks of length 2n that start with a down-
step is %An. The trivial walk of length 0 may be treated as a degenerate
case, provided one is careful to interpret %AO as 1 and not %

First, observe that every balanced walk has a unique factorization into
an excursion followed by a balanced walk that starts with a down-step or
has length 0. Thus

éck@flnk) a4y = o0 (2 ) —a0. @

Second, observe that every balanced walk w of positive length that starts
with a down-step has a unique factorization w = 0sl¢, where s is an arbi-



trary balanced walk and ¢ is an excursion. Thus,

zn:Akcn,k =A== AWCH) = 22— (8)

k=0

Note that from (7) and (8) it is possible to deduce (3) and (6). On the other
hand, by repeatedly applying the two factorizations above, we may identify
in any balanced walk, certain distinguished or critical steps, arising as the 0
and 1 in the second factorization, between which the walk is an excursion.
It turns out that this equivalent to finding the Catalan factorization, which
can actually be defined for any walk and which we describe next.

3 Catalan factorization

Definition 3 For any walk w define a critical down-step to be the first
step to each level less than the initial level, and a critical up-step to
be the last step from each level less than the final level. The Catalan
factorization of a walk is obtained by replacing the critical steps (up or
down) by a neutral symbol z.

The remaining sequences of 0’s and 1’s that occur between two con-
secutive z’s are always excursions. An example of Catalan factorization is
shown in Figure 4. Figuratively speaking, the critical steps are those illu-
minated when light is shone from the left below the initial level and from
the right below the final level; the intermediate excursions are the parts of
the walk that remain occluded.

Figure 4: A walk with Catalan factorization z21011002z10z10221010.

The key feature of the Catalan factorization is that all the z’s that
represent down-steps in the original walk precede all the z’s that represent
up-steps. Therefore, to recover the walk from its Catalan factorization, it
is necessary to know just one additional piece of information, namely, any
one of the following quantities which we refer to as ‘characteristic numbers’:

(i) the number ng of critical down-steps, i.e. the difference between the
initial and minimal levels,



(ii) the number n; of critical up-steps, i.e. the difference between the
minimal and final levels,

(iii) the number ng — ny, i.e. the difference between the initial and final
levels.

These numbers satisfy the following constraints

(i) np < |wl|, (the total number of z’s in w)

(i) ny < |wl,
(iii) |no —n1| < |w|: and ng — n1 = |w|. (mod 2).

Definition 4 A Catalan word is a word in the letters {0,1, 2}, for which
each mazimal segment in {0,1} is a Dyck word.

A Catalan word is precisely the sort of word that may occur as the
Catalan factorization of a walk. We may summarize the above discussion
as follows.

Proposition 1 Given any Catalan word and any value of one of the char-
acteristic numbers ng, m1 or ng — ny, which satisfies the corresponding
constraint, there is a unique walk w with the given Catalan factorization
and the given value of that characteristic number.

Using this we may immediately find bijections between sets of Catalan
words and sets of the various types of walks that we have considered earlier.
Proposition 2 Catalan factorization provides natural bijections between

(i) Catalan words of length 2n,
(ii) balanced walks of length 2n,

(iii) non-negative walks of length 2n.

These restrict to natural bijections between

(i’) Catalan words of length 2n that start with z,

(ii’) balanced walks of length 2n that start with 0,
(iii’) positive walks of length 2n.
Proof For the first part, note that a walk is balanced if and only if
no — ny = 0, while a walk is non-negative if and only if ng = 0. Hence in
both cases the Catalan factorization determines the walk by Proposition

1. The composite bijection between non-negative and balanced walks was
described by Viennot in [6].



For the second part, note first that if a balanced (or any) walk starts
with 0, then this will certainly be a critical down-step, while conversely in
the Catalan factorization of a balanced walk the first z will always represent
a down-step. On the other hand, a non-negative walk is positive, if and
only if the first step is a critical up-step. O

One other feature of Catalan words is that we may add a z at the
beginning (or end) of the word and it remains a Catalan word. Conversely,
given a Catalan word that begins (or ends) with z, we may remove this z
and be left with a Catalan word. Thus we have the following.

Proposition 3 The number of Catalan words of length N that begin (or
end) with z is equal to the number of Catalan words of length N — 1.

Corollary 1 The number of Catalan words of length 2n is A,, while the
number of length 2n — 1 is %An.

Proof The first part is immediate from the first part of Proposition 2,
while the second follows from Proposition 3 and the second part of Propo-
sition 2, since the number of balanced walks that start with 0 is precisely
half the total number of balanced walks, by reflection. O

Proposition 2 essentially provides the promised combinatorial proof of
Theorem 1 via Catalan factorization, because we may easily extend the
bijection between positive walks and balanced walks that start with 0 to a
bijection between non-zero walks and all balanced walks as follows. Starting
with a negative walk, first reflect it, then take its Catalan factorization; after
reinterpreting it as a balanced walk, reflect again to obtain a balanced walk
that starts with 1. For example, the ordering of the walks in Figure 2
precisely reflects the bijections constructed via Catalan factorization.

An alternative strategy, which may be used to construct the same bijec-
tion between non-zero and balanced walks in a seemingly more symmetric
way, was given by Kleitman [4].? This strategy compares two copies of a
non-zero walk, the first with initial value zero and the second translated
vertically so that the final value becomes zero. Working backwards from
the end, find the first step that takes the second walk further away from
zero than the first walk is at the same time. Define a new second walk by
reversing the sign of this step and repeat the process. The process stops
when the new second walk is balanced. An example is shown in Figure 5;
the bold line marks the step to be reversed at each stage.

2Strictly, Kleitman constructs a slightly different bijection using the same strategy.



Figure 5: Kleitman’s strategy applied to w = 1101101101.

4 Further uses of Catalan factorization

Following Viennot [6], we may prove (4) itself combinatorially using Cata-
lan factorization, by constructing a bijection between Catalan words of
length 2n and pairs consisting of a Dyck word of length 2n and an integer
r, 0 < r < n. Suppose we start with a Catalan word w of length 2n. If
there are 2k occurrences of z, we split w immediately after the k-th z to
obtain two Catalan words. Replace the z in the first one of these words by 1
to obtain u, and replace the z’s in the the second one by 0 to obtain a word
v. Then uw is a Dyck word. We let r denote the number of occurrences of
1 in uw. This is a bijection, as r identifies where the split has to be made
in the Dyck word to go back to the original Catalan word by means of the
juxtaposition of the Catalan factorizations of u and v.

We conclude with three direct combinatorial proofs of the convolution
identity (2), all based roughly on the idea of dividing the Catalan factor-
ization of a walk into initial and final segments for which the z’s are to be
interpreted as, respectively, all down-steps and all up-steps.

Proof [Proof 1] Consider the Catalan factorization of a walk of length 2n
and suppose that it has the form w = uzv, where the given z is the last z
which represents a down-step. Then u and v are both Catalan words, and
all the z’s in u are down-steps, while all the 2’s in v are up-steps. Hence
knowing u and v determines w. Such a factorization is possible unless all
the z’s in w represent up-steps, in which case w itself determines the walk.
Writing aj for the number of Catalan words of length k, this counting
procedure yields the formula

N

oN :aN+Z(lk,1(1N,k (9)
k=1

When N = 2n, Corollary 1 can be used to convert this to (2). The case
N = 2n — 1 yields a slightly more complicated formula, which proves (2)

10



recursively. O

This proof has the disadvantage that the counting method does not well
reflect the convolution identity (2).

Proof [Proof 2] Consider again the Catalan factorization w of a walk of
length 2n. If the number of critical down-steps is even, then write w = ujus,
where the last letter of u is the z representing the last critical down-step,
or wy is trivial if there are no critical down-steps. In this case, (u1,us) is
a pair of Catalan words of even length and w, if non-trivial, ends with
z. The original walk can be recovered from (u1,us) because all 2’s in u;
represent down-steps, while all 2’s in us represent up-steps.

On the other hand, if the number of critical down-steps is odd, then
write w = vivy, where the last letter of vy is the z representing the first
critical up-step. In this case, v; represents a walk asOtl, where s and ¢
are excursions and « is either empty, or has even length and ends with a
critical down-step. If we replace v; by the Catalan word v} that represents
the rearranged walk a1s0t, then (v],v2) is a pair of Catalan words of even
length and v} ends with the non-trivial excursion 1s0f. Thus we obtain
precisely the pairs of even Catalan words that were not obtained in the
first case. Note that the pair (v}, v2) determines the original walk, because
the factorization 1s0t of the final excursion in v{ is uniquely determined, as
observed in Section 2. An example of this second case is shown in Figure 6;
the additional modification takes place within the box, and is obtained by
applying a single circular rotation to this portion of the path.

Figure 6: 0100100101110101 — (2102110010, 21010z).

Thus we have constructed a one-one correspondence between arbitrary



walks of length 2n and pairs of even Catalan words whose lengths sum to
2n, thereby giving a very natural combinatorial proof of (2). O

Proof [Proof 3] Consider a walk of length 2n + 1 containing an even (or
odd) number of down-steps. Note that the number of such walks is 22",
The Catalan factorization of such a walk has an odd number of z’s and
there is therefore a unique z = Z with the property that there are an even
number of z’s before Z which all represent 0, and there are an even number
of 2’s after Z which all represent 1. Marking the position of 2 in the Catalan
factorization determines the original walk, because the parity of the number
of down-steps determines whether Z represents 0 or 1. Thus, the original
walk of length 2n + 1 is determined by two Catalan words of even length
with Z between them, thereby providing yet another combinatorial proof of
(2). |
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