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0 Outline Content

Motivating examples: simple control problem (Cramer?), quadratic regulator, utility max-
imisation, option pricing. (1 hour)

Technical Background: Stochastic integral, basic properties, Itô’s Formula, martingale
representation theorem, SDEs, weak & strong solutions, Diffusions: strong Markov prop-
erty, Generators, Dynkin’s formula, Feynman-Kac formula. Girsanov’s theorem. Dirichlet-
Poisson problem. (5 hours)

Stochastic Optimal Control ‘Theory’: Problem statement, Markov controls, value func-
tion, dynamic programming principle(?), characterisation of an optimal control — HJB
equation, verification theorem, ‘typical’ approach: use intuition and HJB to guess a solu-
tion, then verify. (e.g. Oksendal, Ex. 11.2.5). (2 hours)

Applications: Option pricing: complete markets, trading and arbitrage, fundamental the-
orem, incomplete markets — upper and lower hedging price, dual representation. Utility
indifference pricing. (4 hours) American options?

Utility maximisation: investment and consumption, Merton problem, dual representation
of solutions, maximisation of growth rate(?), transaction costs (Davis & Norman). (4
hours)

Utility maximisation — inverse problem? (2 hours)

1 Motivating Examples

Example 1.1. Consider a company whose assets are valued according to a Brownian motion
with diffusion coefficient σ and unit drift, and who can pay their shareholders dividends,
so long as the company is not bankrupt (i.e. debts larger than assets). If, at time 0, the
net value of the company is x, and they pay dividends at rate ut at time t, the company
value at time t is:

Xu
t = x+ σBt −

∫ t

0

us ds+ t

= x+ σBt +

∫ t

0

(1− us) ds.

Adjusting for interest, the shareholders wish to maximise their average payout:

E
[∫ τu

0

e−rtut dt

]
where r > 0 is the interest rate, and τu = inf{t ≥ 0 : Xu

t = 0} is the time of bankruptcy.
What should the company do — i.e. how should they choose the dividend payments —
given that they are restricted to choosing us ∈ [0, 1] := U?

Notes:

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk or post
on the discussion forum.
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• The choice of (us)s≥0 should clearly be allowed to depend on the behaviour of Xu
t

up to the current time — e.g. require us adapted to FBs .

• We’re interested in two things: what is the best average payout, and also how do
we achieve it.

• There is a sort of Markov property at play: set

V u(x, t) := E(x,t)

[∫ τu

t

e−rsus ds

]
where E(x,t) is the law of (Xu

t+s)s≥0 given Xu
t = x, then V u(x, t) = V ũ(x, 0)ert where

ũs = us−t ◦ θt, and θt is the Markov shift operator. In particular, this suggests that
the problem may be time-independent — i.e. if the optimal strategy exists, and is
u∗t , we might expect u∗t = u∗(Xu

t ) for some function u∗(x).

This also suggests that we may often be reduced to strategies that are ‘Markovian’
in the sense that they are a function only of the current position, but we will usually
not wish to exclude other strategies from our optimality statements.

Let’s think about solving the problem. Let U be the set of possible controls and define
the value function

V ∗(x, t) = sup
u∈U

V u(x, t).

Then we might expect:

V ∗(x, t) ≥ E(x,t)

[∫ τu

t

e−rsus ds

]
≥ E(x,t)

[∫ τu∧ρ

t

e−rsus ds+

∫ τu

ρ∧τu
e−rsus ds

]
where ρ ≥ t is a stopping time. It then follows that:

V ∗(x, t) ≥ E(x,t)

[∫ τu∧ρ

t

e−rsus ds+ V u(Xu
ρ∧τu , ρ ∧ τu)

]
.

Without worrying too much about the technical details, we could imagine if u1 and u2

are two strategies, then we could construct a new strategy

ũt =

{
u1t t ≤ ρ

u2t t ≥ ρ
,

and this would suggest that

V ∗(x, t) ≥ E(x,t)

[∫ τu
1∧ρ

t

e−rsu1s ds+ V u2(Xu1

ρ∧τu1 , ρ ∧ τ
u1)

]
.

But u2 is arbitrary, so if we take the supremum over u2, and add
∫ t
0

e−rsu1s ds to both
sides, and take x = Xu

t to get

V ∗(Xu1

t , t) +

∫ t

0

e−rsu1s ds ≥ E(Xu1

t ,t)

[∫ τu
1∧ρ

0

e−rsu1s ds+ V ∗(Xu1

ρ∧τu1 , ρ ∧ τ
u1)

]
.

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk or post
on the discussion forum.
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Assuming some sort of Markovianity, this suggests that

V ∗(Xu
t∧τu , t ∧ τu) +

∫ t∧τu

0

e−rsus ds is a supermartingale for all u ∈ U . (1)

Moreover, we should have equality throughout if we can find a strategy u∗ ∈ U which is
optimal, which suggests that

V ∗(Xu∗

t∧τu , t ∧ τu) +

∫ t∧τu

0

e−rsu∗s ds is a martingale for some u∗ ∈ U . (2)

This principle of representing the value function for the problem in terms of itself is known
as the Bellman principle, or the principle of dynamic programming.

Let us now try to solve the problem based on these ideas, and assuming everything is
‘well-behaved’.

First, let’s suppose that the value function exists, and is differentiable. Then (and this is
essentially an argument that we will formalise as Itô’s Lemma) by Taylor’s Theorem:

V ∗(Xu
t+δt, t+ δt)− V ∗(Xu

t , t) ≈
∂V ∗

∂x
(Xu

t+δt −Xu
t ) +

∂V ∗

∂t
δt+

1

2

∂2V ∗

∂x2
(Xu

t+δt −Xu
t )2

≈ ∂V
∗

∂x
(σ (Bt+δt −Bt) + δt(1− ut)) +

∂V ∗

∂t
δt

+
1

2

∂2V ∗

∂x2
(σ (Bt+δt −Bt) + δt(1− ut))2

≈σ∂V
∗

∂x
δBt +

(
(1− ut)

∂V ∗

∂x
+
∂V ∗

∂t

)
δt+

1

2

∂2V ∗

∂x2
σ2 (δBt)

2 + h.o.t.

But E(δBt)
2 = δt, and in fact, for small δt, we will be able to justify the substitution

(δBt)
2 = δt to get

V ∗(Xu
t+δt, t+ δt)− V ∗(Xu

t , t) ≈ σ
∂V ∗

∂x
δBt +

(
(1− ut)

∂V ∗

∂x
+
∂V ∗

∂t
+

1

2
σ2∂

2V ∗

∂x2

)
δt.

Since Bt is zero on average, the (super-)martingale conditions (1) and (2) suggest we need:

(1− ut)
∂V ∗

∂x
+
∂V ∗

∂t
+

1

2
σ2∂

2V ∗

∂x2
≤ −e−rtut (3)

for all ut ∈ U . Recalling that our behaviour should (intuitively) be independent of time,
we conjecture that in fact V ∗(x, t) = e−rtV (x), for some function V . Then (3) implies:

(1− ut)Vx(x)− rV +
1

2
σ2Vxx ≤ −ut,

for all ut ∈ U , with equality for some ut ∈ U , or equivalently:

Vx +
1

2
σ2Vxx − rV = inf

w∈[0,1]
[w(Vx(x)− 1)] = −(1− Vx(x))+. (4)

Note that the fact that we only need consider u = 0 or u = 1 suggests that the optimal
behaviour will only be not to pay dividends, or to pay as much as possible. There is no

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk or post
on the discussion forum.
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(substantial) middle ground. We can also try to consider some properties of the solution.
Clearly, we expect V (x) ↓ 0 as x ↓ 0, and also V (x) → r−1 as x → ∞, since ut ≤ 1
always, and as x → ∞, we can keep paying out at rate 1 for arbitrarily long on average
(this could be proved using properties of Brownian motion). Also, we are better off if we
start with bigger x, so Vx(x) ≥ 0.

Suppose that we can ignore the (·)+, so that we want to solve

Vx +
1

2
σ2Vxx − rV = Vx(x)− 1,

then this has solutions of the form V (x) = r−1 + αe
−
√

2r
σ2
x

+ βe

√
2r
σ2
x
. Assuming that,

for large x, we want V (x) → r−1, we must have β = 0. In fact, if we now choose

V (x) = r−1
(

1− e
−
√

2r
σ2
x

)
, we see also that V (0) = 0, and Vx(x) ≤ r−1

√
2r
σ2 . In particular,

if the parameters are such that 2
σ2 ≤ r, then Vx(x) ≤ 1 always, and (4) holds.

Now, going back through this argument, with a little bit of extra machinery, we can check
that (1) and (2) hold for V ∗(x, t) = e−rtV (x), with u∗t ≡ 1 for all t ≥ 0, and hence that:

V ∗(x, 0) = E(x,0)

[
V ∗(Xu∗

t∧τu∗ , t ∧ τ
u∗) +

∫ t∧τu∗

0

e−rsu∗s ds

]

→ E(x,0)

[∫ τu
∗

0

e−rsu∗s ds

]

as t→∞, by bounded convergence, the fact that τu
∗
<∞ a.s. and monotone convergence.

Using the super-martingale property, we can show a similar inequality when the RHS
involves an arbitrary u rather than u∗. Hence we have found the optimal u∗ and the
corresponding value, V ∗.

In the case where r < 2
σ2 , things are a bit different. Essentially, what we want to do

is combine solutions to the two equations. We guess that there is some x0 such that
Vx(x) ≥ 1 on [0, x0] and Vx(x) ≤ 1 on [x0,∞). We then solve Vx(x) on [0,∞) with
the boundary conditions V (0) = 0, V (∞) = r−1 and (let’s say) with the additional con-
dition that V ′(x0+) = 1, and V (x0−) = V (x0+), which is certainly necessary for the
martingale/supermartingale conditions to hold. Together, for fixed x0, these are enough
to specify a unique solution to the pair of equations, but in general, we will not have
V ′(x0−) = 1, and this will cause difficulty in the martingale/supermartingale conditions.
To rectify this, we can try to vary x0 (the remaining degree of freedom) to get V ′(x0−) = 1,
and (hopefully, if this is the right general solution), we will see that the resulting solution
is of this form: particularly, the resulting V (Xu

t , t) +
∫ t
0

e−rsus ds is a supermartingale up
to τ0, and a martingale under the optimal control. Once we have a candidate solution,
then this is normally not too hard to check.

Notes:

• The procedure here is a sort of informed ‘guess and verify.’ We have used a mix
of martingale-type properties, specific intuition about the problem, and informed

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk or post
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guessing to find a candidate value function. Once we have this, then we are able to
show that it is optimal via a martingale argument, but we need to have a specific
guess first.

• Note that our final proofs of optimality do not require any Markovianity of a sub-
optimal strategy, they will hold for essentially any choice of the function u.

• In the more complicated case, even in this relatively easy problem, finding the actual
solution is not straightforward, and would in practice probably need a computer or
similar. This is a fairly common situation — our answers are very likely to be only
partially computable, but we can at least derive some qualitative features of the
solution without calculation (that u(Xt) = 1Xt≥α for some constant α).

• In this example, the final value function is nice, but candidate value functions may
not be — in particular, they may not be nice and differentiable, or bounded, etc., and
in fact, even for nice problems, the value function is often not suitably differentiable.
This can cause substantial technical difficulties.

• In this case, our choice of control only affected the drift of our process. In many
circumstances, we may want to affect both the drift and the diffusion coefficient.

Example 1.2 (Stochastic Linear-Quadratic Regulator). Consider a stochastic process whose
change over a small time is given by:

dXu
t = (αXu

t + ut) dt+ σ dBt

so if α = 0, we just have Xu
t = X0 +

∫ t
0
us ds+σBt, but we also allow a more complicated

local change which can depend on the process itself.

Consider the problem of minimising

E
[∫ T

0

β(Xu
t )2 + γu2t dt+ ξ(Xu

T )2
]
.

Clearly, we should push towards the origin, but the question is how fast? In fact, the
optimal control in this problem is independent of σ, so this problem can be used to
investigate the impact of noise in controlled systems.

Example 1.3 (Utility Maximisation). Consider the problem of an investor who wishes
to maximise their wealth at retirement (say) but is risk-averse. They might choose to
maximise:

EU (XT )

where U(x) is a function known as the utility function, and is generally supposed to
be concave and increasing, and (Xt)t∈[0,T ] is the investor’s wealth at time T . Note that
concavity implies that U(EX) ≥ EU(X) for all random variables X, and this has an
economic interpretation of risk-aversion.

The investor can affect Xt by choosing how to invest: suppose that she can invest some
proportion of her wealth in the stock-market, and some proportion in a risk-free bank
account, where she receives a fixed interest rate r. If the stock-market follows a Geometric
Brownian motion (Black-Scholes model) then St = S0 expµt+ σBt and we have the
representation:

dSt = Stµ dt+ Stσ dBt.

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk or post
on the discussion forum.
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If we invest an amount ut in the stock market at time t (so we have ut/St units of the
stock, and Xt − ut in the bank), over a small time period, our wealth changes by:

dXt =
ut
St

dSt + r(Xt − ut) dt

= rXt dt+ ut(µ− r) dt+ utσ dBt. (5)

A natural problem (the utility maximisation problem) is then:

sup
ut

EU(Xu
T )

where the control now affects the reward solely through the final value of wealth.

Depending on the situation, we may allow ut < 0 (short selling), or require ut ≥ 0, or
include other constraints, such as requiring our wealth Xt to remain positive, or above
some fixed level −α. In addition, we could include the option for the investor to consume
their wealth before time t, and we then need to optimise over both the investment and
the consumption strategy.

Example 1.4 (Option Pricing). Finally, consider the problem of a bank who has sold a
derivative contract: that is, if St is the price of some financial asset, they have contracted
to pay another party an amount f(St) at some future date. To reduce their risk, they
wish to super-hedge their exposure: that is, they want to find a trading strategy ut and
an initial wealth x0 such that if Xu

0 = x0, and (5) holds, then Xu
T ≥ f(St) almost surely.

Solving this problem does not really need the full stochastic control machinery (as we will
see, it can be handled in a slightly simpler manner), but it has much of the ‘flavour’ of
a stochastic control problem, and can be generalised to some natural stochastic control
problems: consider the problem

UIP (f) = inf

{
p ∈ R : sup

ut

EU (Xu
T + (p− f(ST ))) ≥ sup

ut

EU (Xu
T )

}
that is, p is the smallest price at which I would prefer (greater utility) to sell the contract
f(ST ) for price p, and hedge using the asset, than to simply invest without selling the
contract. UIP (f) is the Utility Indifference Price, and clearly the UIP will be below
the superhedging price, but taking x0 = 0 and U(x) = 1{[0,∞)}(x), we can recover the
superhedging price as the UIP price.

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk or post
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