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Abstract. In this paper we consider the pricing and hedging of financial derivatives
in a model-independent setting, for a trader with additional information, or beliefs,
on the evolution of asset prices. In particular, we suppose that the trader wants to act
in a way which is independent of any modelling assumptions, but that she observes
market information in the form of the prices of vanilla call options on the asset.
We also assume that both the payoff of the derivative, and the insider’s information
or beliefs, which take the form of a set of impossible paths, are time-invariant. In
this way we accommodate drawdown constraints, as well as information/beliefs on
quadratic variation or on the levels hit by asset prices. Our setup allows us to
adapt recent work of Beiglböck, Cox, and Huesmann [BCH17] to prove duality results
and a monotonicity principle. This enables us to determine geometric properties of
the optimal models. Moreover, for specific types of information, we provide simple
conditions for the existence of consistent models for the informed agent. Finally, we
provide an example where our framework allows us to compute the impact of the
information on the agent’s pricing bounds.

1. Introduction

It has long been recognised that information plays an extremely important role in
the study of modern financial markets. This is most markedly true when two parties
trading the same asset have access to different information sources, and then one can ask
how the ‘insider’, who possesses additional information, should modify her behaviour
to exploit her privileged position. In this paper, we aim to consider problems where the
insider has a strong belief in some quantitative, or qualitative, fact about the future
evolution of some asset, but is otherwise agnostic about other statistical properties
determining the evolution of the asset.

A fundamental, motivating example will be the following: imagine an agent believes
that the CEO of a company will act in such a way as to ensure that the share price
of the company will not drop below a certain level which depends on the historical
maximum of the share price, for example, because the manager is incentivised by stock
options which payout provided this drawdown criteria is not breached. Then the agent
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may want to build this information into her valuations of e.g. derivatives written on the
asset. The aim in this paper is to consider problems of this form in a model-independent
framework. We claim that this is a natural framework for these problems, since the
insider’s information already rules out many ‘standard’ models which would not usually
satisfy such a constraint, and it is not immediately clear how the agent should choose
a model which includes this information.

Problems concerning insider information have a rich literature: the first work in
the mathematical finance literature is Pikovsky and Karatzas [PK96], while important
subsequent work includes [AIS98; BØ05; Cam05; GP98], and this topic is still a very
active area of research. Along with different information sets, agents may have differ-
ent beliefs on the evolution of asset prices. This again will result in different market
behaviours.

In the past few years, robust approaches to finance, where no underlying probability
measure is assumed a priori, have become very popular. Only very recently, additional
information and beliefs have been considered in a robust framework. In both Acciaio
and Larsson [AL17] and Aksamit, Hou, and Ob lój [AHO16], this has been modelled
by an enlargement of filtration. Closer to the approach of the current work, are the
papers by Cox, Hou, and Ob lój [CHO16], Hou and Ob lój [HO18], Bartl, Kupper, and
Neufeld [BKN20], and Bayraktar, Zhang, and Zhou [BZZ18], which model beliefs in a
robust setting by excluding some paths from the possible evolution of the asset’s price
process (see Section 1.1).

The goal of this paper is to consider the pricing and hedging problems for traders
with different information and beliefs in a continuous-time, robust setting, where call
prices at a fixed maturity T are observed. Our analysis relies on two key assumptions.
First, we only consider derivatives which are time-invariant, that is, with payoffs which
are independent of the clock under which the underlying is running. These include,
for example, lookback options, barrier options, corridor options, and variance options.
Secondly, we assume that beliefs and insider’s additional information are time-invariant
and such that they allow the insider to assume that a certain set of paths is impossible.
This means specifying the set of feasible paths on which (super-)hedging arguments
are required to work. Examples of beliefs we can deal with include those on quadratic
variation and those on asset prices hitting (or not hitting) given barriers. As for the
time-invariant information, the main example we have in mind is that of drawdown
constraints, e.g. imposed by company policy, on the price process never falling below
a fixed fraction of its maximum-to-date or never falling below a certain threshold once
it has reached a certain level.

The assumption of time invariance allows us to translate the robust pricing prob-
lem into a constrained Skorokhod embedding problem (SEP), emulating the approach
to robust finance initiated in Hobson [Hob98] (see also [Hob11]). In this way, in the
first part of the paper, Sections 2 and 3, we develop a theoretical framework for our
approach. We are able to extend to the current framework the analysis developed in
Beiglböck, Cox, and Huesmann [BCH17] for the unconstrained problem. Indeed, a sim-
ple application of the results of [BCH17] leads to a superhedging and duality result for
the insider/the constrained SEP (Theorem 3.2), and to a monotonicity principle which
gives a necessary condition on the optimising probability measures for the insider/the
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constrained SEP (Theorem 3.7). Leveraging on our duality result, we are able to pro-
vide simple necessary and sufficient conditions to exclude arbitrage for the insider in
terms of solutions to the constrained SEP (Proposition 3.3). On the other hand, the
monotonicity principle, that takes the form of geometric conditions on the support of
the optimisers, often leads to barrier type solutions. Experience in the case without
information suggests that, once the geometric structure of the support of the optimis-
ers is understood, it is much simpler to e.g. develop numerical methods to compute
the optimisers for specific examples. The main motivation for considering the problem
under this assumption of time-invariance is that, as a consequence, we are able to prove
the monotonicity criteria, which, as we demonstrate, in many natural examples allows
us to reformulate the optimisation problems in terms of simpler, geometric criteria.
This additional insight opens up a wider range of mathematical and numerical tools
which may be applied to both increase understanding of the problems, and to more
accurately solve the problems.

In the second part, Section 4, we illustrate that our setup allows to further inves-
tigate several concrete and financially meaningful situations gaining new insights in
the insider’s behaviour in explicit situations. More precisely, we restrict ourselves to
specific sets of feasible paths (cf. (4.1)). This class is quite broad, as it includes infor-
mation and beliefs mentioned above on whether prices hit certain barriers, on whether
the quadratic variation reaches certain levels, and on drawdown constraints. Here we
are interested in three interrelated questions:

(1) When does there exist arbitrage for the insider?
(2) What are the worst case models for the insider?
(3) Can we calculate the value of the insider’s information in specific situations?

We address the question of arbitrage in Theorem 4.1 for the specific information encoded
by (4.1). Specialising to concrete examples, we show in Theorems 4.2 and 4.3 that
the question of arbitrage can be reduced to simple ordering properties of particular
functions. To the best of our knowledge, the present work is the first one to address
the issue of arbitrage in a robust setting with additional information/beliefs.

Concerning the characterisation of worst case models we exemplify the power of the
monotonicity principle in Theorem 4.4 in a concrete setup. We consider the example
of variance options with drawdown constraints, and show that we are able to

(1) Determine when there exists an arbitrage for the insider;
(2) Characterise the class of extremal models;
(3) Compute numerically the value of the insider’s information.

Specifically, in Section 4.2.1 we give a numerical example to show the impact of in-
creasing information on the insider’s extremal model. Thereby, we can nicely illustrate
the impact of increasing information; see Figure 5.

1.1. Literature. In the robust approach to mathematical finance, the usual setting
consists in having some assets available for dynamic trading, and some claims which
are available at time zero for static, i.e. buy-and-hold, trading. The information at the
disposal of the agent is the price of assets and claims at time zero, and the evolutions
of the price of assets in time. In this framework, most of the literature so far has
been devoted to showing pricing-hedging duality results, that is, that the minimal cost
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to super-hedge pathwise a given derivative, equals its maximal price over calibrated
martingale measures; see e.g. [Acc+16; BZ17; BHP13; BN15; FH16; Nut14] in discrete
time, and [BCH17; Bei+17; B+17; Bia+17; DS14; DS15; GHT14; GTT16; HO18] in
continuous time, among a rapidly growing literature.

The current literature on the insider problem in a robust setup is still in its infancy. In
[AL17] and [AHO16] the informed agent has a richer information flow, which results in
having more choices for trading strategies, and hence in cheaper robust (super-hedging)
prices. In [AL17] the authors study the models under which the market is complete in
a semi-static sense, and through these models they compare the robust prices of the
agents with and without additional information. In [AHO16], pricing-hedging duality
results are given when the additional information is disclosed either at time zero or at
a given future instant in time, and it is given by specific random variables.

Mathematically, our approach is closer to [CHO16], [HO18], [BKN20], [BZZ18].
Those papers do not consider insider information, but model beliefs or prediction sets
in a robust setting by specifying the set of feasible paths for the possible evolution of the
asset’s price process. The main aim in these papers is the study of the pricing-hedging
duality. In [CHO16] the authors work in discrete-time and study duality, showing that
in some cases a gap may appear, i.e. duality may fail. In [HO18] a continuous-time
setup is considered, and sufficient criteria are given so that duality holds in an asymp-
totic sense. In [BKN20] the authors consider a continuous-time setting and prediction
sets in the space of continuous paths, and provide several duality results. Finally, in
[BZZ18] the authors obtain duality and monotonicity results for a broad class of con-
strained optimal transport problems, under some conditions on the space of paths and
on the set of admissible transports.

In the present paper we work in continuous time, so our duality results are compara-
ble to those in [HO18],[BKN20], [BZZ18]. However, [HO18] considers derivatives with
uniformly continuous payoff, so that the framework is orthogonal to the present one,
where payoffs are assumed to be invariant to time change. In [BKN20] these restric-
tions are substantially weakened, but without the inclusion of other traded options. In
[BZZ18] analyticity conditions are required on the set of admissible paths, rather than
the time-invariance assumed here. Also in a similar spirit to our results in Section 4.2
is the PhD thesis of Spoida [Spo14], which considers the situation where only finitely
many options are available for static trading and, for specific kinds of derivatives, de-
scribes the optimal solutions for agents having beliefs on realised variance.

To the best of our knowledge, the constrained Skorokhod embedding problem (con-
SEP) has not previously been systematically considered in the literature. The only
papers which we are aware of, that consider related problems, are Ankirchner and
Strack [AS11] and Ankirchner, Hobson, and Strack [AHS15], that provide conditions
under which a distribution may be embedded in Brownian motion or a diffusion in
bounded time, which have some connections to the results in Section 4. Also, the
setting in [BZZ18] covers for example the case of robust pricing in case of bounded
quadratic variation, which leads to establishing conditions for the existence of Sko-
rokhod embeddings in bounded time.

1.2. Outline of the article. In the present paper we will work in a continuous-time
setup, under the assumption that the asset’s price process S evolves continuously,



MODEL-INDEPENDENT PRICING WITH INSIDER INFORMATION 5

and all call options for a given maturity T are traded at time zero in the market.
We perform a time-change to formulate the pricing problem as a constrained optimal
stopping problem in Wiener space and resort to Skorokhod embedding techniques. For
this approach to be effective, we need to restrict our attention to the case where both the
derivatives’ payoff function and the feasibility of paths are invariant to time-changes in
an appropriate sense. The key concepts and definitions for this setup are introduced in
Section 2. In Section 3, we show that the pricing-hedging duality and the monotonicity
principle of [BCH17] can be extended in a natural way to our setting, thus allowing
us to give a geometric characterisation of the support of the optimisers in the primal
problem.

Then, in Section 4, we consider specific examples of feasible sets where we may
apply the results of the previous sections to determine specific consequences of certain
types of information possessed by the insider. We first consider the implications of
information which restricts the observed paths to occur either before or after (or both)
some path-dependent event. In this case, we are able to give sufficient conditions for
the existence of arbitrage for the insider. Next, we consider the case where feasibility
corresponds to paths which do not enter given regions of an appropriate phase-space,
and determine necessary and sufficient conditions for the additional information not
to introduce arbitrage possibilities. Finally, we show how the monotonicity principle
can be used to derive characterising properties of the optimisers subject to a given
information set. In particular, we consider the problem described at the start of the
introduction, where the insider believes a certain drawdown constraint is satisfied, and
wishes to understand the impact on variance derivatives. In this case, we are able to
describe the properties of the resulting optimiser, and also compute numerically an
upper bound on the value of the derivative in both the model without information, and
the model with information. These numerical results give us a good indication of the
impact of the information on the prices of other derivatives.

2. Informed robust pricing

Throughout the paper, for I ⊂ R, we write C(I) for the space of continuous functions
ω : I → R endowed with the topology of uniform convergence on compacts. When
I ⊂ [0,∞), we write Cx(I) for the subset of paths such that ω(0) = x.

We consider a market consisting of a risk-free asset (bond), whose price is normalised
to 1, and a risky asset (stock) which is assumed to have a continuous price evolution,
though neither a reference probability nor the dynamics are specified. The assets are
continuously traded on the fixed time-horizon [0, T ], 0 < T < ∞. Let the initial
price of the stock be s0; in this way we can think of the stock price process S as the
canonical process on Cs0 [0, T ] = Cs0([0, T ]). We assume we observe the prices of call
options with maturity T for all strikes, which corresponds to having the knowledge
of the marginal distribution of S at time T , say µ, under any pricing measure by
the Breeden-Litzenberger formula, [BL78]. In particular,

∫
xµ(dx) = s0. We assume∫

(x − s0)2 µ(dx) =: V < ∞. This condition is introduced in order to simplify the
presentation, and can be relaxed (see e.g. [BCH17, Section 7]). Given a derivative
with payoff function F : Cs0 [0, T ] → R written on S, the robust pricing problem is to
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determine

(2.1) sup{EQ[F (S)] : Q ∈M(µ)},

where M(µ) is the set of all martingale measures Q on Cs0 [0, T ] such that ST ∼Q µ
(by martingale measure we mean a measure under which the canonical process is a
martingale). This leads to the upper price bound for the derivative F related to the
worst case scenario of the evolution of the risky asset. Analogously, one can consider the
infimum in (2.1), that is, the lower price bound for F . Mathematically the maximisation
and minimisation problems are very similar, and in this article we concentrate on the
former.

In practice, often not only the prices of call options with given maturity are available,
but an agent may have other information or beliefs relating to the evolution of the asset
price. Incorporating this information may rule out certain behaviour of the stock price
S, and hence certain models for S, which in turn leads to potentially smaller price
bounds. We model this by introducing an informed agent, also called the insider,
possessing some additional information and beliefs which enables her to only consider
a subset A ⊆ Cs0 [0, T ] of feasible paths for S (precise assumptions on A will be given
in (2.5)). All other paths in Cs0 [0, T ] \ A are deemed negligible due to the additional
information held by the insider. Hence the robust pricing problem for the insider is

(2.2) PA := sup{EQ[F (S)] : Q ∈M(µ), Q(A) = 1}.

To give a value to the additional information, we will talk of the uninformed agent or
outsider when considering an agent who does not have any other information than the
call prices. Hence, the outsider’s pricing problem is the classical robust pricing problem
in (2.1), which corresponds to setting A = Cs0 [0, T ] in (2.2).

In the rest of this section, we recall and adapt the setup and results from [BCH17]
and [Bei+17] relying on [Vov15], which will allow us to formulate and analyze (2.2) as
a constrained Skorokhod embedding problem. In order to do so, we will first introduce
a time-change, in Section 2.1, that is a different clock under which we want to observe
the paths of S. Next we will show that the pricing problem (2.2) has an equivalent
formulation as an optimal stopping problem for Brownian motion on some probability
space (problem (2.6)), when the derivative and the additional information are invariant
with respect to this time-change. Finally, we shall pass from this weak formulation
of the problem to an optimisation problem on a single probability space, the Wiener
space, which will require more general stopping rules; see problem (conSEP).

2.1. Time transformation. The key tool to translate (2.2) into a constrained Sko-
rokhod embedding problem is the Dambis-Dubins-Schwarz Theorem. However, we need
to be careful in defining the time change since we want to be able to shift pathwise
inequalities from Cs0 [0, T ] to the Wiener space and back. Moreover, the time change
will be a useful tool to precisely define the options we want to consider as well as the
set of feasible paths for the insider.

For ω ∈ C(R+) and n ∈ N, we define the sequence of times

σn0 (ω) := 0, σnk+1(ω) := inf{t > σnk (ω) : |ω(t)− ω(σnk )| ≥ 2−n}, k ∈ N,
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and we say that ω has quadratic variation if the sequence (Vn(ω))n∈N of functions

Vn(ω)(t) :=
∞∑
k=0

(ω(σnk+1 ∧ t)− ω(σnk ∧ t))2, t ∈ R+

converges uniformly on compacts to some function in C0(R+), and the limit function
has the same intervals of constancy as ω. We denote this function by 〈ω〉. We write
Ωqv for the space of all paths ω in Cs0(R+) possessing such a quadratic variation and
such that either 〈ω〉 diverges at infinity or 〈ω〉 is bounded and ω has a well defined
limit at infinity. These conditions are necessary in order for the map ntt given below
to be well defined. It is not hard to show that Ωqv is a measurable subset of C(R+).

We define the space of stopped paths as

S := {(f, s) : f ∈ Cs0 [0, s], s ∈ R+} ,
and equip it with the distance dS defined for s < t by

dS((f, s), (g, t)) = max
{
t− s, sup

0≤u≤s
|f(u)− g(u)|, sup

s≤u≤t
|g(u)− f(s)|

}
,

which turns S into a Polish space. The space S is a convenient way of encoding
optionality of a process in our pathwise setup, see e.g. [DM78, Theorem IV. 97]; note
that optionality is equivalent to predictability, since we consider only continuous paths.
More precisely, we set

r : Cs0(R+)× R+ → S, (ω, t) 7→ (ω|[0,t], t),
where ω|[0,t] denotes the restriction of ω to [0, t]. Then a process X with X0 = s0 is
optional if and only if there is a Borel function H : S → R such that X = H ◦ r.

We call Ωqv
T the set of paths in Cs0 [0, T ] which have a continuation in Ωqv, and for

ω ∈ Ωqv
T we define the following new clock:

(2.3) τt(ω) = inf{s ∈ [0, T ] : 〈ω〉s > t} ∧ T, t ∈ R+,

with the usual convention inf ∅ = +∞.
We will work with the normalising time transformation introduced by Vovk [Vov12],

which is defined by nttT : Ωqv
T → S given by

nttT (ω) = ((ωτt)t≤〈ω〉T , 〈ω〉T ).

That is, nttT (ω) is a version of the path ω run at a speed such that, for every t, its
pathwise quadratic variation at time t is exactly t. It will also be notationally useful
at times to ‘forget’ the time component, and consider the function ntt(ω), which is
equal to (ωτt)t≤〈ω〉T ∈ Cs0 [0, 〈ω〉T ]. Of course, the two quantities are mathematically
equivalent. The normalising time transformation will be the tool that will allow us to
define the class of time-invariant derivatives and the kind of time-invariant additional
information which are suitable in order to develop the SEP approach to robust pricing
with insider information.

Remark 2.1. Note that Q(Ωqv
T ) = 1 for each Q ∈ M(µ) (see Karandikar [Kar95]

and Vovk [Vov12]). For this reason, when studying the pricing problem (2.2), we only
consider paths in this set.
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In this article, we consider payoff functions F : Cs0 [0, T ]→ R which on Ωqv
T satisfy

(2.4) F = γ ◦ nttT ,

for some Borel measurable γ : S → R. This means that the payoff function F is identical
for all paths which are time-transformations of each other, that is, which coincide after
normalising the speed at which they run.

A key additional component in our model will be the information which is held by
the insider, and which is not known to the market. We will model this by assuming
that the insider knows a set of feasible paths A ⊆ Cs0 [0, T ]. Thanks to Remark 2.1, we
may assume without loss of generality that A ⊆ Ωqv

T . As with the payoff function, we
will assume that the set A of feasible paths is time-invariant. More precisely, we will
consider sets A given by

A = ntt−1
T (Λ),(2.5)

for some measurable subset Λ ⊆ S, so that 1A(ω) = 1Λ ◦ nttT (ω). We will call Λ the
feasibility set. In this way, feasibility of a path ω ∈ Cs0 [0, T ] is shifted to admissibility
of the stopped path (ntt(ω), 〈ω〉T ). In particular, if a path ω ∈ Cs0 [0, T ] is feasible, so
is any other path which is a time transformation of ω.

2.2. Informed robust pricing as constrained SEP. The time transformation in-
troduced above enables us to express the robust pricing problem (2.2) as a constrained
optimal stopping problem for Brownian motion.

Proposition 2.2. Let F and A satisfy (2.4) and (2.5). The pricing problem for the
insider (2.2) can be formulated as
(2.6)

P ∗Λ := sup

E[γ((Wt)t≤τ , τ)] :

(Ω̃, (Gt)t≥0,G,P)supporting Brownian motion W,

W0 = s0, τ a G-stopping time s.t. Wτ ∼ µ,
(Wt∧τ )t≥0 is u.i., and E[1Λ((Wt)t≤τ , τ)] = 1

 .

The condition E[1Λ((Wt)t≤τ , τ)] = 1 means that, when moving along a path of W ,
we can stop only at times such that the stopped path lies in Λ. This corresponds to the
fact that informed agents only need to take into account the paths in the feasibility set,
Λ. The condition of uniform integrability on W·∧τ is - in the current setup - equivalent
to τ being minimal, cf. [Mon72]. This means that, for any other stopping time τ ′ in
the same filtered probability space,

τ ′ ≤ τ and Wτ ′ ∼ µ imply τ ′ = τ a.s.(2.7)

The reformulation in (2.6) shows how the maturity time T , at which we know the
marginal distribution µ of the price process, does not play any role in the pricing
problem. This is a consequence of the time-invariance assumption.

Proof. The proof of this essentially follows from [Bei+17, Section 4]: Let Q ∈ M(µ),
(τt)t∈R+ be the time-change defined in (2.3), and (FSt )t∈[0,T ] the usual augmentation
of the filtration generated by (St)t∈[0,T ]. It is easy to verify that 〈S〉T is a stopping

time with respect to the filtration (FSτt∧T )t∈R+ . Then, the Dambis-Dubins-Schwarz
theorem implies that the process (Xt)t∈R+ = (ntt(S)t∧〈S〉T )t∈R+ is a stopped Brownian

motion under Q in the filtration (FSτt∧T )t∈R+ . Moreover, it is uniformly integrable and



MODEL-INDEPENDENT PRICING WITH INSIDER INFORMATION 9

satisfies ntt(S)〈S〉T ∼ µ. Vice versa, let W be a Brownian motion on some probability

space (Ω̃, (Gt)t≥0,P), and τ be a stopping time such that W.∧τ is uniformly integrable
with Wτ ∼ µ. Then, for M = (Mt)t∈[0,T ] defined by Mt := W t

T−t
∧τ , we have that

P ◦M−1 ∈M(µ). The result follows. �

To be able to analyse the optimisation problem (2.6), we introduce another optimi-
sation problem living on a single probability space, the Wiener space (Cs0(R+),F ,W).
To this end we consider the set

M = {ξ ∈ P(Cs0(R+)× R+) : ξ(dω, dt) = ξω(dt)W(dω), ξω ∈ P(R+) for W-a.e. ω},
where P(X ) denotes the set of probability measures on a space X , and (ξω)ω∈Cs0 (R+) is
a regular disintegration of ξ with respect to the first coordinate ω. We equip M with
the weak topology induced by the continuous bounded functions on Cs0(R+) × R+.
Each ξ ∈ M can be uniquely characterised by the cumulative distribution function
Aξ(ω, t) = ξω[0, t].

Definition 2.3. We say that a measure ξ ∈ M is a randomised stopping time if the
corresponding increasing process Aξ is optional, and write ξ ∈ RST. For an optional
process X : Cs0(R+) × R+ → R+ and ξ ∈ RST, we define Xξ as the pushforward of
ξ under the mapping (ω, t) 7→ Xt(ω). We denote by RST(µ) the set of all randomised
stopping times such that Wξ = µ and

∫
t ξ(dω, dt) <∞.

Remark 2.4. It is well known that any randomised stopping time ξ can be identified
with a stopping time τξ on the extended probability space (Cs0(R+)×[0, 1],F⊗B,W⊗L),
where B denotes the Borel σ-algebra on [0, 1], and L the Lebesgue measure on [0, 1].
One way of defining τξ is via

τξ(ω, u) := inf{t ≥ 0 : ξω([0, t]) ≥ u}.
As a consequence, the optional stopping theorem applies for randomised stopping times.
Indeed, any process X on Cs0(R+) can be lifted to a process X̄ on Cs0(R+) × [0, 1] by
setting X̄t(ω, u) := Xt(ω) and then the classical optional stopping theorem applies for,
e.g., uniformly integrable martingales.

Considering the martingale W 2
t − t it follows from classical results on stopping times

(e.g. [Hob11, Corollary 3.3], [BCH17, Lemma 3.12], Remark 2.4) that, for ξ ∈ RST
with Wξ = µ, the condition

∫
t ξ(dω, dt) <∞ is equivalent to∫

t ξ(dω, dt) =

∫
(x− s0)2 µ(dx) = V,(2.8)

which is assumed to be finite in our setup.
By [BCH17, Theorem 3.14], RST(µ) is non-empty and compact with respect to the

topology induced by the continuous and bounded functions on Cs0(R+) × R+. As a
direct consequence we get the following result:

Corollary 2.5. Let Λ ⊆ S be closed. Then the set of feasible randomised stopping
times

(2.9) RST(µ; Λ) :=

{
ξ ∈ RST(µ) :

∫
Cs0 (R+)×R+

1Λ ◦ r(ω, t)ξ(dω, dt) = 1

}
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is convex and compact with respect to the topology induced by the continuous and
bounded functions on Cs0(R+)× R+.

We highlight here the important feature that RST(µ; Λ) might be empty, which can
be understood as a robust arbitrage opportunity, see Proposition 3.3 and Section 4.

Proof. Since Λ is assumed to be closed, the function 1Λ◦r is u.s.c. Hence
∫
Cs0 (R+)×R+

1Λ◦
r(ω, t)ξ(dω, dt) = 1 is a closed condition by the Portmanteau theorem. �

Another important property of the feasible randomised stopping times is that they
are precisely the joint distributions on Cs0(R+) × R+ of pairs (W, τ) satisfying the
constraints in (2.6). This is a straightforward extension of [BCH17, Lemma 3.11].
Putting everything together we have derived a formulation of our optimisation problem
(2.2) resp. (2.6) on the Wiener space as a constrained Skorokhod embedding problem:

Proposition 2.6. In the setting described above,

(conSEP) P ∗Λ = sup

{∫
Cs0 (R+)×R+

γ ◦ r(ω, t)ξ(dω, dt) : ξ ∈ RST(µ; Λ)

}
.

We will say that (conSEP) is well posed if
∫
Cs0 (R+)×R+

γ ◦ r dξ exists with values in

[−∞,∞) for all ξ ∈ RST(µ; Λ), and is finite for one such ξ. In particular, (conSEP)
is not well posed if RST(µ; Λ) = ∅ which has a pleasing financial interpretation (cf.
Proposition 3.3). The (unconstrained) Skorokhod embedding problem corresponds to
the case Λ = S, when all paths are feasible, hence the above supremum is taken over
RST(µ).

From an analytical point of view, the formulation (conSEP) is extremely useful since
we are now dealing with a linear optimisation problem over a convex and compact set
on a single probability space. A direct consequence is the following result:

Theorem 2.7. Let γ : S → R be upper semi-continuous and bounded from above in
the sense that, for some constants a, b, c ∈ R+,

γ((ω(s))s≤t, t) ≤ a+ bt+ c sup
s≤t

ω(s)2, (ω, s) ∈ Cs0(R+)× R+.(2.10)

Assume that Λ ⊆ S is closed and that RST(µ; Λ) is non-empty. Then the optimisation
problem (conSEP) admits a maximiser.

Proof. We claim that without loss of generality we can assume that γ is bounded from
above. Indeed, by the pathwise version of Doob’s inequality (see [Acc+13]),

sup
s≤t

ω(s)2 ≤Mt + 4ω(t)2

for some martingale Mt starting in zero. Hence condition (2.10) implies that

γ̃ ◦ r(ω, t) := γ ◦ r(ω, t)− a′ − b′t− c′(Mt + ω(t)2)

is bounded from above and the term
∫
a′ − b′t − c′(Mt + ω(t)2) dξ is independent of

ξ ∈ RST(µ) by (2.8) and the assumed second moment of µ. Therefore, we can assume
γ to be bounded from above.

Finally, since RST(µ; Λ) is compact and r continuous, and by the Portmanteau The-
orem the map ξ 7→

∫
γ ◦ r dξ is upper semi-continuous, we deduce the result. �
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3. Super-replication and monotonicity principle

In this section, we show that a straightforward application of the results in [BCH17]
leads to duality or superhedging results, and to a geometric characterisation of primal
optimisers, that is, to the monotonicity principle for constrained Skorokhod embedding.

3.1. Duality. In this section, we first show a duality result for the problem P ∗Λ defined
in (2.6), that is for (conSEP), and then from it deduce a duality result for the original
robust pricing problem PA defined in (2.2). The latter is the analogue of the super-
replication duality in the present robust setting with additional information/beliefs. As
in the classical (non-robust) case, this in turn leads to a dichotomy between existence of
martingale measures and existence of arbitrage opportunities, the so-called fundamental
theorem of asset pricing, which we prove at the end of this section.

A martingale φ is called S-continuous if there exists a continuous H : S → R such
that φ = H ◦ r. Note that a martingale which is S-continuous has continuous paths,
but the other implication is in general not true.

Theorem 3.1. Let γ : S → R be upper semi-continuous and bounded from above in
the sense of (2.10), and Λ ⊆ S be closed. Set

D∗Λ := inf

{∫
ψdµ :

ψ ∈ C(R),∃ an S-continuous martingale φ, φ0 = 0 s.t.
φt(ω) + ψ(ω(t)) ≥ γ ◦ r(ω, t) for all (ω, t) ∈ r−1(Λ)

}
,(3.1)

where φ, ψ satisfy

(3.2) |φt(ω)| ≤ a+bt+cω(t)2, |ψ(y)| ≤ a+by2, ∀ ω ∈ Cs0(R+), for some a, b, c > 0.

Then we have
P ∗Λ = D∗Λ .

Proof. Put

(3.3) γ(f, t) =

{
γ(f, t) (f, t) ∈ Λ,

−∞ (f, t) ∈ S \ Λ.

Since we assume that γ is upper semi-continuous and bounded from above in the sense
of (2.10), it is easy to see that these properties are inherited by γ. Moreover, the well-
posedness assumption of (conSEP) for γ implies that (conSEP) is still well-posed for γ
and Λ = S. Hence, the result follows from [BCH17, Theorem 4.2]. �

This duality result is already of interest in its own right. However, to identify it as a
superreplication result we need to recover the hedging strategies corresponding to the
martingale. For this we need some kind of pathwise martingale representation theorem.
In fact Theorem 6.2 of [Vov12] can be interpreted as such. To this end, we need to
introduce some more notation.

We will need the concept of simple strategy, by which we mean a process H : Ωqv
T ×

R+ → R of the form

Ht(ω) =
∑
n≥0

Kn(ω)1(τn(ω),τn+1(ω)](t), (ω, t) ∈ Ωqv
T × R+,

where 0 = τ0(ω) < τ1(ω) < . . . are FS-stopping times such that for every ω one
has limn→∞ τn(ω) = ∞, and Kn : Ωqv

T → R are FSτn-measurable bounded functions
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for n ∈ N. For such a strategy, we can define the corresponding pathwise stochastic
integral as

(H · S)t(ω) =
∑
n≥0

Kn(ω)(Sτn+1(ω)∧t − Sτn(ω)∧t)(ω).

Then, following exactly the line of reasoning as for the proof of [Bei+17, Theorem 3.1]
one can get the following result. We recall that F = γ ◦ nttT and A = ntt−1

T (Λ), and
that the robust pricing problem for the insider was defined in (2.2).

Theorem 3.2. Let γ be upper semi-continuous and bounded from above in the sense
of (2.10), and let Λ ⊆ S. Set

DA := inf

{∫
ψ(y) dµ(y) :

ψ ∈ C(R), ∃ simple strategies (Hn)n s.t.
lim infn(Hn · S)T (ω) + ψ(ω(T )) ≥ F (ω) for all ω ∈ A

}
,

where |ψ(y)| ≤ a + by2 and (Hn · S)t ≥ −a − bt for some a, b > 0 and all t ∈ [0, T ].
Then we have

PA = DA.

Theorem 3.2 is the analogue of the classical super-replication duality theorem, in the
present robust insider setting. Moreover, like its classical counterpart, it additionally
implies a version of the first fundamental theorem of asset pricing. In the following we
will use Theorem 3.2 with different payoff functions. To stress the dependence on the
cost function we will sometimes write PA(F ), DA(F ).

Proposition 3.3. Under the assumptions of Theorem 3.2, the following are equivalent:

(i) ∃ Q ∈M(µ) such that Q(A) = 1;
(ii) RST(µ; Λ) 6= ∅;

(iii) @ ε > 0, simple strategies (Hn)n, and ψ ∈ C(R) with
∫
ψ dµ = 0 such that

(3.4) lim inf(Hn · S)T (ω) + ψ(ω(T )) ≥ ε, for all ω ∈ A.
Property (iii) means that one cannot make arbitrary profits by starting with zero

capital. Indeed, if (3.4) holds for some ε̂ > 0, then it does so for any ε > 0.

Proof. The equivalence between (i) and (ii) follows from the arguments around Propo-
sition 2.2.

(i) ⇒ (iii): Note that (i) implies DA(F̃0) = PA(F̃0) = 0 for any derivative F̃0 s.t.

F̃0 = 0 on A, by Theorem 3.2. Pick

F0 =

{
0 on A
−∞ else

.

Suppose, for contradiction, that there exist ε, (Hn)n and ψ s.t. (3.4) is satisfied. Then,
the pair ((Hn)n, ψ−ε) is admissible for the dual problem DA(F0). However, this implies
DA(F0) ≤ −ε for F0, which gives the desired contradiction.
(iii) ⇒ (i): By Theorem 3.2, if there is no measure Q ∈ M(µ) such that Q(A) = 1,
then DA = PA = −∞ for all derivatives F . In particular, for

Fε =

{
ε on A
−∞ else

,

there exist (Hn)n and ψ, with
∫
ψ dµ = 0, such that (3.4) holds. �
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Remark 3.4. In this paper, we have only considered the case where the information of
future call prices at a single fixed time T is observed. Using similar methods to those
developed in [Bei+17], it is also possible to extend Theorems 3.1 and 3.2 to the case
where the call prices at times 0 ≤ s1 ≤ s2 ≤ · · · ≤ sN = T are observed, and provide a
related formulation in the Brownian setup where the optimisation is over a sequence of
stopping times τ1 ≤ τ2 ≤ · · · ≤ τN = τ . In this case, it is possible to consider both the
cases where call price information completely fixes the distributions at the intermediate
times, or it only determines the integral of particular functions, or there is a mixture of
some times having full information and others lacking it. In this more general setup,
it becomes possible to include a large class of options, for example, a robust approach
to discretely monitored Asian options could be included.

3.2. Constrained monotonicity principle. In this section, we provide a modified
version of the monotonicity principle of [BCH17] giving necessary geometric conditions
on the support set of an optimiser to (conSEP).

To this end, we denote the concatenation of two paths (f, s), (g, t) ∈ S by f ⊕ g, i.e.

f ⊕ g(u) =

{
f(u) u ≤ s,
f(s) + g(u− s)− g(0) s ≤ u ≤ s+ t.

For (f, s) ∈ S we define the process γ(f,s)⊕(ω, t) := γ(f ⊕ ω|[0,t], s+ t).

Definition 3.5. A pair ((f, s), (g, t)) ∈ S × S is called feasible stop-go pair, written
((f, s), (g, t)) ∈ SGΛ, if f(s) = g(t), (f, s) ∈ Λ, the set of (FWt )t≥0 stopping times σ
satisfying 0 < E[σ] < ∞ and 1Λ ◦ r(f ⊕W, s + σ) = 1 a.s. is non-empty, and every
such stopping time satisfies

E[γ(f,s)⊕((Wu)u≤σ, σ)] + γ(g, t) < γ(f, s) + E[γ(g,t)⊕((Wu)u≤σ, σ)] ,(3.5)

and 1Λ ◦ r(g⊕W, t+ σ) = 1 a.s., where both sides of (3.5) are well defined and the left
hand side is finite. Here, the probability space is assumed to be rich enough to support
a Brownian motion W , and (FWt )t≥0 denotes the natural filtration generated by W .

The interpretation is that on average it is better to stop a path at time s with history
f , and to run the paths that would have carried on from (f, s) from a previously stopped
history (g, t) (to let (g, t) go), as long as this results in a feasible stopping rule. Note
that since f(s) = g(t), the law of the stopped process is not changed. We remark here
that – as a consequence of only considering (FWt )t≥0 stopping times – the definition of
feasible stop-go pairs is independent of the probability space on which σ lives as long as
it is rich enough to support the Brownian motion W . In a similar manner to [BCH17,
Section 5], one could introduce an even stronger notion of feasible stop-go pairs only
considering one particular candidate stopping time. In this article, we do not need this
generality.

For a set Γ ⊂ S we denote by Γ< the set of all stopped paths which have a proper
extension in Γ:

Γ< := {(f, s) ∈ S : ∃(g, t) ∈ Γ, s < t, g|[0,s] = f}.
Definition 3.6. A set Γ ⊂ Λ is called feasible γ-monotone if

SGΛ ∩ (Γ< × Γ) = ∅ .
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A set Γ ⊂ S should be viewed as a possible stopping set, i.e. a set of paths (ω|[0,τ ], τ)
for an admissible stopping strategy τ in (conSEP). If such a set Γ is feasible γ-monotone
then there is no way of changing the stopping rule in a pathwise fashion, as in (3.5),
resulting in a feasible stopping rule with higher payoff.

Theorem 3.7 (Constrained Monotonicity Principle). Let γ : S → R be Borel. Assume
that (conSEP) is well posed and that ξ ∈ RST(µ; Λ) is an optimiser. Then there exists
a feasible γ-monotone set Γ ⊂ S such that

ξ(r−1(Γ)) = 1.

Proof. Taking γ as in (3.3), the result follows from [BCH17, Theorem 5.7]. �

The Constrained Monotonicity Principle will be an important tool to characterise
solutions to (conSEP), and in particular will allow us to deduce geometric features of
optimisers. We will illustrate this in the subsequent sections.

4. No-arbitrage, pricing and hedging in specific information settings

Up to now we have shown that under our assumptions the robust pricing problem
(2.2) can be reformulated as a constrained Skorokhod embedding problem for which
we have established general results on existence, superheding, a variant of the first
fundamental theorem of asset pricing, and a characterisation of optimisers.

The goal of this section is to illustrate the richness of our framework by considering
some natural choices for the insider’s information set A, or equivalently for the corre-
sponding feasibility set Λ, to show that under additional assumptions we are able to
prove a variety of very explicit results in the insider’s setting.

We use the notation ≺ to denote the convex order relation between probability
measures; specifically, we say that λ ≺ µ if

∫
c(x)λ(dx) ≤

∫
c(x)µ(dx) for any convex

function c.
In the examples we consider, we will typically address three related questions:

(1) Given a pair (µ,Λ), when does there exist any consistent model for the in-
sider agent? Specifically, is RST(µ; Λ) non-empty? We address these points in
Theorems 4.1, 4.2, and 4.3.

(2) Assuming RST(µ; Λ) 6= ∅, can we characterise the worst case scenarios for the
insider, i.e. can we characterise solutions to the constrained Skorokhod embed-
ding problem? We provide a characterisation of the optimisers to a specific
problem in Theorem 4.4.

(3) Given a pair (µ,Λ) such that RST(µ; Λ) 6= ∅, and a derivative with payoff
F , what is the value of P ∗Λ, and how does this differ from P ∗S , the price of
the uninformed agent? We answer these questions in the context of a specific
example in Section 4.2.

In investigating the questions above, we will focus on the three following natural ex-
amples where the additional information/beliefs translates into stopping the Brownian
motion after and/or before given stopping times. Let τ , τ be stopping times such that
τ ≤ τ , and (Wt∧τ )t≥0, (Wt∧τ )t≥0 are uniformly integrable, and consider the sets
(4.1)
Λ1 = {r(ω, t) : t ≤ τ(ω)}, Λ2 = {r(ω, t) : t ≥ τ(ω)}, Λ3 = {r(ω, t) : τ(ω) ≤ t ≤ τ(ω)}.
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These cases notably cover the examples of additional information and beliefs mentioned
at the beginning of the paper, whether prices hit certain barriers, whether the quadratic
variation reaches certain levels (cf. Section 4.1.1), and on drawdown constraints (cf. also
Section 4.1.2).

In this situation we have the following basic result on the existence or absence of a
consistent model for the insider.

Theorem 4.1. Suppose that the insider has information given by (4.1). We write
Wτ ∼ µ,Wτ ∼ µ. Then:

(1) Λ = Λ1: the set RST(µ; Λ) = ∅ if µ ⊀ µ;
(2) Λ = Λ2: the set RST(µ; Λ) = ∅ if and only if µ ⊀ µ;
(3) Λ = Λ3: the set RST(µ; Λ) = ∅ if µ ⊀ µ or µ ⊀ µ.

In particular, if any of the conditions on the measures µ, µ, µ above hold, then the
insider can make unlimited profit in the sense of (3.4).

Proof. As a consequence of Strassen’s Theorem [Str65], a solution to the constrained
problem (2.6) exists for Λ2 if and only if µ ≺ µ. Similarly, in the case of Λ1, the
condition µ ≺ µ is a necessary condition for the existence of a stopping time τ ≤ τ for
the Brownian motion such that Wτ ∼ µ, but it is not sufficient unless µ is supported on
two points due to the result of Meilijson [Mei82] and van der Vecht [Vec86].1 Combining
these two observations yields the third item. �

To the best of our knowledge, necessary and sufficient conditions for the existence
of ξ ∈ RST(µ; Λ1) are unknown. We are able to provide them in specific settings (see
Section 4.1), while the existence of general criteria remains an interesting open problem.

Before we proceed, we would like to remark on the specific form of the feasibility
sets Λ in (4.1). It is clear that, in general, not all information processes/feasibility
sets are of the form (4.1). A full classification and analysis is beyond the scope of this
paper. One of the various reasons that makes this analysis complicated is that the
constraint τ ∈ RST(µ) may impose additional conditions that are not immediate from
the construction of Λ. Consider for example the case where

(4.2) Λ =
{

(f, t) ∈ S : sup
s≤t

f(s)− c ≤ f(t)
}
,

for some fixed c ∈ R+, which corresponds to the drawdown constraint on the price
process not dropping more than c below its maximum-to-date value. Minimality (cf.
(2.7)) implies that an admissible stopping time must occur before τ := inf{t ≥ 0 :
sups≤t ω(s)− c > ω(t)}, by a simple martingale argument. Hence, although there exist
feasible paths in Λ which live longer than τ , any τ which is in RST(µ) must, with
probability one, be bounded above by τ . Therefore, the set of feasible stopped paths
in this case can be replaced by Λ′ = {r(ω, t) : t ≤ τ}. Then, from the argument above,
µ ≺ µ ∼ Wτ must hold in order to have a solution to the constrained embedding
problem.

1A simple example can be constructed by considering the measures µ = N(0, 1), with stopping time
τ = 1 and µ = ε

2
(δ1 + δ−1) + (1 − ε)δ0. For ε sufficiently small, it is easily checked that µ ≺ µ, but

there is no bounded stopping time embedding µ.
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On the other hand, if the set of admissible evolutions for the asset is

Λ =
{

(f, t) ∈ S : sup
s≤t

f(s)− c ≤ 1

t

∫ t

0
f(s) ds

}
,

which is a drawdown constraint where the constraint depends on the running average
of the price process, then we are not able to replace Λ by a ‘nice’ set Λ′ ⊂ Λ as above.
Here the class of admissible stopping times is certainly bounded above by a stopping

time (inf{t ≥ 0 : max{t−1
∫ t

0 f(s) ds, f(t)} ≤ sups≤t f(s) − c}), but it is easily seen
that there are inadmissible paths which occur before this time.

In what follows we will consider the cases in Theorem 4.1 separately, analysing them in
specific settings. In particular, in Sections 4.1.2 and 4.1.1 we present two frameworks
where the additional information Λ is of the kind Λ1 in (4.1), and we are able to
give necessary and sufficient conditions for the set RST(µ; Λ) to be non-empty, hence
strengthening the result in case (1) of Theorem 4.1. In Theorem 4.4, we will exemplify
the power of the monotonicity principle by showing the structure of the solutions to
a Root-type optimisation problem with an Azéma-Yor-type constraint. Moreover, in
Section 4.2 we consider the additional information Λ to be of the kind Λ2 in (4.1) and,
for options on variance, we determine the primal optimisers by means of our constrained
monotonicity principle (Theorem 3.7), as well as the dual optimisers.

We remark that the first two cases imply results and constraints for the third case
also, e.g. Theorems 4.3 and 4.2 directly imply necessary conditions for the third case.
More generally, using the monotonicity principle Theorem 3.7 one can derive the corre-
sponding versions of Root and Azéma-Yor embedding with a general time-space starting
law (cf. Section 4.2 for the case of Root). Using similar arguments as in the proof of
Theorem 4.3 and 4.2, with slightly more notation, one can derive the corresponding
versions of these results keeping also track of the condition τ ≤ t implying necessary
and sufficient conditions for the case Λ3. We omit the details.

4.1. Information as barrier in a certain phase space. We now consider the case
where the additional information is of the kind of Λ1 in (4.1) and translates in having
a barrier in a certain phase space. We will see how in this situation the No-Arbitrage
condition (cf. Proposition 3.3, Theorem 4.1) imposes an order between such a barrier,
and the barrier characterising the unique optimal stopping for the uninformed agent
in such a phase space. These results are notable since the ordering of barriers is a
much weaker condition than the convex order condition, significantly strengthening the
results of Theorem 4.1.

4.1.1. The Root phase space. We recall that the Root solution of the (unconstrained)
Skorokhod embedding problem for the distribution µ is given by

τRoot(µ) = inf{t ≥ 0 : (t,Wt) ∈ R},
where R is a closed barrier, that is, (t, x) ∈ R implies (s, x) ∈ R for s > t; see [Roo69].
This is one of the first known solutions to SEP, and is optimal when γ(f, t) = h(t) for
a strictly convex function h. The Root solution is illustrated in Figure 1. To avoid
trivialities, we assume that our barriers are regular (see [COT19]), that is, they are
closed and {x : (0, x) 6∈ R} is an open interval, containing the origin; any barrier
which is not regular can be replaced by a regular barrier without changing the hitting
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time. Any regular barrier can be described by its lower semi-continuous barrier function
R(x) = inf{t : (t, x) ∈ R}.

R

τRoot(µ) t

Wt

Figure 1. The Root solution to the SEP.

For the informed agent we assume that

Λ = {r(ω, t) : t ≤ τ},
where the stopping time τ is the hitting time of a regular barrier B in the phase space
(t,W ), i.e. a Root-type barrier:

(4.3) τ = inf{t ≥ 0 : (t,Wt) ∈ B}.
As in Theorem 4.3, we are able to determine whether RST(µ; Λ) is empty, and hence

whether there is an arbitrage for the informed agent, through properties of the barriers.

Theorem 4.2. Let the set Λ be given by (4.5), with τ of the form in (4.3). Then the
set RST(µ; Λ) is non-empty if and only if:

(4.4) B ⊆ R,
which yields τRoot(µ) ≤ τ . In particular, if (4.4) holds, the stopping rule τRoot(µ) is
admissible for the informed agent, in the sense that ((Wt)t≤τRoot(µ), τRoot(µ)) ∈ Λ a.s.

Proof. We first observe that if (4.4) holds, then we immediately have τRoot(µ) ≤ τ ,
and since τRoot(µ) ∈ RST(µ; Λ), then RST(µ; Λ) 6= ∅. To show the reverse implication,
suppose, for contradiction, that RST(µ; Λ) is non-empty and B 6⊆ R. This means that
there exist pairs (t, x) ∈ B \R. Among those pairs, we consider a fixed (t̂, x̂) such that
there are no (t, x̂) ∈ B \ R with t < t̂, as in Figure 2.

Now consider τ ′ ∈ RST(µ; Λ). Denote the local time of Brownian motion in z by
Lz. Since the Root embedding maximises E [Lxτ∧t] among all stopping times τ which
are minimal embeddings of µ (cf. (2.7)), simultaneously for all (t, x) ∈ R+×R (e.g. by
[GOR15, Theorem 3]), then in particular

E
[
Lx̂
τ ′∧t̂

]
≤ E

[
Lx̂
τRoot(µ)∧t̂

]
.
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t

Wt

R

B

(t̂, x̂)

Figure 2. Proof of Theorem 4.2.

On the other hand, the path stopped at τ ′ cannot accumulate any more local time at

x̂ after t̂, i.e. E
[
Lx̂
τ ′∧t̂

]
= E

[
Lx̂τ ′∧t

]
for all t ≥ t̂, while the Root stopping rule will do

so (E
[
Lx̂
τRoot(µ)∧t̂

]
< E

[
Lx̂τRoot(µ)∧t

]
when t > t̂), because the barrier is assumed to be

regular. Therefore,

E
[
Lx̂τ ′
]

= E
[
Lx̂
τ ′∧t̂

]
≤ E

[
Lx̂
τRoot(µ)∧t̂

]
< E

[
Lx̂τRoot(µ)

]
.

This gives the desired contradiction, since, for any x ∈ R and any stopping time
τ ∈ RST(µ),

E [Lxτ ] = E [|Wτ − x|]− |x| = −uµ(x)− |x|,
where uµ is the potential function associated to µ, i.e., uµ(x) = −

∫
|y − x|µ(dy). �

4.1.2. The Azéma-Yor phase space. We let ωt := sup0≤s≤t ωs, and define the process

W analogously. We start by recalling the Azéma-Yor solution of the (unconstrained)
Skorokhod embedding problem (SEP). The barycenter function bµ of a probability
measure µ is defined by

bµ(x) :=

∫
[x,∞) y µ(dy)

µ([x,∞))
.

Denote the inverse of bµ by βµ. The solution to the SEP by Azéma and Yor, see [AY79],
is given by

τAY (µ) = inf{t ≥ 0 : Wt ≤ βµ(W t)}.
This is arguably the most renowned solution to SEP, for which many properties are
known, among which, that it maximises stochastically the maximum of the stopped
Brownian motion. See the survey article of Ob lój [Ob l04] for further details. We
illustrate the Azéma-Yor solution in Figure 3.

For the informed agent, we assume that

(4.5) Λ = {r(ω, t) : t ≤ τ},
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τAY

Wt

W t

Figure 3. The Azéma-Yor construction.

where the stopping time τ is the hitting time of a barrier in the phase space (W,W ):

τ = inf{t ≥ 0 : (W t,Wt) ∈ H},
where H is a Borel set H ⊆ {(x, y) ∈ R+ × R : y ≤ x} induced by some increasing
left-continuous Borel function h : R+ → R via

H = {(x, y) : y ≤ h(x)},
so that (x, y) ∈ H and z > x imply (z, y) ∈ H. Note that this gives

(4.6) τ = inf{t ≥ 0 : Wt ≤ h(W t)},
thus the set Λ in (4.5) corresponds to the following set of feasible paths for the informed
agent:

(4.7) A = {ω ∈ Cs0 [0, T ] : ωt > h(ωt) ∀t ∈ [0, T )},
that is, the paths that satisfy the drawdown constraint ω > h(ω) during the period
[0, T ).

We now give a result which shows that, when the agent’s information is given by
A as in (4.7), then we can provide a simple necessary and sufficient condition for the
existence of consistent models for the informed agent, cf. (1) of Theorem 4.1. If there
is no ambiguity we write βµ = β in the following.

Theorem 4.3. Let the set Λ be given by (4.5), with τ of the form in (4.6). Then the
set RST(µ; Λ) is non-empty if and only if:

(4.8) h(x) ≤ β(x) for all x ∈ R+,
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h(W t)

β(W t)

x̂

Wt

W t

Figure 4. Proof of Theorem 4.3

which yields τAY (µ) ≤ τ . In particular, if (4.8) holds, the stopping rule τAY (µ) is
admissible for the informed agent, in the sense that ((Wt)t≤τAY (µ), τAY (µ)) ∈ Λ a.s.

Proof. We first observe that if (4.8) holds, then we immediately have τAY (µ) ≤ τ , and
since τAY (µ) ∈ RST(µ; Λ), then RST(µ; Λ) 6= ∅.

For the reverse implication, we suppose that there exists x̂ ∈ R+ such that h(x̂) >
β(x̂), as in Figure 4. Then we fix τ ′ ∈ RST(µ; Λ), and argue as follows. Define a
measure

η(A) := P(Wτ ′ ∈ A,W τ ′ ≥ x̂)

and note that, by the martingale property,
∫
y η(dy) = x̂ · η(R). Moreover, η(A ∩

[x̂,∞)) = µ(A ∩ [x̂,∞)), and η(A) ≤ µ(A) for all Borel sets A.
Define functions Φη,Φµ : (−∞, x̂]→ R by:

Φη(x) =

∫
[x,∞)

y η(dy)− x̂ · η([x,∞)) =

∫
[x,∞)

(y − x̂) η(dy),

and similarly for µ. Then Φµ,Φη are both increasing on (−∞, x̂], Φµ(x̂) = Φη(x̂), and
Φµ(x)−Φη(x) is increasing in x for x ∈ (−∞, x̂] since µ(dy) ≥ η(dy). Hence we deduce
that Φµ(x) ≤ Φη(x) for x ≤ x̂.

Now we observe that η((−∞, h(x̂))) = 0, so Φη(h(x̂)) = 0. On the other hand, by
the definition of the barycentre function,

β(x̂) := sup {y < x̂ : Φµ(y) ≤ 0} .
It follows from Φµ(x) ≤ Φη(x) that h(x̂) ≤ β(x̂), contradicting our original assumption.

�
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Let us consider the drawdown constraint in (4.2) which corresponds to Λ = [[0, τ ]],
with τ given as in (4.6) for h(x) = x − c. In this case Theorem 4.3 implies that
x − c ≤ β(x) = b−1

µ (x) must hold in order to have a feasible solution for the informed
agent. This condition can of course be rephrased in terms of barycentre functions since
h is the inverse of the barycenter function associated to µ ∼Wτ (by [AY79]). Therefore,
the existence of a consistent solution for the insider is equivalent to b−1

µ ≤ b−1
µ , that is,

bµ ≤ bµ.
Theorem 4.3 tells us when the pricing problem for the insider, cf. (2.2) or (2.6),

has a feasible solution, and hence an optimiser under the conditions of Theorem 2.7,
but does not tell us anything about the specific optimiser. On the other hand, the
constrained monotonicity principle, Theorem 3.7, allows us to characterise the geometry
of optimisers in various settings. We illustrate this in the special situation where the
agent wishes to find the stopping times τ solving (conSEP) in the case γ(f, s) = −s2

corresponding to the payoff F (S) = −〈S〉2T .We are interested in characterising solutions
to

min
τ∈RST(µ;Λ)

E[τ2],(4.9)

where

(4.10) Λ = {r(ω, t) : t ≤ τ}, with τ = inf{t ≥ 0 : Wt ≤ h(W t)},
for a step function h(x) =

∑n
i=1 ai1[mi−1,mi)(x) with m0 = s0 < m1 < . . . < mn and

a1 ≤ a2 ≤ . . . ≤ an. We set Λ̃ = {r(ω, t) : t < τ}, and note that (f, s) ∈ Λ̃ and
mi−1 ≤ f s < mi imply that f(s) > ai.

We recall that in the unconstrained case, i.e. h(x) = −∞, the solution is the Root
solution τRoot, the first hitting time of a barrier in space-time (see also Section 4.1.1).

In the current setup, the situation is similar:

Theorem 4.4. Assume that RST(µ; Λ) 6= ∅ and that the optimisation problem (4.9) is
well posed. Then for any optimiser τ̂ there exists a sequence of barriers (Ri)ni=1 such
that

τ̂ = inf{t ≥ 0 : (t,Wt) ∈ R`(W t)
},

where `(m) =
∑n

i=1 i1[mi−1,mi)(m).
Moreover, for each j ≤ i it holds that

(Rj ∩ [0,∞)× (ai,∞)) ⊂ (Ri ∩ [0,∞)× (ai,∞)) .

Proof. To avoid too many minus signs, we redefine γ(f, s) = s2 and for this proof we
consider the minimisation variant of (conSEP).

By Theorem 2.7 we can find a minimiser, say τ̂ , to the optimisation problem (4.9).
By Theorem 3.7 we can pick a feasible γ-monotone set Γ such that τ̂(r−1(Γ)) = 1 and
SGΛ ∩ (Γ< × Γ) = ∅.

We claim that

SGΛ ⊃ {((f, s), (g, t)) ∈ Λ̃× Λ : f(s) = g(t), s > t, fs ≥ gt}.(4.11)

Indeed, pick (f, s), (g, t) ∈ Λ with s > t and f(s) = g(t). It holds for any (k, u) ∈ S by
convexity of s 7→ s2 (and since we are considering minimisation instead of maximisation)
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that
γ(f, s) + γ(g ⊕ k, t+ u) < γ(f ⊕ k, s+ u) + γ(g, t),

so that (3.5) follows by two observations. First, (f, s) ∈ Λ̃ implies the existence of
at least one Brownian stopping time σ with 0 < E[σ] < ∞ such that 1Λ(f ⊕W, s +
σ) = 1, e.g. if mi−1 ≤ fs < mi then the first hitting time of Brownian motion of
{1

2(f(s)− ai), 1
2(mi − f(s)} is such a stopping time. Second, any stopping time σ with

1Λ(f⊕W, s+σ) = 1 necessarily satisfies 1Λ(g⊕W, t+σ) = 1, since f(s) = g(t), fs ≥ gt,
and the function h defining Λ is increasing.

Put Γi = Γ ∩ {(f, s) ∈ S : mi−1 ≤ fs < mi} and set

Rop
i := {(s, x) : ∃(g, t) ∈ Γi, g(t) = x, s > t},
Rcl
i := {(s, x) : ∃(g, t) ∈ Γi, g(t) = x, s ≥ t}.

Pick (g, t) ∈ Γi. Then we claim that

inf{s ∈ [0, t] : (s, g(s)) ∈ Rcl
i } ≤ t ≤ inf{s ∈ [0, t] : (s, g(s)) ∈ Rop

i }.
Since the first inequality holds by construction, suppose for contradiction that inf{s ∈
[0, t] : (s, g(s)) ∈ Rop

i } < t. In this case, there is s < t such that (g|[0,s], s) =: (f, s) ∈
Γ<i , (s, f(s)) ∈ Rop

i and since s < t it holds that f(s) > ai. Then there exists (k, u) ∈ Γi
such that u < s and k(u) = f(s) > ai so that (k, u) ∈ Λ̃. However, by (4.11), this
means that ((f, s), (k, u)) ∈ SGΛ ∩ (Γ< × Γ), which cannot be the case.

Pick ω such that (W (ω)0≤t≤τ̂(ω), τ̂(ω)) ∈ Γi for some 1 ≤ i ≤ n. It then follows that

τ cli (ω) := inf{t ≥ 0 : (t,Wt(ω)) ∈ Rcl
i } ≤ τ̂(ω) ≤ inf{t ≥ 0 : (t,Wt(ω)) ∈ Rop

i } =: τopi (ω).

Then, we can conclude the existence of the barriers (Ri)ni=1 by the observation that

conditionally on the event {mi−1 ≤ W τ̂ < mi} it holds τ cli = τopi a.s. by the strong
Markov property and the fact that Brownian motion almost surely immediately returns
to its starting point.

To show the final claim, note that (4.11) implies that at each x /∈ {m1, . . . ,mn} the

condition (g, t) ∈ Γ ∩ Λ with g(t) = x implies g(t) ∈ Λ̃. Just as in the first part of the
proof, it then follows that there is no (f, s) ∈ Γ< with f(s) = x, f s ≥ gt and s > t.
This gives the result. �

Example 4.5. Consider the case of µ = 1
3(δs0−1 + δs0 + δs0+1), when s0 > 1. Let h be

given by the inverse barycentre function of µ, i.e. h = b−1
µ which equals

h(x) = (s0 − 1) · 1[s0−1,s0+1/2)(x) + s0 · 1[s0+1/2,s0+1) + (s0 + 1) · 1[s0+1,∞).

In particular, in the Root-type optimisation problem (4.9) constrained by h as in (4.10),
any path which reaches level s0 + 1/2 will not be stopped at s0 − 1.

The unconstrained Root solution instead is given by the hitting time of

R = {(t, s0 − 1) : t ∈ [0,∞)} ∪ {(t, s0) : t ∈ [a,∞)} ∪ {(t, s0 + 1) : t ∈ [0,∞)},
for some a > 0. In particular, there are paths getting arbitrary close to one but which are
stopped at s0−1 so that the constrained Root solution is different from the unconstrained
one.

Also note that this is not related to the special case of µ begin atomic. Indeed, keep the
same h. Consider µ̃ to be the uniform measure on [s0−1, s0+1] whose inverse barycentre
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function is given by b−1
µ̃ (m) = 2m− s0 − 1 so that RST(µ̃; Λ) 6= ∅ by Theorem 4.3. By

the same reasoning as before, it is immediate to see that the Root solution is different
from the constrained Root solution.

Remark 4.6. Let us consider (4.9) for the case of a general increasing function h
yielding a corresponding set of feasible paths Λ as in (4.10). Assume RST(µ; Λ) 6= ∅.
Approximate h from below by step functions hn with corresponding sets of feasible paths
Λn and the property that hn ≤ hn+1. Since then Λn ⊇ Λn+1 ⊇ Λ, it follows that
RST(µ; Λn) 6= ∅. For each n, pick by Theorem 2.7 an optimiser to (the corresponding
version of) (4.9), say τ̂n. Since RST(µ; Λn) ⊇ RST(µ; Λ), it follows that for all n

E[(τ̂n)2] ≤ inf
τ∈RST(µ;Λ)

E[τ2].

Since RST(µ; Λ1) is compact and τ̂n ∈ RST(µ; Λ1) for all n, there is a converging
subsequence and any limit point τ̂ must lie in RST(µ; Λ). Moreover, any limit point τ̂
must be an optimiser by monotonicity, since

E
[
(τ̂n)2

]
≤ E

[
(τ̂n+1)2

]
≤ inf

τ∈RST(µ;Λ)
E[τ2].

Since, by Theorem 4.4, each τ̂n is given as the hitting time of barriers in space-time
indexed by the running maximum, it is then plausible to conjecture that this remains
true for τ̂ as well. To make this argument rigorous seems to be outside the scope of this
article, however we note that (4.11) still holds in the limit.

Remark 4.7. Considering in (4.9) a maximisation problem instead of a minimisation
problem, the corresponding version of (4.11) turns into

SGΛ ⊃ {((f, s), (g, t)) ∈ Λ̃× Λ : f(s) = g(t), s < t, fs ≤ gt}.
Following the line of reasoning of Theorem 4.4, one can show that the optimal stopping
time will be the hitting of a sequence of inverse barriers indexed by the running maxi-
mum, i.e. the corresponding version of constrained Rost solutions. Using similar ideas
one can identify the optimal solutions and worst case scenarios in various different
setups.

4.2. Option pricing in the presence of insider information: Variance options.
In this section, we consider the impact on the insider’s pricing bounds which come
from additional information. Specifically, we suppose that the information is on the
drawdown, in a similar manner to the previous discussion, for example, as in (4.10),
and we look to find bounds on the prices of options on variance: that is, we consider
the motivating example from the introduction, where we think of a trader who believes
that the CEO of the company is attempting to satisfy a drawdown constraint, and
wishes to understand the impact on pricing bounds of variance options on the same
company.

To understand the structure of the derivatives, we consider an asset which follows
a model of the form: dSt = Stσt dWt, where St is the discounted asset price, and

Wt a Brownian motion. The process σt is the volatility, and
∫ t

0 σ
2
r dr is known as

the integrated variance. A variance option is then a contract which pays the holder

G
(∫ t

0 σ
2
r dr

)
. The most common example is the variance call, where G(v) = (v−K)+.

Note that the integrated variance process can be determined as 〈lnS〉t, the quadratic
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variation of the logarithm of the asset price. For further details, we refer the reader to
[CL10; CW13a; CW13b; Lee10].

The standard method for pricing such options is to time-change the process St by
a time change τt such that Xt := Sτt is a geometric Brownian motion. With this
time change, (Xt, t) = (Sτt , 〈lnS〉τt), that is, the time-scale in the transformed picture
corresponds to the integrated variance process. In particular, the problem of finding a
model St which minimises E[G(〈lnS〉T )] subject to ST ∼ µ is equivalent to finding a
stopping time τ for X to minimise E[G(τ)] subject to Xτ ∼ µ.

We would therefore like to compare the minimal (model-independent) price of the
variance option for the insider, to that for the uninformed agent. To keep things simple,
we consider an option which pays the holder the square-root of the arithmetic variance,

Vt :=
∫ t

0 S
2
rσ

2
r dr, which corresponds to choosing a time-change τt so that Xt = Sτt is a

Brownian motion. This places us trivially in the setup of the rest of this paper.
Our problem of interest now may be posed as follows: consider an agent who has

inside information on the future evolution of the asset, specifically, who knows that the
price will never drop below h(St), where h is an increasing function. The agent plans to
exploit this information by trading in derivatives written on the asset, and do not have
strong modelling beliefs, so wish to profit from their information under any potential
model. Suppose variance options with payoff

√
VT are liquidly traded. To profit, they

plan to sell the derivative and setup a model-independent super-hedging strategy. They
want to know at what price-level they are guaranteed to make a profit. If the agent
also knows the feasibility set Λ given by (4.10), then their problem becomes to find

sup{EP[
√
τ ] : Wτ ∼ µ, W.∧τ is u.i., τ ≤ τ a.s.}.(4.12)

By Theorem 3.2, if we can identify the solution to this problem, then there exists a
corresponding super-hedging strategy. However, it follows from Theorem 4.4 that the
solution must be a nested sequence of barriers, which depend on the running maximum.
To see how these barriers, and more specifically, the price bound, may depend on the
information set, we consider the problem numerically under some additional structural
examples.

4.2.1. Numerical results. In this section we illustrate the previous example with some
numerical evidence. In particular, we are interested in illustrating how the insider’s
price changes as the information set changes.

Our basic setup is as follows: we suppose that the insider’s information set Λ is
determined by (4.10), where the function h is of the form: h(x) = a11[m0,∞), that
is, there is a single step in the constraint, which comes in at the point where the
maximum first exceeds the level m0. In the examples, we will consider the case where
the information set changes by varying m0. Moreover, we will assume that the measure
to be embedded consists of 4 atoms, at points {x0, x1, x2, x3}, and we have a1 = x1. It
follows that the main issue to be determined is the value of the barrier at the level x1

when the level m0 has not yet been reached, and the barrier at x2 both before and after
reaching m0. From Theorem 4.4, we know that the barriers at x2 are ordered — that
is, the earliest time at which we stop at x2 before reaching m0, is later than the earliest
time we stop at x2 after reaching m0. Since the embedding constraint has two degrees
of freedom (there are four atoms of mass, but two values are fixed by the requirement
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that the probabilities sum to one, and the requirement that the embedded mass has
mean equal to s0), this means that we can compute the optimal barrier by optimising
over the single remaining degree of freedom.

We implement a simple numerical algorithm, inspired by the PDE characterisation
of [CW13b], which finds the potential of the stopped process. By optimising over the
potential functions of the measure embedded before and after reaching m0, we are able
to compute the critical times at which the barriers must start. Here, the potential
uλ(x) associated with a measure on R is defined to be: uλ(x) =

∫
|y − x|λ(dy). The

numerical implementation was performed in Python2. In Figure 5 we plot the price
of the variance option as a function of m0. Moreover, we can see how the law of the
quadratic variance in the extremal model varies as we change m0: this is shown in
Figure 6 for several values of m0, as well as the values of the barrier at x1, x2, before
and after hitting m0.
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Figure 5. Effect of changing m0 on barrier. For values below about
17.9, there is no feasible model, and therefore there is an arbitrage if the
option can be sold at any finite price. Since the upper range of the price
distribution, x3 = 25, m0 = 25 corresponds to having no additional
information, the maximal price in the plot (attained when m0 = 25)
is accordingly the model-independent upper bound on the price in the
absence of any additional information.

Under the restriction to a small number of atomic masses, the optimal models are
relatively easy to find numerically in simple examples such as these. However, Theo-
rem 4.4 only provides necessary conditions for a given barrier to be optimal. An open,
and interesting question, is whether it is possible to provide sufficient conditions, and
moreover, whether a numerical scheme to compute the corresponding bounds can be
implemented. Doing this appears to us to be a challenging problem, and we leave this
as an open question for future work.

2A Jupyter notebook containing the code used to produce the figures in this paper can be downloaded
from http://www.maths.bath.ac.uk/~mapamgc/.

http://www.maths.bath.ac.uk/~mapamgc/
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Figure 6. The CDF of the realised quadratic variation of S in the
extremal model, for 4 different values of m0.
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and x2 after hitting m0 are shown. All other barrier values are either 0
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“Pathwise superreplication via Vovk’s outer measure”. Finance and Stochas-
tics 21.4 (2017), pp. 1141–1166.
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