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Abstract The Neutron Transport Equation (NTE) describes
the flux of neutrons through inhomogeneous fissile medium.
Whilst well treated in the nuclear physics literature (cf. [9, 27]),
the NTE has had a somewhat scattered treatment in math-
ematical literature with a variety of different approaches (cf.
[8, 25]). Within a probabilistic framework it has somewhat un-
deservingly received little attention in recent years; nonetheless,
rigorous probabilistic treatments can be found see for example
[19, 26, 24, 29, 4, 3]. In this article our aim is threefold. First we
want to introduce a slightly more general setting for the NTE,
which gives a more complete picture of the different species of
particle and radioactive fluxes that are involved in fission. Sec-
ond we consolidate the classical c0-semigroup approach to solv-
ing the NTE with the method of stochastic representation which
involves expectation semigroups. Third we provide the leading
asymptotic of our multi-species NTE, which will turn out to be
crucial for further stochastic analysis of the NTE in forthcom-
ing work [6, 5]. The methodology used in this paper harmonises
the culture of expectation semigroup analysis from the theory
of stochastic processes against c0-semigroup theory from func-
tional analysis. In this respect, our presentation is thus part
review of existing theory and part presentation of new research
results based on generalisation of existing results.

1. Introduction. The neutron transport equation (NTE) describes the flux of neutrons
across a directional planar cross-section in an inhomogeneous fissile medium (typically mea-
sured is number of neutrons per cm2 per second). As such, flux is described as a function
of time, t, Euclidian location, r ∈ R3, direction of travel, Ω ∈ S2, speed c > 0 (and hence
velocity υ = cΩ), and neutron energy, E ∈ R. It is not uncommon in the physics literature,
as indeed we shall do here, to assume that energy is a function of velocity (E = m|υ|2/2),
thereby reducing the number of variables by one. This allows us to describe the depen-
dency of flux more simply in terms of time and, what we call, the configuration variables
(r, υ) ∈ D× V where D ⊆ R3 is a smooth, open, connected and bounded domain of concern
such that ∂D has zero Lebesgue measure and V is the velocity space, which can now be
taken to be V = {v ∈ R3 : υmin < |v| < υmax}, where 0 < υmin < υmax <∞.

Before stating the NTE, let us remind the reader of some elementary nuclear physics, which
is required to describe the evolution of neutron flux. In the most basic of flux models, there
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are essentially only four processes at the level of the atomic nuclei which contribute to the
evolution of neutron flux.

The first is spontaneous neutron emission from unstable nuclei. This comes from radioactive
isotopes whose nuclei are excited. They cause what is known as non-transmutation emissions,
in which a neutron is ejected with an escape velocity (neutron emission), or, conversely, what
are called transmutation emissions in which the nucleus instantaneously fragments into two
or more nuclei (spontaneous fission) with a range of possible masses, emitting one or more
neutrons with escape velocities in the process.

The second process pertains to neutron scattering. This is where a neutron travelling with a
given velocity passes in close proximity to an atomic nucleus, which in our model, results in
an instantaneous change of velocity.

The third process is neutron-induced fission. This is the classical setting in which a neutron
travelling with a given velocity strikes an atomic nucleus sending it into an excited state,
from which it instantaneously fragments into two or more nuclei, simultaneously releasing
one or more neutrons.

The fourth and final process is neutron capture. In this setting, a neutron travelling with a
given velocity strikes an atomic nucleus, but instead of causing nuclear fission, it is absorbed
into the nucleus. It can also be the case that neutrons decay into other subatomic particles,
and thus disappear from the system. To all intents and purposes, we can treat this as neutron
capture.

When modelling the transmission of neutrons in a fissile material, those neutrons which have
been released from nuclei are known as prompt neutrons.

With more advanced modelling, one can also take account of the fact that some of the
processes described above can also involve other types of nuclear emissions, often in addition
to neutrons. Included in the release of energy at fission events, are several prominent types of
emissions. These include alpha and beta particles and gamma radiation. Whilst the former
two are not sufficiently energetic to cause fission, sufficiently energetic gamma rays are able
to induce fission.

Spontaneous fission and neutron-induced fission can also produce what are known as delayed
neutrons. These are neutrons released from a fission product (isotope) some time after fission
has occurred. In terms of modelling, they are spontaneous neutron emissions which occur
at the site of neutron-induced fission but at a moment later in time. Delayed neutrons are
only in a delayed state until they are released after which they are considered as prompt
neutrons.

We refer to models which take account of the full range of flux profiles as multi-species
models.

2. Neutron Transport Equation. Let us now write down the basic neutron transport
equation (prompt neutrons only), which has been widely considered in a variety of physics
and engineering literature (cf. [9, 27], to name but two classical references), and somewhat
more sporadically studied in the mathematical literature. See [8, 25, 19] for the three most
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authoritative mathematical texts in more recent times, as well as e.g. [26, 15, 24] for some
of the rarer examples of the probabilistic treatment of of the NTE.

Neutron flux at time t ≥ 0 is henceforth identified as Ψt : D× V → [0,∞), and the classical
presentation of its evolution in time is given by the integro-differential equation, also known
as the forward neutron transport equation1,

∂

∂t
Ψt(r, υ) = −υ · ∇Ψt(r, υ)− σ(r, υ)Ψt(r, υ) +Q(r, υ, t)

+

∫
V

Ψt(r, υ
′)σs(r, υ

′)πs(r, υ
′, υ)dυ′ +

∫
V

Ψt(r, υ
′)σf(r, υ

′)πf(r, υ
′, υ)dυ′,(2.1)

where the different components (or cross-sections as they are known in the physics literature)
are all uniformly bounded and measurable with the following interpretation:

σs(r, υ
′) : the rate at which scattering occurs from incoming velocity υ′,

σf(r, υ
′) : the rate at which fission occurs from incoming velocity υ′,

σ(r, υ) : the sum of the rates σf + σs, also known as the total cross section
πs(r, υ

′, υ)dυ′ : the scattering yield at velocity υ from incoming velocity υ′,
satisfying

∫
V
πs(r, υ, υ

′)dυ′ = 1,

πf(r, υ
′, υ)dυ′ : the neutron yield at velocity υ from fission with incoming velocity υ′,

satisfying
∫
V
πf(r, υ, υ

′)dυ′ <∞, and
Q(r, υ, t) : non-negative source term.

It is normal to assume that all quantities are uniformly bounded away from infinity. It is
also usual to assume the additional boundary conditions

(2.2)


Ψ0(r, υ) = g(r, υ) for r ∈ D, υ ∈ V,

Ψt(r, υ) = 0 for r ∈ ∂D if υ · nr < 0,

where nr is the outward facing normal of D at r ∈ ∂D and g : D × V → [0,∞) is a
bounded, measurable function which we will later assume has some additional properties.
Roughly speaking, as the forward equation describes where particles could have evolved
from in order to contribute to the current configuration, this boundary condition means
that particles from outside the domain with incoming velocity are not taken into account.
The second of the above two boundary condition is sometimes written Ψt|∂D−=0, where
∂D− = {(r, υ) ∈ ∂D × V : υ · nr < 0}. It is also usual to set Q = 0 when considering a
time-varying problem, as the resulting fission will overwhelm the radioactive source term.

The notion of a solution of the form (2.1) turns out to be too strong to expect to make math-
ematical sense of it. This is predominantly due to the non-diffusive nature of the equation,
in particular the non-local nature of the scattering and fission operators as well as regularity
issues on the domain D× V in relation to continuity properties of e.g. the operator υ · ∇. It

1Here and everywhere else in the document, ∇ is the gradient operator with respect to the variable r ∈ R3.
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is much more natural to look for solutions that belong to an appropriate L2 space. This is,
moreover, helpful when looking to understand (2.1) as a backwards equation, rather than a
forwards equation.

With some rearrangements, the components of (2.1) separate into transport, scattering and
fission. Specifically,

(2.3)



→
Tg(r, υ) := −υ · ∇g(r, υ)− σ(r, υ)g(r, υ) (forwards transport)

→
Sg(r, υ) :=

∫
V
g(r, υ′)σs(r, υ)πs(r, υ

′, υ)dυ′ (forwards scattering)

→
Fg(r, υ) :=

∫
V
g(r, υ′)σf(r, υ)πf(r, υ

′, υ)dυ′ (forwards fission)

such that all operators are defined on D × V and their action is zero otherwise. Let us
momentarily consider the operator on the right-hand side of (2.1) as acting on L2(D × V ),
the space of square integrable functions on D × V , and write

〈f, g〉 =

∫
D×V

f(r, υ)g(r, υ)drdυ

for the associated inner product. Note that, for f, g ∈ L2(D× V ) such that both υ · ∇f and
υ · ∇g are well defined as distributional derivatives, which are also in the space L2(D × V ),
with g respecting the second of the boundary conditions in (2.7), we can verify with a simple
integration by parts that, for υ ∈ V ,

〈f, υ · ∇g〉 =

∫
∂D×V

(υ · υ′)f(r, υ′)g(r, υ′)drdυ′ − 〈υ · ∇f, g〉 = −〈υ · ∇f, g〉(2.4)

providing we insist that f respects the boundary f(r, υ) = 0 for r ∈ ∂D if υ · nr > 0.
Moreover, Fubini’s theorem also tells us that, for example, with f, g ∈ L2(D × V ),

〈f,
∫
V

g(·, υ′)σs(·, υ′)πs(·, υ′, ·)dυ′〉 =

∫
D×V×V

f(r, υ)σs(r, υ
′)g(r, υ′)πs(r, υ

′, υ)dυ′drdυ

=

∫
D×V

σs(r, υ
′)

∫
V

f(r, υ)πs(r, υ
′, υ)dυ g(r, υ′)drdυ′

= 〈σs(·, ·)
∫
V

f(·, υ)πs(·, ·, υ)dυ, g〉.

These computations tell us that, for f, g ∈ L2(D×V ) such υ ·∇g and υ ·∇f are well defined
in the distributional sense and, moreover, that g(r, υ) = 0 for r ∈ ∂D if υ · nr < 0, and for
f ∈ L2(D × V ) such that f(r, υ) = 0 for r ∈ ∂D if υ · nr > 0,

〈f, (
→
T +

→
S +

→
F)g〉 = 〈(

←
T +

←
S +

←
F)f, g〉,
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where now we identify the transport, scattering and fission operators as
(2.5)

←
Tf(r, υ) := υ · ∇f(r, υ) (backwards transport)

←
Sf(r, υ) := σs(r, υ)

∫
V
f(r, υ′)πs(r, υ, υ

′)dυ′ − σs(r, υ)f(r, υ) (backwards scattering)

←
Ff(r, υ) := σf(r, υ)

∫
V
f(r, υ′)πf(r, υ, υ

′)dυ′ − σf(r, υ)f(r, υ) (backwards fission)

such that all operators are defined on D × V with zero action otherwise. The reader will
immediately note that, although the terms in the sum

←
T+

←
S+

←
F are identifiable as the adjoint

of the terms in the sum
→
T +

→
S +

→
F, the same can not be said for the individual ‘T’, ‘S’ and

‘F’ operators. That is to say, the way we have grouped the terms does not allow us to say
that e.g.

←
T is the adjoint operator to

→
T and so on.

The reason for this difference in grouping of terms lies with how one reads the operators in
terms of infinitesimal generators as a probabilist. Although this will not make any difference
in the analysis of this paper, we keep to this notation for the sake of consistency with two
further related articles which offer a probabilistic perspective on the backwards NTE; see
[5, 6].

Roughly speaking,
←
T, with an appropriately defined domain, is the generator of the rather

simple Markov process consisting of a deterministic motion with velocity υ, i.e. transport due
to pure advection, with killing on exiting the domain D. Similarly, with an appropriately
defined domain, the operator

←
S is the generator corresponding to scattering, in which a

particle travelling with velocity υ at position r is removed at rate σs and replaced by a new
particle at r with velocity υ′ chosen with probability πs(r, υ, υ′)dυ′. Taking advantage of the
fact that

∫
V
πs(r, υ, dυ′)dυ′ = 1 we can also write

σs(r, υ)

∫
V

f(r, υ′)πs(r, υ, υ
′)dυ′−σs(r, υ)f(r, υ) = σs(r, υ)

∫
V

[f(r, υ′)−f(r, υ)]πs(r, υ, υ
′)dυ′

and also note that it takes the classical form of a difference operator. Finally
←
F is the generator

action of a fission even in which a particle travelling with velocity υ at position r is removed
at rate σf and replaced by an average number of particles πf(r, υ, υ′)dυ′ moving onwards
from r with velocity υ′.

This leads us to the so called backwards neutron transport equation (which is also known as
the adjoint neutron transport equation) given by

∂

∂t
ψt(r, υ) = υ · ∇ψt(r, υ)− σ(r, υ)ψt(r, υ)

+ σs(r, υ)

∫
V

ψt(r, υ
′)πs(r, υ, υ

′)dυ′ + σf(r, υ)

∫
V

ψt(r, υ
′)πf(r, υ, υ

′)dυ′,(2.6)

with additional boundary conditions

(2.7)


ψ0(r, υ) = g(r, υ) for r ∈ D, υ ∈ V,

ψt(r, υ) = 0 for r ∈ ∂D if υ · nr > 0.
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Similarly to previously, the second of these two conditions is often written ψt|∂D+ = 0, where
∂D+ := {(r, υ) ∈ ∂D × V : υ · nr > 0}.

The NTE has played a prominent role in real-world modelling and, for many years, has found
a home in commercial software which is used in the nuclear safety industry. In particular,
in the modelling and design of environments which are exposed to radioactive material,
from nuclear reactor cores and hospital equipment, through to equipment used to irradiate
produce that is sold in supermarkets, thereby prolonging its shelf-life. More recently, with
the notion of interplanetary space exploration becoming less of a sci-fi fantasy and an ever
closer reality, an understanding of how long-lasting and compact nuclear power sources, for
e.g. Moon or Mars bases has become increasingly important.

Figure 1 below illustrates a typical geometrical model of a reactor core rod, cladding and outer
shielding.2 The structural design of such a reactor can easily be stored as virtual environment
(i.e. storing the coordinates of the different geometrical domains and the material properties
in each domain) with around 150MB of data, on to which extensive data libraries of numerical
values for the respective quantities σs, σf, πs, πf can be mapped.

Figure 1. A virtual model of a nuclear reactor core with colour indicating the respective fissile properties
of the virtual materials used. Uranium rods are arranged into hexagonal cells which are arranged within a
larger containment casing.

One of the principal ways in which neutron flux is understood is to look for the leading
eigenvalue and associated ground state eigenfunction. Roughly speaking, this means looking
for an associated triple of eigenvalue λ ∈ R, non-negative right-eigenfunction ϕ : D × V →
[0,∞) in L2(D× V ) satisfying ϕ|∂D+ = 0 and a non-negative left-eigenfunction ϕ̃ on D× V

2The authors are grateful to Prof. Paul Smith from Wood who has given us permission to use these images
which were constructed with Wood nuclear software ANSWERS.
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in L2(D × V ) satisfying ϕ̃|∂D− = 0 such that

λ〈ϕ, f〉 = 〈(
←
T +

←
S +

←
F)ϕ, f〉 and λ〈f, ϕ̃〉 = 〈(

←
T +

←
S +

←
F)f, ϕ̃〉.

As such, this introduces the notion of fissile stability, in particular in the case that λ = 0.
This is naturally the desired scenario for a nuclear reactor.

In the physics literature, it is thus often understood that, to leading order, the NTE (2.6) is
solved in the approximate sense

(2.8) ψt(r, υ) = eλt〈g, ϕ̃〉ϕ(r, υ) + o(eλt), t ≥ 0.

Note that the scenario that λ > 0 is obviously to be avoided in practice as this would
correspond to a set-up that could result in exponential growth in fission.

The approximation (2.8) can be seen as a functional version of the Perron-Frobenius Theo-
rem and has given rise to a number of different numerical methods for estimating the value of
the eigenvalue λ as well as the eigenfunctions ϕ and ϕ̃. One approach pertains to the discreti-
sation of (2.1) followed by the use numerical analytic methods; see [30]. Another pertains to
the previously alluded identification of the solution to the NTE as the linear semigroup of a
Markov branching process, which in turn implies Monte-Carlo methods involving the simu-
lation of the aforesaid branching process. Such methods are computationally expensive, as
branching processes, being tree-like structures, are complex to simulate, e.g. from the point
of view of parallelisation. In a related paper to this one, we will discuss a new Monte-Carlo
approach to the NTE based on some of the stochastic analysis we deal with in this article;
see [5].

The main aim of this paper is to introduce the multi-species NTE into the probabilistic
literature, which generalises (2.1) and simultaneously models the flux of all species of particles
and radiation involved in the process of nuclear fission. Moreover, we will show that, just as
in the classical setting, one may develop the notion of a lead eigenvalue and eigenfunction,
which is an important part of describing fissile stability.

The rest of this article is organised as follows. In the next section, we give a brief overview of
the key mathematical literature for the NTE. (Note we do not stray beyond mathematical
literature, as the physics and engineering literature is significantly more expansive.) There-
after in Section 4, we introduce the multi-species NTE (MNTE) and its rigorous formulation,
existence, uniqueness and asymptotics in the setting of an abstract Cauchy problem. In par-
ticular, we show how the unique solution is identified as a c0-semigroup in the appropriate
L2 space. In Section 5, we introduce a spatial branching process that is constructed using the
cross sections that appear in the NTE to describe its stochastic evolution. Here we introduce
its expectation semigroup. In Section 6, we provide a second stochastic representation to
the expectation semigroup introduced in the previous section via a classical method of the
many-to-one formula.

Ideally, we would like to claim that the expectation semigroup discussed in Sections 5 and
6 agree with the c0-semigroup introduced in Section 4. This is particularly desired as it
forms the foundations of how Monte-Carlo simulation of the physical process can be used to
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develop a numerical solution to the MNTE. In Section 7, we consolidate the two notions of
semigroup and show that there is partial agreement in an appropriate sense. As far as we
are aware, this is a point which is currently not clearly discussed in the literature. Finally
we end the paper with a proof of one of the main theorems in Section 5 which provides the
asymptotic behaviour of the solution to the MNTE in terms of the lead eigenfunction. This
is a new result in the multi-species setting in the sense that we have allowed for multiple
types of prompt emissions (both particles and radioactive emissions) rather than the case
of only one type of prompt emission dealt with in [25]; we also allow for multiple types of
delayed emissions (that is, emissions that are pre-emptively held in an unstable radioactive
isotope product from an earlier fission event). Our proof nonetheless takes inspiration from
the classical approach of [8, 25], and remains loyal to the techniques there.

3. Brief historical remarks on the mathematical treatment of the NTE. Classical
texts such as Davison and Sykes [9] were once hailed as a bible of mathematical knowledge
during the post Manhattan Project years when rapid technological advances lead to the
construction of the very first nuclear reactors driving commercial power stations. Around
this time, there was an understanding of how to treat the NTE in special geometries and
also by imposing an isotropic scattering and fission, see for example Lehner [20] and Lehner
and Wing [22, 21]. It was also understood quite early on that the natural way to cite the NTE
is via the linear differential transport equation associated to a suitably defined operator on a
Banach space, moreover, that in this formulation, a spectral decomposition should play a key
role in representing solutions, see e.g. Jörgens [17], Pazy and Rabinowitz [28]. This notion
was promoted by the work of R. Dautray and collaborators, who showed how c0-semigroups
form a natural framework within which one may analyse the existence and uniqueness of
solutions to the NTE; see [7] and [8]. Moreover, a similar approach has also been pioneered
by Mokhtar-Kharroubi [25].

The probabilistic interpretation of the NTE was appreciated from the very first treatments
of the NTE (see e.g. [9] and references therein as well as Bell [2]). Indeed, the physical
description of the neutrons involved in nuclear fission, when governed by basic physical
principles with additional randomness is nothing more than a branching Markov process.
Numerous derivations of the NTE from this perspective can be found in the literature to
various degrees of rigour; see e.g. Bell [2], Mori et al. [26], Pazy and Rabinowitz, [29], Lewins
[23] and Pázsit and Pál. [27].

A more modern treatment of the probabilistic representation through Feynman-Kac expecta-
tion semigroups and the connection to the theory of Markov diffusions is found in Dautray et
al. [7]. A purely probabilistic can be found in Lapeyre et al. [19]. See also the accompanying
papers to this one [5, 6].

Finally before moving on to the rest of this paper, we should also note that there is a body
of literature that pertains to the numerical analysis of the NTE. Recent work in this field,
including the notion of uncertainty quantification, can be found in e.g. [24, 16, 30]. See also
references therein.

4. Multi-species (Backwards) Neutron Transport Equation. In the following dis-
cussion, rather than talk about typed particles, we prefer to say typed ‘emissions’ as the
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different types correspond to particles, electromagnetic rays (e.g. gamma rays) and isotopes
(which are considered to be carriers for delayed emissions). Let us now introduce an advanced
version of the NTE, which takes account of both non-transmutation emissions as well as
transmutation emissions, in particular, allowing for the inclusion of all types of emissions,
prompt neutrons, delayed neutrons, alpha, beta and gamma emissions etc. An important
feature (and arguably a restriction) of our model is that only prompt neutrons can produce
delayed emissions.

In order to keep track of the various emission types, we define the type space I := {1, . . . ,m}
for some m ∈ N, ordered such that

type 1 emissions: prompt neutrons (neutrons released immediately after fission)
types 2, . . . , ` emissions: other prompt emissions (e.g. alpha, beta, gamma emissions)

types `+ 1, . . . ,m emissions: isotopes (holding types/precursors) that hold delayed emissions.

Finally, the set of admissible velocities for each of the types i can be embedded within a
common space V = {υ ∈ R3 : υmin ≤ |υ| ≤ υmax}, with 0 < υmin ≤ υmax < ∞). We now
consider the flux, ψ(i, r, υ, t) of type i emissions through a given region r ∈ D with velocity
υ ∈ V at time t ≥ 0. We are interested in the so called multi-species neutron transport
equation (MNTE) which takes the form

∂

∂t
ψt(i, r, υ) = υ · ∇ψt(i, r, υ)− σi(r, υ)ψt(i, r, υ)

+ σis(r, υ)

∫
V

ψt(i, r, υ)πis(r, υ, υ
′)dυ′

+ σif(r, υ)
∑̀
j=1

∫
V

ψt(j, r, υ)πi,jf (r, υ, υ′)dυ′

+ 1(i=1)σ
1
f(r, υ)

m∑
j=`+1

mj(r, υ)ψt(j, r, υ),(4.1)

for prompt emissions i = 1, · · · , `, whereas, in the case of delayed emissions, i = `+1, · · · ,m
satisfies

∂

∂t
ψt(i, r, υ) = −λiψt(i, r, υ) + λi

∑̀
j=1

∫
V

ψt(j, r, υ)πi,jf (r, υ, υ′)dυ′,(4.2)

which is of a simple form because it describes only how these emissions are held in a suspended
state (no advection) before being converted back to prompt emissions. Similarly to before,
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have the following interpretation:

σis(r, υ) : the rate at which scattering occurs for a type i emission with incoming
velocity υ,

σif(r, υ) : the rate at which fission occurs for a type i emission with incoming
velocity υ,

σi(r, υ) : the sum of the rates σif + σis and is known as the total cross section for a
type i emission,

πis(r, υ, υ
′)dυ′ : the scattering yield at velocity υ′ from incoming velocity υ for a type i

emission, satisfying
∫
V
πis(r, υ, υ

′)dυ′ = 1,

πi,jf (r, υ, υ′)dυ′ : the average type j yield at velocity υ′ from fission with incoming velocity

υ for a type i emission satisfying
∑`

j=1

∫
V
πi,jf (r, υ, υ′)dυ′ <∞,

mj(r, υ) : the average type j (unstable) isotope yield from a fission event due to a
type 1 particle with incoming velocity υ,

λi : the decay rate for a type i isotope.

There are a number of assumptions about the many cross sections that appear in the above
equations that will remain in force throughout the remainder of this text.

Assumption 4.1. All cross sections are non-negative, measurable and uniformly bounded
from above. Moreover, all prompt emissions scatter and hence, without loss of generality,
we also assume that for for each i = 1, · · · , `, the terms σisπis is uniformly bounded away
from the origin on D × V . We need not assume that the cross sections σifπ

i,j
f are uniformly

bounded away from the origin for 1 ≤ i, j ≤ `, with the exception of i = 1, for which it
only makes sense that σ1

fm
j is uniformly bounded away from 0 for each j = ` + 1, · · · ,m.

Without loss of generality, we can assume that 0 < λ`+1 < · · · < λm.

We also assume similar boundary conditions to the single-type case in the sense that emissions
exiting the physical domain D are killed. That is to say

(4.3)


ψ0(i, r, υ) = g(i, r, υ) for 1 ≤ i ≤ m, r ∈ D, υ ∈ V,

ψt(i, r, υ) = 0 for 1 ≤ i ≤ `, r ∈ ∂D if υ · nr > 0.

For the second condition, we will write ψt|∂D+ = 0, where ∂D+ = {(i, r, υ) ∈ {1, · · · , `} ×
∂D × V : υ · nr > 0}

Classical literature suggests that one can integrate delayed neutrons into the setting of the
NTE by adding an inhomogeneity corresponding to the integral of incoming delayed neutrons
from time −∞ to the present; see e.g. [9]. A vectorial representation such as the one above
can be found, however, in the work of [25]. There, only one category of prompt emissions are
considered with multiple species of delayed neutrons.

10



As before, let us define the multi-species backward transport, scattering and fission operators
as they appear in MNTE (4.1) and (4.2), acting on f ∈

∏m
i=1 L2(D × V ), so that, for

i = 1, · · ·m,

←
Tif(·, r, υ) := 1(1≤i≤`)υ · ∇f(i, r, υ)

←
Sif(·, r, υ) := 1(1≤i≤`)

∫
V

[f(i, r, υ′)− f(i, r, υ)]σis(r, υ)πis(r, υ, υ
′)dυ′

←
Fif(·, r, υ) := 1(1≤i≤`)

(∑̀
j=1

∫
V

f(j, r, υ′)σif(r, υ)πi,jf (r, υ, υ′)dυ′ − σif(r, υ)f(i, r, υ′)

)

+1(i=1)

m∑
j=`+1

σif(r, υ)mj(r, υ)f(j, r, υ)

+1(`+1≤i≤m)

(
λi
∑̀
j=1

∫
V

f(j, r, υ′)πi,jf (r, υ, υ′)dυ′ − λif(i, r, υ)

)
,

with zero action otherwise.

It is not often that MNTE is stated as above in (4.1) and (4.2) in existing literature; see
e.g. [25] for presentation of the NTE in a similar vectorial format, which allows for only one
category of prompt neutrons.

The requirement that all cross sections are uniformly bounded is by far not the weakest
assumption we can make (see e.g. Chapter XXI of [8]).

The precise mathematical sense in which we must understand solutions to the coupled system
(4.1) and (4.2) needs some discussion before we can proceed. To this end, we shall first
introduce some notational conventions.

As alluded to above, we are interested in an vector space of functions, written as the column
vector g(·) = (g(1, ·), . . . , g(m, ·))T, whose entries g(i, ·) : D × V → [0,∞), for each i =
1, · · · ,m. More precisely we are interested in functions f ∈

∏m
j=1 L2(D× V ), which is easily

verified to be itself an L2 space with inner product given by

(4.4) 〈f, g〉 =
m∑
i=1

(f, g)i, where (f, g)i =

∫
D×V

f(i, r, υ)g(i, r, υ)drdυ.

Generally speaking, for a scalar quantity which is indexed by i, say a(i), when written without
the index, we will understand it to be a column vector. Sometimes we will want to put f ∈∏m

j=1 L2(D×V ) on the diagonal of an m×m matrix, in which case we will write diag(f). For
our transport, scattering and fission operators, we will understand

←
T = diag(

←
T1, · · · ,

←
Tm),

however, we will understand
←
F to be the matrix acting on vectors f ∈

∏m
j=1 L2(D×V ), with

11



i, j-th entry given by

←
Fi,jf(j, r, υ) := 1(1≤i,j≤`)

(∫
V

f(j, r, υ′)σif(r, υ)πi,jf (r, υ, υ′)dυ′ − 1(i=j)σ
i
f(r, υ)f(i, r, υ′)

)
+ 1(i=1,`+1≤j≤m)σ

i
f(r, υ)mj(r, υ)f(j, r, υ)

+ 1(`+1≤i≤m,1≤j≤`)

(
λi

∫
V

f(j, r, υ′)πi,jf (r, υ, υ′)dυ′ − 1(i=j)λif(i, r, υ)

)
.

The operator
←
S can be handled similarly.

We are fundamentally interested in a classical solution to the so-called (initial-value) abstract
Cauchy problem (ACP)

(4.5)

{
∂

∂t
ut = (

←
T +

←
S +

←
F)ut

u0 = g

where ut is treated as a column vector belonging to the space
∏m

j=1 L2(D × V ), for t ≥ 0.
Specifically this means that, (ut, t ≥ 0) is continuously differentiable in this space. In other
words, there exists a ψ̇t ∈

∏m
j=1 L2(D × V ), which is time-continuous in

∏m
j=1 L2(D × V )

with respect to ‖·‖2, such that limh→0 h
−1‖ut+h − ut‖2 = ψ̇t for all t ≥ 0. Moreover, if we

write
←
A =

←
T +

←
S +

←
F and let

Dom(
←
A) :=

{
g ∈

m∏
j=1

L2(D × V ) : lim
h→0

h−1‖Vh[g]− g‖2 exists

}

be its domain, then ut ∈ Dom(
←
A) for all t ≥ 0, where (Vt[g], t ≥ 0) is the semigroup generated

by (
←
A,Dom(

←
A)), i.e. Vt[g] := exp(t

←
A)g, g ∈

∏m
j=1 L2(D × V ).

Recall that a c0-semigroup (Vt, t ≥ 0) also goes by the name of a strongly continuous semi-
group and, in the present context, this means it has has the properties that (i) V0 = Id, (ii)
Vt+s[g] = Vt[Vs[g]], for all s, t ≥ 0, g ∈

∏m
j=1 L2(D× V ) and (iii) for all g ∈

∏m
j=1 L2(D× V ),

limh→0‖Vh[g]− g‖ = 0. Standard theory, see e.g. Proposition II.6.2 of [14] tells us the follow-
ing.

Theorem 4.2. Let (
←
A,Dom(

←
A)) be the generator of a c0-semigroup (Vt, t ≥ 0). If g ∈

Dom(
←
A), then ut := Vt[g] is a representation of the unique classical solution of (4.5).

The reader may well have wondered where the second boundary condition in (4.3) has gone
in the above formulation. This is a matter of interpretation of (

←
T,Dom(

←
T)), and hence the

generator (
←
A,Dom(

←
A)), as we now discuss.

We are interested in the advection semigroup with exponential killing and killing on the
boundary of D,

(4.6) Ut[g](i, r, υ) = g(i, r + υt, υ)1(t<κDr,υ), i = 1, · · · , ` and t ≥ 0.
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where

(4.7) κDr,υ := inf{t > 0 : r + υt 6∈ D}.

In essence, (Us, s ≥ 0) is the semigroup of the process which moves from a point of issue r in
a straight line with velocity υ and which is killed on hitting ∂D. To see why U := (Us, s ≥ 0)
has the semigroup property, note that

κr+υs,υ = inf{t > 0 : r + υ(t+ s) 6∈ D} = (κr,υ − s) ∨ 0,

so that t < κr+υs,υ if and only if t + s < κDr,υ. Hence for any g ∈
∏m

i=1 L2(D × V ) satisfying
the boundary conditions (4.3), we have from the definition (4.6), for i = 1, · · · , `,

Us[Ut[g]](i, r, υ) = Ut[g](i, r + υs, υ)1(s<κDr,υ)

= g(i, r + υ(t+ s), υ)1(t<κDr+υs,υ)1(s<κDr,υ)

= Ut+s[g](i, r, υ)

It is a straightforward exercise, see e.g. Theorem 2 in Chapter XXI of [8], to show that U is
a c0-semigroup with generator

←
T. Its domain satisfies

Dom(
←
T) =

∏̀
i=1

Dom(
←
Ti)×

m∏
i=`+1

L2(D × V ), where

Dom(
←
Ti) =

{
g ∈ L2(D × V ) : υ · ∇g ∈ L2(D × V ) and g|∂D+ = 0

}
.(4.8)

Here, by υ · ∇g ∈ L2(D × V ) we mean that υ · ∇g exists in the distributional sense and is
integrable in the space L2(D × V ).

The domain of
←
A can be no larger than Dom(

←
T). It turns out however that Dom(

←
A) =Dom(

←
T).

To see why, we need only consider that the linear operators of the form

Kif(i, r, υ) := αi(r, υ)
m∑
j=1

∫
V

f(j, r, υ′)πi,j(r, υ, υ′)dυ,

are continuous mappings from
∏m

i=1 L2(D×V ) into itself, where α and πi,j are non-negative,
measurable and uniformly bounded. The proof is a straightforward exercise which uses the
Cauchy-Schwarz inequality; see for example Lemma XXI.1 of [8]. It follows that Dom(

←
S) and

Dom(
←
F) are both equal to

∏m
i=1 L2(D × V ) and, hence, Dom(

←
A) and Dom(

←
T) agree.

Note there is no particular necessity to put solutions in an L2 space, one might equally work
with the space

∏m
i=1 Lp(D×V ), for p ∈ (1,∞). As the reader might suspect, solutions of the

backwards equation in an Lp space comes hand in hand with a similarly formulated solution
to the forward equation in the conjugate space

∏m
i=1 Lq(D × V ), where q−1 + p−1 = 1. See

for example Chapter XXI of [8] or [25]. The reader will note the exclusion of the L1 and
L∞ conjugacy. The reason for the exclusion boils down to the cumbersome nature of the
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advection operator
←
T = υ · ∇. Quite simply it is not possible to verify the strong continuity

property of the advection semigroup

(4.9) Ut[g](i, r, υ) = g(i, r + υt, υ)1(t<κDr,υ), t ≥ 0.

where κDr,υ := inf{t > 0 : r + υt 6∈ D}. Hence we cannot give a meaning to υ · ∇. This
is unfortunate as the latter is the more natural setting for probabilistic interpretation of
solutions to the ACP. Having said that, the backwards scattering and fission operators,
respectively

←
S and

←
F, are well defined on all

∏m
i=1 Lp(D × V ) spaces for p ∈ [1,∞].

One of our main results will be to establish the asymptotic (2.8) but now in the current
setting. Recall that we have assumed that D ⊆ R3 is a smooth open pathwise connected
bounded domain of concern such that ∂D has zero Lebesgue measure.

Theorem 4.3. Let D be convex. We assume the following irreducibility conditions. For each
i, j ∈ {1, . . . , `} assume that each of the cross sections σif(r, υ)πi,jf (r, υ, υ′), σif(r, υ)mj(r, υ)
and σis(r, υ)πis(r, υ, υ

′) are piece-wise continuous3 on D̄ × V × V and there exists k = ki,j ∈
{1, . . . , `} such that

(4.10) σif(r, υ)πi,kf (r, υ, υ′) > 0 on D × V × V

and

(4.11) σkf(r, υ)πk,jf (r, υ, υ′) > 0 on D × V × V.

Then,

(i) the neutron transport operator
←
A has a simple and isolated eigenvalue λc > −λ`+1,

which is leading in the sense that λc = sup{Re(λ) : λ is an eigenvalue of
←
A} and which

has corresponding non-negative right and left eigenfunctions in
∏m

i=1 L2(D×V ), ϕ and
ϕ̃ respectively and

(ii) there exists an ε > 0 such that, as t→∞,

(4.12) ‖e−λctVt[f ]− 〈f, ϕ̃〉ϕ‖2 = O(e−εt),

for all f ∈
∏m

i=1 L2(D × V ).

Remark 4.1. It could be argued that the assumptions in the above theorem rule out the
possibility that we may, for example, include or beta emissions emissions in the model for that
particular conclusion. Whilst alpha and beta emissions may scatter, they are not energetic
enough to cause fission. The irreducibility conditions (4.10) and (4.11) would thus fail. On
the other hand, it is also known that when such particles are energetic enough, they can draw
gamma radiation or positrons out of nuclei when passing in close proximity. If the latter are
sufficiently energetic, then they can induce fission.

3A function is piecewise continuous if its domain can be divided into an exhaustive finite partition (e.g.
polytopes) such that there is continuity in each element of the partition. This is precisely how cross sections
are stored in numerical libraries for modelling of nuclear reactor cores.
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5. Multi-species neutron branching process. Heuristically speaking, (4.5) can be
thought of as being closely related to the expectation semigroup of a Markov branching
process, or Multi-species nuclear branching process (MNBP) as we shall call it, whose in-
finitesimal generator is

←
T +

←
S +

←
F. Consider the system of typed emissions whose configura-

tions in D × V at time t ≥ 0 are given by {ri,j(t), υi,j(t) : i = 1, . . . , N j
t }, where, for each

j = 1, . . . ,m, N j
t is the number of type j emissions alive at time t. In order to describe the

system as Markovian, we will represent it by the atomic measures

Xt(j, A) =

Nj
t∑

i=1

δ(ri,j(t),υi,j(t))(A), j = 1, . . . ,m,

where A is a Borel subset of D × V and δ is the Dirac measure defined on the same space.
Then the system can be described via the m-tuple Xt(·) = (Xt(1, ·), . . . , Xt(m, ·)), t ≥ 0,
which evolves as follows.

. A emission of type i ∈ {1, . . . , `} with configuration (r, υ) moves in a straight line with
velocity υ from the point r until one of the following events occur:

• The emission leaves the domain, at which point it is killed.
• Independently of all other emissions, a scattering event occurs when a emission comes in

close proximity to an atomic nucleus and, accordingly, makes an instantaneous change
of velocity. For an emission in the system of type i ∈ {1, . . . , `} with initial position
and velocity (r, υ), if we write T is for the random time until the next scattering occurs,
then, independently of any other physical event that may affect the neutron,

(5.1) Pr(T is > t) = exp

{
−
∫ t

0

σis(r + υs, υ)ds

}
.

• When scattering of an emission of type i ∈ {1, . . . , `} occurs at space-velocity (r, υ),
the new velocity is selected independently with probability πis(r, υ, υ′)dυ′.
• Independently of all other emissions, a fission event occurs when an emission smashes

into an atomic nucleus. For an emission in the system with initial position and ve-
locity (r, υ), we will write T if for the random time that the next fission occurs. Then
independently of any other physical event that may affect the emission,

(5.2) Pr(T if > t) = exp

{
−
∫ t

0

σif(r + υs, υ)ds

}
.

• When fission occurs, the smashing of the atomic nucleus releases a random number
of other prompt emissions of type i = 1, · · · , `, say N i,j ≥ 0, which are ejected from
the point of impact with randomly distributed, and possibly corollated, velocities, say
{υi,jk : k = 1, · · · , N i,j}. When fission occurs at location r ∈ D from a emission with
incoming velocity υ ∈ V , the quantity πi,jf (r, υ, υ′)dυ′ describes the average number
of type j prompt emissions released from nuclear fission with outgoing velocity in the
infinitesimal neighbourhood of υ′. In particular∫

A

πi,jf (r, υ, υ′)dυ′ = E

N i,j∑
k=1

1(υi,jk ∈A)

 , A ∈ B(V ).
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• Note, the possibility that Pr(N i,j = 0) > 0 is possible. If i = j = 1 then this is
tantamount to neutron capture or further decomposition into subatomic particles which
are not counted.
• Further, if the initial emission is a (type 1) neutron, a fission event (occurring at rate
σ1
f) may result in the production of unstable isotopes (which later release delayed

emissions). On this event, an average number, mj(r, υ), of type j ∈ {` + 1, . . . ,m}
isotopes will be produced from a collision at position r from a neutron with incoming
velocity υ. The isotopes will inherit the configuration of the incoming nucleus at the
time of collision.

. An isotope of type i ∈ {` + 1, . . . ,m} with inherited physical configuration (r, υ) stays in
the same place for an exponentially distributed amount of time with rate λi. At this point,
it produces a random number of type j ∈ {1, . . . , `} prompt emissions, the average number
of which, along with their corresponding velocities, are chosen according to πi,jf (r, υ, υ′), in
a similar way to previously described. We note that although unstable isotopes stay in the
same spatial position, we will still assign them a velocity as a ‘mark’.

In all cases, it is a natural make the following physical assumption which will remain in force
throughout.

Assumption 5.1. Random emissions of any type are bounded in number by the non-
random constant nmax ≥ 1. In particular this means that

sup
1≤i≤m,1≤j≤`,r∈D,υ∈V

πi,jf (r, υ, V ) ≤ nmax and sup
r,∈D,υ∈V1,1≤j≤`

mj(r, υ) ≤ nmax.

For non-negative and uniformly bounded g :
∏m

i=1(D×V ) 7→ [0,∞), that is g ∈
∏m

i=1 L
+
∞(D×

V ), define the expectation semigroup

(5.3) ψt[g](i, r, v) := Eδ(i,r,v) [〈g,Xt〉],

where Pδ(i,r,v) is law of the process started from a single type i emission with configuration
(r, υ) with corresponding expectation operator Eδ(i,r,v) .
As we have assumed that all cross sections are uniformly bounded, ignoring spatial trajecto-
ries of neutrons (in particular those that are killed by leaving the domain D), it is straight-
forward to compare the growth of (ψt[g], t ≥ 0) against that of a continuous-time Galton-
Watson process with growth rate η{(m × nmax) − 1}, where η = sup1≤i≤`,r∈D,υ∈V σ

i
f(r, υ) +

max`+1≤i≤m λi.

The rate of growth η{(m× nmax)− 1} simply assumes that each emission of type i gives rise
to at most nmax emissions of any other type and at a rate which is uniformly bounded by a
uniform upper bound of all possible rates at which fission events occur. Note this rate takes
account of the emission count introduced into the system at a fission event and the single
emission removed from the system which caused the fission event.

It is also straightforward to stochastically upper bound the process 〈1, Xt〉, t ≥ 0, by the
aforesaid continuous-time Galton Watson process on the same probability space. The latter
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process branches whenever X does, topping up the number of offspring always to nmax, but
also it has additional independent branching events at rate (η−1(1≤i≤`)σ

i
f(r, υ)−1(`+1≤i≤m)λi)

always producing precisely nmax offspring of each of the m possible emissions.

If we denote this Galton-Waton process by (Zt, t ≥ 0), then we have both the stochastic
bound 〈1, Xt〉 ≤ Zt ≤ Zt+s, for all s, t ≥ 0 and the upper estimate

(5.4) sup
1≤i≤m,r∈D,υ∈V

ψt[g](i, r, υ) ≤ ||g||∞ exp(η((nmax ×m)− 1)t), t ≥ 0.

If we put g in the smaller space
∏m

i=1C
+(D×V ), the space of non-negative, continuous and

uniformly bounded vector functions on (D × V ), then we also have by a dominated conver-
gence argument, limt→0 ψt[g] = g in the pointwise sense. Otherwise the latter convergence is
not necessarily clear.

The name ‘expectation semigroup’ is earned thanks to the behaviour of (ψt, t ≥ 0) under
an application of the Markov branching property. Indeed, associated to the MNBP are the
probabilities Pµ for atomic measures of the form

(5.5) µ =

(
n1∑
i=1

δ(1,ri,1,υi,1), · · · ,
nm∑
i=1

δ(m,ri,m,υi,m).

)
=: (µ1, · · · , µm).

The Markov branching property dictates that, for g ∈
∏m

i=1 L2(D × V ) as before and t ≥ 0,

Eµ[〈g,Xt〉] =
m∑
j=1

nj∑
i=1

Eδ(j,ri,j ,υi,j) [〈g,Xt〉] = 〈Eδ(·,·,·) [〈g,Xt〉], µ〉

Here we are abusing our earlier notation in (4.4) and writing for finite atomic measures µ of
the form (5.5),

(5.6) 〈g, µ〉 =
m∑
i=1

(g, µ)i, where (g, µ)i =

∫
D×V

g(i, r, υ)µi(dr, dυ).

Hence, by conditioning on the configuration of the system at time t ≥ 0, we have, for s ≥ 0,

(5.7) ψt+s[g](i, r, v) := Eδ(i,r,v) [EXt [〈f,Xs〉]] = Eδ(i,r,v) [〈ψs[g], Xt〉] = ψt[ψs[g]](i, r, v).

The expectation semigroup property of (ψt, t ≥ 0) does not imply that it is necessarily a
c0-semigroup on

∏m
i=1 L2(D × V ). Recalling our earlier discussion, if we were able to work

with (4.5) in the setting of a c0-semigroup on
∏m

i=1 L∞(D × V )), then we would be much
closer to being able to match the expectation semigroup (ψt, t ≥ 0) to the solution (ut, t ≥ 0).
But even then, problems would occur with verifying strong continuity at the origin.

Nonetheless, classical literature supports the view that it is the physical processes, i.e. in this
setting the MBRW, that provides a stochastic representation of the solution to the backward
MNTE. The authors are not aware of a formal proof of this fact. We will nonetheless try
to address this point shortly in Section 7. In the mean time, let us present an alternative
‘mild’ form of the MNTE (also called a Duhamel solution in the PDE literature) which the
semigroup (ψt, t ≥ 0) more comfortably solves.
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Lemma 5.1. The expectation semigroup (ψt[g], t ≥ 0) is the unique solution in
∏m

i=1 L
+
∞(D×

V ) to the mild MNTE

(5.8) ut(i, r, υ) = Ut[g](i, r, υ) +

∫ t

0

Us[(
←
S +

←
F)ut−s](i, r, υ)ds,

for t ≥ 0, 1 ≤ i ≤ m, r ∈ D, υ ∈ V and g ∈
∏m

i=1 L
+
∞(D × V ).

Before proceeding to the proof, let us make a couple of remarks.

First we note that in the statement of the theorem, we are not working with (Ut, t ≥ 0) as a
c0-semigroup on

∏m
i=1 L∞(D×V ), but a pointwise shift operator. The reader will recall from

the discussion preceding (4.9) that (Ut, t ≥ 0) cannot be defined as such for
∏m

i=1 L∞(D×V ).

Next, thinking of (ψt[g], t ≥ 0) as the expectation semigroup of nothing more than a spatial
Markov branching process, the reader familiar with such processes will note that (5.8) is not
quite what would normally be called a mild equation. Indeed, as a spatial Markov branching
process, one would normally think of the Markov process underlying the MNBP as what we
can call multi-species nuclear random walk (MNRW).

The multi-species neutron random walk is an idealised version of what one would see when
looking down each genealogical line of descent in multi-species nuclear branching process until
a fission event occurs. In the current setting this means a continuous-time typed random walk
by (Jt, Rt,Υt), t ≥ 0, on {1, · · · ,m} × (D × V ) with additional cemetery state {†} when
it exits the physical domain D or an emission otherwise disappears from the system. When
issued in configuration (i, r, υ) ∈ {1, · · · ,m} ×D × V , if 1 ≤ i ≤ `, the emission will move
in a straight line with velocity υ, and at instantaneous rate σis, it will reassign itself a new
velocity υ′, remaining however as the same type of emission, with probability πis(r, υ, υ′)dυ′.
Otherwise, if ` + 1 ≤ i ≤ m, then the emission remains motionless (in effect we can define
σis(i, r, υ) ≡ 0 for i = `+ 1, · · · ,m).

In short the MNRW, (Jt, Rt,Υt), t ≥ 0 is nothing more than a stochastic process with
infinitesimal generator

←
T +

←
S. For short, we refer to it as an (

←
T +

←
S)-MNRW. The process

J , appears as somewhat artificial as the emission type does not change during a scattering
event. However, we can continue the MNRW beyond the a fission event by continuing to
follow the trajectory of one of the emission offspring, for which the value of J may change.

If we suppose that (Pt, t ≥ 0) is the expectation semigroup of the MNRW, then the way
we would normally present the expectation semigroup (ψt, t ≥ 0) as the solution to a mild
equation would be in the form

(5.9) ut[g] = Pt[g] +

∫ t

0

Ps[
←
Fut−s[g]]ds, t ≥ 0, g ∈ L∞(D × V ).

See for example the discussion in Dynkin’s approach to branching particle processes and
superprocesses [12, 10, 13]

Proof of Lemma 5.1. First suppose we start with an emission of type i. By splitting the
expectation in the definition of ψt[g] at the first scattering or fission event, and remembering
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that the time κDr,υ defined in (4.7) is deterministic, we have for r ∈ D and υ ∈ V ,

ψt[g](i, r, υ)

= e−
∫ t
0 σ

i(r+υs,υ)dsg(i, r + υt, υ)1(t<κDr,υ)

+

∫ t∧κDr,υ

0

σi(r + υs, υ)e−
∫ s
0 σ

i(r+υu,υ)du{
σis(r + υs, υ)

σi(r + υs, υ)

∫
V

ψt−s[g](i, r + υs, υ′)πis(r + υs, υ, υ′)dυ′

+
σif(r + υs, υ)

σi(r + υs, υ)

(
m∑
j=1

∫
V

ψt−s[g](j, r + υs, υ′)πi,jf (r + υs, υ, υ′)dυ′

+ 1(i=1)

m∑
j=`+1

mj(r + υs, υ)ψ[g](j, r + υs, υ, t− s)

)}
ds

= e−
∫ t
0 σ

i(r+υs,υ)dsg(i, r + υt, υ)1(t<κDr,υ)

+

∫ t∧κDr,υ

0

e−
∫ s
0 σ

i(r+υu,υ)du(
←
Si +

←
Fi + σi)ψt−s[g](i, r + υs, υ)ds, t ≥ 0.

Now appealing to an analogue of Lemma 1.2, Chapter 4 in [11] (see also the Appendix of
[18]), we can transfer the exponential integrals in each of the terms on the right-hand side
above to a potential term in the integral so that we end with

(5.10) ψt[g](r, υ) = g(i, r+υt, υ)1(t<κDr,υ) +

∫ t∧κDr,υ

0

(
←
Si+

←
Fi)ψt−s[g](i, r+υs, υ′)ds, t ≥ 0,

which agrees with (5.8), for 1 ≤ i ≤ `.

Following a similar approach for `+ 1 ≤ i ≤ m, r ∈ D, υ,∈ V , we also get

ψt[g](i, r, υ) = g(i, r + υt, υ)1(t<κDr,υ) − λi
∫ t∧κDr,υ

0

ψt−s[g](i, r + υs, υ)ds

+

∫ t∧κDr,υ

0

λi

{∑̀
j=1

∫
V

ψt−s[g](1, r + υs, υ′)πi,jf (r + υs, υ, υ′)dυ′

}
ds

= g(i, r + υt, υ)1(t<κDr,υ) +

∫ t∧κDr,υ

0

(
←
Si +

←
Fi)ψt−s[g](i, r + υs, υ′)ds, t ≥ 0,(5.11)

noting in particular that
←
Si ≡ 0. Now putting (5.10) and (5.11) together we obtain (5.8).

For uniqueness, suppose that (ψ
(i)
t , t ≥ 0), i = 1, 2 are two bounded solutions to (5.8). Define
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χt[g] := |ψ(1)
t [g]− ψ(2)

t [g]| and note that, for i = 1 · · · ,m,

χt[g](i, r, υ) ≤
∫ t∧κDr,υ

0

|(
←
S +

←
F)ψ

(1)
t−s[g](i, r + υs, υ)− (

←
S +

←
F)ψ

(2)
t−s[g](i, r + υs, υ)|ds

≤
∫ t∧κDr,υ

0

(
←
S +

←
F)|ψ(1)

t−s[g](i, r + υs, υ)− ψ(2)
t−s[g](i, r + υs, υ)|ds

≤
∫ t∧κDr,υ

0

(
←
S +

←
F)χt−s[g](i, r + υs, υ)ds

≤ C1

∫ t∧κDr,υ

0

m∑
j=1

∫
V

χt−s[g](j, r + υs, υ′)dυ′ds+ C2

∫ t∧κDr,υ

0

χt−s[g](i, r + υs, υ)ds(5.12)

for some constants C1, C2 ∈ (0,∞), where the final inequality follows on account of all cross
sections being uniformly bounded. Now define χ̄t[g] = sup1≤i≤m,r∈D,υ∈V χt[g](i, r, υ), t ≥ 0.
From (5.12) we have that

χ̄t[g] ≤

(
C1

m∑
j=1

Vol(V ) + C2

)∫ t

0

χ̄t−s[g]ds.(5.13)

Reversing the order of integration on the right-hand side above and then applying Grönwall’s
Lemma allows us to conclude that χt[g] ≡ 0, which shows uniqueness.

We close this section by remarking that, given the computations in the proof of Lemma 5.1, it
is clear that conditioning the path of an initial emission type on its first fission event (rather
than it first fission or scattering event) will quickly lead to (5.9). Moreover, the same proof
of uniqueness using Grönwall’s Lemma will also apply leading to uniqueness in the class of
bounded solutions to (5.9), which moreover must agree with the unique bounded solution to
(5.8).

6. Many-to-one neutron random walk. A second probabilistic perspective for analysing
the MNTE is possible, seems rarely to have been discussed in existing literature, if at all.
This consists of collapsing the sum of the operators

←
T +

←
S +

←
F to take the form

←
L + diag(β)

for an appropriate choice of β, where
←
L is the operator which is similar in structure to

←
T +

←
S. In essence, this transformation, which we will describe more rigorously in a moment,

heuristically postulates that the operator
←
T +

←
S +

←
F can be reinterpreted via a Feynman-Kac

formula as the infinitesimal generator of a single emission which undergoes linear transport
and scattering and which also accumulates potential β.

We shall make the following algebraic manipulations. For i ∈ {1, . . . , `}, j ∈ {1, . . . ,m},
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(r, υ) ∈ D × V and υ′ ∈ V , define

αi(r, υ) = 1(1≤i≤`)σ
i
s(r, υ)

+ 1(1≤i≤`)σ
i
f(r, υ)

(∑̀
j=1

∫
V

πi,jf (r, υ, υ′)dυ′ + 1(i=1)

m∑
j=`+1

mj(r, υ)

)

+ 1(`+1≤i≤m)λi
∑̀
j=1

∫
V

πi,jf (r, υ, υ′)dυ′,(6.1)

πi,j(r, υ, υ′) = (αi(r, υ))−1

[
σis(r, υ)πis(r, υ, υ

′)1(1≤i=j≤`)

+ σif(r, υ)
(
πi,jf (r, υ, υ′)1(1≤i,j≤`) +mj(r, υ)1(i=1,j>`))

)
+ λiπ

i,j
f (r, υ, υ′)1(`+1≤i≤m, j≤`)

]
,(6.2)

βi(r, υ) = αi(r, υ)− 1(1≤i≤`)σ
i
s(r, υ)− 1(`+1≤i≤m)λi − 1(1≤i≤`)σ

i
f(r, υ).(6.3)

Note, in particular, that for each fixed 1 ≤ i ≤ m, r ∈ D and υ ∈ V , πi,j(r, υ, υ′) is a
probability distribution on {1, · · · ,m}×V in the sense that

∑m
j=1

∫
V
πi,j(r, υ, υ′)dυ′ = 1. Note

also that the assumption
∑`

j=1

∫
V
πi,jf (r, υ, υ′)dυ′ ≥ 0 ensures that βi ≥ 0, for 1 ≤ i ≤ m.

With simple algebra, we may now identify

(6.4) (
←
T +

←
S +

←
F)f(r, υ) =

←
Lf(r, υ) + diag(β)f(r, υ)

where, for f ∈ Dom(
←
A) (for which it was remarked earlier that it is equal to Dom(

←
T)),

←
Lif(r, v) := 1(i≤`)υ · ∇f(i, r, υ)1(r∈D)

+ αi(r, υ)
m∑
j=1

∫
V

[f(j, r, υ′)− f(i, r, υ)]πi,j(r, υ, υ′)dυ′.(6.5)

Heuristically speaking, we have algebraically gathered all of the operators into the infinites-
imal generator of an

←
L-MNRW and local potential β. This has the attraction of leading

us the aforementioned single emission representation of the solution to the MNTE using a
single-emission Feynman-Kac representation. Said another way, this means that one would
expect that, in the appropriate sense, the solution to the NTE to be represented in the form

(6.6) φt[g](i, r, υ) = E(i,r,υ)

[
e
∫ t
0 β

Js (Rs,Υs)dsg(Jt, Rt,Υt)1(t<τD)

]
,

for t ≥ 0, 1 ≤ i ≤ m, r ∈ D, υ ∈ V . Here P(i,r,v) for the law of the
←
L-MNRW starting from

a single emission with configuration (i, r, υ), and E(i,r,v) for the corresponding expectation
operator.
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Appealing to the Markov property for (J,R,Υ), it is not difficult to show that a semigroup
property similar to (5.7) holds. That is to say, for s, t ≥ 0, 1 ≤ i ≤ m, r ∈ D, υ ∈ V

φs+t[g](i, r, υ) = φs[φt[g]](i, r, υ).

Similarly to the case of (ψt[g], t ≥ 0), if we put g in the smaller space
∏m

i=1C
+(D×V )) then

we also have limt→0 φt[g] = g in the pointwise sense, but otherwise strong continuity at t = 0
is unclear. Note also that, since all cross sections are uniformly bounded, then so is β (in all of
its variables) by a constant, say β̄. Hence, for g ∈

∏m
i=1 L∞(D×V ), the φt[g] ≤ ‖g‖∞ exp(β̄t),

t ≥ 0. As with the case of (ψt[g], t ≥ 0), the notion that (φt[g], t ≥ 0), solves (4.5) is not a
straightforward claim. Nonetheless, as one might expect, these two expectation semigroups
are equal and, we can see this by relating back to (5.8).

Indeed, by conditioning the expectation in the definition of φt[g] on the first scattering event,
and then appealing to the Lemma 1.2, Chapter 4 in [11] in a similar manner to what was
done in the proof of Lemma 5.1, one easily deduces the below result. In the the spatial
branching process literature, this would be called a ‘many-to-one’ lemma.

Lemma 6.1. For g ∈
∏m

i=1 L
+
∞(D × V ), the two expectation semigroups (φt[g], t ≥ 0) and

(ψt[g], t ≥ 0) agree.

7. Consolidating the ACP with the expectation semigroup. We want to understand
how the

∏m
i=1 L2(D × V ) semigroup (Vt, t ≥ 0) that represents the unique solution to the

Abstract Cauchy Problem (4.5) relates to the expectation semigroups (ψt, t ≥ 0) and (φt, t ≥
0) that offer two different stochastic representations to the mild equation (5.8).

We start by noting that if g ∈
∏m

i=1 L
+
∞(D×V ), then, on account of the fact that Vol(

∏m
i=1(D×

V )) = (
∫
D×V drdυ)m < ∞, we also have g ∈

∏m
i=1 L2(D × V ). Since it is unclear whether

(ψt[g], t ≥ 0) is well defined for all g ∈
∏m

i=1 L2(D × V ), it makes makes sense to consider
the comparison with (Vt[g], t ≥ 0) for the more restrictive choice g ∈

∏m
i=1 L∞(D × V ).

The natural setting in which to make the comparison is in the space
∏m

i=1 L2(D × V ) as,
by (5.4), ‖ψt[g]‖∞ < ∞ and the latter implies ‖ψt[g]‖2 < ∞, again thanks to the fact that
Vol(

∏m
i=1(D × V )) <∞.

Theorem 7.1. If g ∈
∏m

i=1 L
+
∞(D × V ) then, for t ≥ 0, Vt[g] = ψt[g] on

∏m
i=1 L2(D × V ),

i.e. ‖Vt[g]− ψt[g]‖2 = 0.

Before moving to its proof, the reader should take care to note that this does not imply
that (Vt, t ≥ 0) and (ψt, t ≥ 0) agree as c0-semigroups on

∏m
i=1 L2(D × V ). In particular,

the comparison between the two semigroup operators is only made on
∏m

i=1 L2(D× V ), and
(ψt, t ≥ 0) has not been (and in fact cannot be) shown to demonstrate the strong continuity
property on

∏m
i=1 L2(D × V ).

Remark 7.1. If we consider Theorem 7.1 in light of Theorem 4.3, noting that (ψt[g], t ≥ 0)
is a uniformly bounded sequence, it is tempting to want to say that the leading eigenfunction
ϕ belongs to

∏m
i=1 L∞(D× V ). This is not the case necessarily and remains to be proved. In

the setting of a single type of emission, this will be demonstrated in the forthcoming paper
[6].
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Proof of Theorem 7.1. Consider the adjusted ACP with inhomogeneity given by

(7.1)

{
∂ut
∂t

=
←
Tut + (

←
S +

←
F)Vt[g]

u0 = g

By taking the difference of two solutions and invoking the uniqueness of the ACP in
∏m

i=1 L2(D×
V ) with initial data g = 0, we note that the solution to (7.1) is unique in

∏m
i=1 L2(D × V ).

However, on the one hand, it is straightforward to verify that

ut = et
←
T g +

∫ t

0

e(t−s)
←
T (
←
S +

←
F)Vs[g]ds, t ≥ 0,

solves (7.1). On the other hand, taking account of the fact that (Vt[g], t ≥ 0) solves (4.5), it
is also the case that

ut = Vt[g], t ≥ 0,

solves (7.1). Uniqueness thus tells us that on
∏m

i=1 L2(D × V ),

Vt[g] = Ut[g] +

∫ t

0

e(t−s)
←
T (
←
S +

←
F)Vs[g]ds = Ut[g] +

∫ t

0

Us[(
←
S +

←
F)Vt−s[g]]ds, t ≥ 0,

where in the second equality we have reversed the direction of integration. In conclusion,
where as (ψt[g], t ≥ 0) solves (5.8) in the pointwise sense, (Vt[g], t ≥ 0) solves it in the∏m

i=1 L2(D × V ) sense.

On the other hand, we know that (ψt[g], t ≥ 0) is valued in
∏m

i=1 L2(D × V ), hence we can
consider,

‖ψt[g]− Vt[g]‖2 = ‖
∫ t

0

Us[(
←
S +

←
F){ψt−s[g]− Vt−s[g]}]ds‖2, t ≥ 0.

To this end, let us note that, for T > 0, and wt ∈
∏m

i=1 L2(D × V ), t ≤ T , we have

‖
∫ t

0

wsds‖2
2 =

∫
D×V

(
t

∫ t

0

ws(r, υ)
ds
t

)2

drdυ

≤
∫
D×V

t2
(∫ t

0

ws(r, υ)2ds
t

)
drdυ

≤ T

∫ t

0

‖ws‖2
2ds, t ≤ T,(7.2)

where in the first inequality we have used Jensen’s inequality and Cauchy-Schwarz in the
second. Moreover, for f ∈

∏m
i=1 L2(D × V ),

‖Us[f ]‖2
2 =

m∑
i=1

∫
D×V

1(s<κDr,υ)f(i, r + υs, υ)2drdυ

≤
m∑
i=1

∫
D×V

f(i, r′, υ)2dr′dυ

= ‖f‖2
2(7.3)
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where the inequality follows as a consequence that, for each υ, the integral
∫
D
1(s<κDr,υ)v(i, r+

υs, υ)2dr integrates over a subdomain of D. Also, we have for the operator
←
S (and similarly

for
←
F), for f ∈

∏m
i=1 L2(D × V ),

‖(
←
S + diag(σs))f‖2 =

(
m∑
i=1

∫
D×V

(∫
V

f(i, r, υ′)σs(r, υ)πis(r, υ, υ
′)dυ′

)2

drdυ

)1/2

≤ C

(
m∑
i=1

∫
D×V

(∫
V

f(i, r, υ′)× 1 dυ′
)2

drdυ

)1/2

≤ C

(
m∑
i=1

Vol(V )

∫
D×V

∫
V

f(i, r, υ′)2dυ′dr

)1/2

≤ C max
1≤i≤m

Vol(V )‖f‖2,(7.4)

where the constant C appears by upper estimating the uniformly bounded cross sections and
in the second inequality we have used Cauchy-Schwarz.

It thus follows from (7.2), (7.3) and (7.4) that, for t ≤ T , writing ωt = ψt[g]− Vt[g], t ≥ 0,

‖ωt‖2
2 = ‖

∫ t

0

Us[(
←
S +

←
F)ωt−s]ds‖2

2

≤ T

∫ t

0

‖Us[(
←
S +

←
F)ωt−s]‖2

2ds

≤ T

∫ t

0

‖(
←
S +

←
F)ωt−s‖2

2ds

= T

∫ t

0

‖(
←
S +

←
F + diag(σ)− diag(σ))ωs‖2

2ds

≤ T

∫ t

0

(
‖(
←
S + diag(σs))ωs‖2 + ‖(

←
F + diag(σf))ωs‖2 + ‖diag(σ)ωs‖2

)2

ds

≤ C ′
∫ t

0

‖ωs‖2
2ds, t ≤ T,(7.5)

where the constant C ′ comes from the fact that σ is uniformly bounded. The final inequality
in (7.5) together with Grönwall’s Lemma now tells us that ‖ωt‖2 = 0, for all t ≤ T . Since T
is chosen arbitrarily, it follows that (ψt[g], t ≥ 0) and (Vt[g], t ≥ 0) are indistinguishable in∏m

i=1 L2(D × V ).

The conclusion of this section is that it is not unreasonable to now understand the expectation
semigroups (ψt[g], t ≥ 0) and (φt[g], t ≥ 0) for non-negative, bounded and measurable g on
D×V as the ‘solution’ to the MNTE in place of (Vt[g], t ≥ 0) for the same class of g. Indeed,
the two agree both in

∏m
i=1 L2(D × V ) and hence (dr × dυ)-Lebesgue almost everywhere.

The reader will also note that from the perspective of Monte-Carlo simulation, the expecta-
tion semigroup (φt[g], t ≥ 0) carries the potential to be exploited in a way that (ψt[g], t ≥ 0)
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cannot. More precisely, where branching trees are difficult to simulate and are not conve-
nient for Monte Carlo computational parallelisation, random walks are. This simple idea is
explored in greater detail in the accompanying paper to this one [5].

8. Asymptotic behaviour of the MNTE: Proof of Theorem 4.3. In this this section
we return to the fundamental notion that the solution to the MNTE in the form (4.5) is
described by its leading asymptotics for large times. That is to say, we give the proof of
Theorem 4.3. Our proof follows closely ideas found in Chapters 4 and 5 of [25].

Recall that the quantities αi, πi,j, βi, i, j = 1, · · · ,m were defined in (6.1), (6.2) and (6.3)
respectively. They were arranged into the operator

←
A =

←
T +

←
S +

←
F, such that Dom(

←
A) =

Dom(
←
T), described in (4.8).

For j = 1, . . . ,m, let us introduce the operators Ki,j on L2(D × V ) by

Ki,jf(r, υ) = αi(r, υ)

∫
V

f(r, υ′)πi,j(r, υ, υ′)dυ′.

These are integral operators, which take the form

Ki,jf(r, υ) =

∫
V

f(r, υ′)ki,j(r, υ, υ′)dυ′

on D × V × V , where

(8.1) ki,j(r, υ, υ′) = σisπ
i
s(r, υ, υ

′) + σifπ
i,j
f (r, υ, υ′).

A similar computation to (7.4) also shows that Ki,jg ∈ L2(D × V ) when g ∈ L2(D × V ).
Then from (4.1) and (6.2), taking care to note the use of the indicators for the inclusion of
terms for different indices, we can write, for 1 ≤ i ≤ `, for g ∈ Dom(

←
A),

←
Aig(i, r, υ) =

←
Tig(i, r, υ)− σi(r, υ)g(i, r, υ)

+
∑̀
j=1

Ki,jg(j, r, υ) + 1(i=1)σ
1(r, υ)

m∑
j=`+1

mj(r, υ)g(j, r, υ)(8.2)

Moreover, for `+ 1 ≤ i ≤ m,

←
Aig(i, r, υ) = −λig(i, r, υ) +

∑̀
j=1

Ki,jg(j, r, υ)(8.3)

With this notation, write

T = diag(
←
T1 − σ1, · · · ,

←
T` − σ`),

Λ = diag(λ`+1, . . . , λm),

K◦ = (Ki,j), for i, j = 1, . . . , `,

M = (Mi,j), where Mi,j = σ1(r, υ)mj(r, υ)1(i=1), for i = 1, . . . , `, j = `+ 1, . . . ,m,

K◦ = (Ki,j), for i = `+ 1, . . . ,m, j = 1, . . . , `.
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Then the abstract Cauchy problem (4.5) on
∏m

j=1 L2(D× V ) may now be written in matrix
form

∂

∂t
ut = Aut, t ≥ 0.

where A = T + K and

T =

[
T 0
0 −Λ

]
and K =

[
K◦ M
K◦ 0

]
.

The matrix T is an operator on
∏m

i=1 L2(D × V )) with domain

Dom(T ) =
∏̀
i=1

Dom(
←
Ti)×

m∏
i=`+1

L2(D × V )

which generates the strongly continuous semigroup (UTt , t ≥ 0) given by

(8.4) UTt [g] =

{
e−

∫ t
0 σ

i(r+υs,υ)dsUt[g] 1 ≤ i ≤ `
e−λit `+ 1 ≤ i ≤ m,

for g ∈
∏m

i=1 L2(D × V )).

In order to prove Theorem 4.3, we consider a different operator that is related to A as follows.
Consider the eigenvalue problem

(8.5) Aϕ = λϕ, λ > −λ`+1,

for ϕ ∈
∏m

i=1 L2(D × V ). Write

ϕ◦(·) = (ϕ(1, ·), · · · , ϕ(`, ·)) and ϕ◦(·) = (ϕ(`+ 1, ·), · · · , ϕ(m, ·))

so that ϕ is the concatenation (ϕ◦, ϕ◦). Separating this into prompt and delayed initial
emissions, it can be written as

Tϕ◦ + K◦ϕ◦ + Mϕ◦ = λϕ◦

λIm−`ϕ◦ = −Λϕ◦ + K◦ϕ◦,

where Im−` is the (m− `)× (m− `) identity matrix. Substituting the second equation into
the first, we get

(8.6) ϕ◦ = (λIm−` + Λ)−1K◦ϕ◦

and

(8.7) (λI` − T)−1K◦(λ)ϕ◦ = ϕ◦ where K◦(λ) = K◦ + M(λIm−` + Λ)−1K◦.

Our strategy is to show that there exists a λc such that (λI` − T)−1K◦(λ) has a leading
eigenvalue 1, and that this is equivalent to λc being an eigenvalue of A. The tool we shall use
to do this is the Krein-Rutman Theorem, which we recall here for convenience in a format
that is appropriate for our use; c.f. [8, p. 286].
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Theorem 8.1 (Krein-Rutman Theorem). Let X be a Banach space and suppose it contains
a convex cone C such that C−C is dense in X. Suppose L is a positive compact linear operator
on X such that r(L) := sup{|λ| : λ ∈ Σ(L)} > 0, where Σ(L) is the spectrum of the operator
L. Then r(L) is an eigenvalue of L with a corresponding positive eigenfunction.

Our proof of Theorem 4.3 requires the following intermediary result below. Before stating
it, the reader is reminded that the eigenvalues λ`+1, · · · , λm are arranged so that λ`+1 is the
smallest. Thus, the condition λ > −λ`+1 ensures that K◦(λ) is well defined. In particular,
(λIm−` + Λ) is invertible. We will use the obvious meaning for I`.

Proposition 8.1. Under the assumptions of Theorem 4.3, for each λ > −λ`+1, r
(
(λI` −

T)−1K◦(λ)
)
is the leading eigenvalue of (λI`−T)−1K◦(λ) with a correpsonding positive eigen-

function ϕ◦λ.

Proof. In relation to the Krein-Rutman theorem stated above, our Banach space is X =∏m
i=1 L2(D × V ) and the corresponding cone is C =

∏m
i=1 L

+
2 (D × V ). It is clear that this

cone is convex, and since every L2 function can be written as the difference of its positive
and negative parts, C satisfies the assumptions of the theorem. We now break the rest of the
proof into a number of steps which are stated with a proof immediately afterwards.

Step 1. First we claim that (λI` − T)−1K◦(λ) is a compact operator.

Fix 1 ≤ i, j ≤ m. By Fubini’s Theorem we have that r 7→ Ki,jf(r, υ) is measurable for
g ∈ L2(D × V ). The operators Ki,j are also integral operators and therefore are continuous
on L2(V ) and compact. The assumed piecewise continuity of the cross sections σisπis and
σifπ

i,j
f and the boundedness of the domain V is sufficient to ensure that r 7→ Ki,j · (r, ·)

is continuous under the operator norm on L2(V ) and hence {Ki,j · (r, ·) : r ∈ D} forms a
relatively compact set in the space of linear operators on L2(V ). With these properties, the
mapping r 7→ Ki,j · (r, ·), for r ∈ D, is said to be regular. One similarly (but more easily)
shows that r 7→ Mi,j ·(r, ·) is regular for r ∈ D as operators on L2(V ). By linearity, this implies
that, for 1 ≤ i, j ≤ `, the mapping r 7→ K◦(λ)i,j is also regular. Hence, by [25, Theorem 4.1],
(λI` − T)−1K◦(λ) is a compact operator.

Remark 8.1. It is precisely at the application of [25, Theorem 4.1] that we need the
convexity of the domain D, as this is required within the aforesaid result.

Step 2. Next we show that (λI` − T)−1K◦(λ) is a positive irreducible operator.

Positivity is a straightforward consequence of the assumptions on the operators Ki,j and the
form of the semigroup defined in (8.4). For irreducibility, it is enough to show that there
exists an integer n ≥ 1 such that [(λI`− T)−1K◦(λ)]nf > 0 for each f ∈

∏`
i=1 L

+
2 (D× V ). To

this end, note that the entries of K◦(λ)(λI` − T)−1K◦(λ) satisfy

[K◦(λ)(λI` − T)−1K◦(λ)]i,j ≥ [K◦(λI` − T)−1K◦]i,j =
∑̀
k=1

Ki,k(λI` − T)−1
k,kKk,j,
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and that Ki,k(λI` − T)−1
k,kKk,j is an integral operator L2(D × V ) → L2(D × V ), 1 ≤ i, j ≤ `,

whose kernel is greater than or equal to

(8.8)
∫ ∞

0

e−λ+σk( r−r
′

t
))tki,k

(
r′,
r − r′

t
, v′′
)
kk,j

(
r, v,

r − r′

t

)
dt

tn
,

where σk(v) = infr∈D{σk(r, υ)}. Note, in order to produce this estimate, the reader will
note that (λI` − T)−1

k,k is the resolvent of (UTt , t ≥ 0) in (8.4). If we choose the index k as
in the assumptions (4.10) and (4.11) then the lower bound (8.8) ensures that [K◦(λ)(λI` −
T)−1K◦(λ)]i,j is positivity improving. It follows that [(λI` − T)−1K◦(λ)]2 is also positivity
improving and therefore (λI` − T)−1K◦(λ) is irreducible.

Step 3. We claim that there exists a non-negative eigenfunction 0 6= ϕλ ∈
∏`

i=1 L2(D × V )
for the operator (λI` − T)−1K◦(λ) with eigenvalue that agrees with r

(
(λI` − T)−1K◦(λ)

)
.

We use de Pagter’s Theorem, cf. [25, Theorem 5.7], which says that the spectral radius of
an irreducible operator is strictly positive; that is to say r

(
(λI` − T)−1K◦(λ)

)
> 0. In turn

the Krein-Rutman Theorem 8.1 states that r
(
(λI`− T)−1K◦(λ)

)
is thus an eigenvalue for the

operator (λI` − T)−1K◦(λ) with a corresponding non-negative eigenfunction ϕ◦λ.

Proof of Theorem 4.3. (i) In looking for a non-negative eigenfunction of
←
A with real

eigenvalue, our earlier discussion tells us we must equivalently look for a solution to (8.5) and
hence (8.7). This is equivalent to finding a real value λc such that r

(
(λcI`−T)−1K◦(λc)

)
= 1.

We again achieve this goal in steps.

Step 1. We want to show that

(8.9) lim
λ↓−λ`+1

r
(
(λI` − T)−1K◦(λ)

)
=∞.

Recall that (λI` − T)−1K◦(λ) is compact and irreducible so by [25, Theorem 5.13] we have
the comparison of the spectral radii,

(8.10) r
(
(λI` − T)−1K◦(λ)

)
≥ r
(
(λI` − T)−1∆[K◦(λ)]

)
,

where ∆[K◦(λ)] is the matrix whose entries are given by ∆[K◦(λ)] = diag(K◦(λ)1,1, · · · , K◦(λ)`,`).

Suppose ∆ is an ` × ` whose diagonal entries are given by operators ∆i on L2(D × V ), for
i = 1, · · · , `. If µ ∈ σ(∆1), the spectrum of ∆1, then (µI` − ∆)1,1 is not invertible, and so
µI` −∆ is also not invertible. Hence µ ∈ σ(∆), the spectrum of ∆, and so σ(∆1) ⊂ σ(∆).
Applying this argument to the diagonal matrix (λI` − T)−1∆K◦(λ), we have that

(8.11) σ([(λI` − T)−1∆K◦(λ)]1,1) ⊂ σ((λI` − T)−1∆K◦(λ))

and so

(8.12) r
(
(λI` − T)−1∆K◦(λ)

)
≥ r
(
[(λI` − T)−1∆K◦(λ)]1,1

)
≥ r
(
(λ−

←
T1 − σ1)−1∆[K◦(λ)]1,1

)
.
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where, in the final inequality, we have used (8.11).

Next recall that (λI` − T)−1K◦(λ)ϕ◦ = ϕ◦ where K◦(λ) = K◦ + M(λIm−` + Λ)−1K◦. Similar
reasoning to the proofs of previous steps shows us that (λ −

←
T1 − σ1)−1∆[K◦(λ)]1,1 and

(λ−
←
T1 − σ1)−1σ1

fm
`+1(K◦)1,`+1 are both compact and irreducible operators, so that

(8.13) r
(
(λ−

←
T1 − σ1)−1∆[K◦(λ)]1,1

)
≥
r
(
(λ−

←
T1 − σ1)−1σ1

fm
`+1(K◦)1,`+1

)
λ+ λ`+1

> 0,

where the first inequality follows from [25, Theorem 5.13] and the second follows from [25,
Theorem 5.7]. Combining (8.10), (8.12) and (8.13), we have

r
(
(λI` − T)−1K◦(λ)

)
≥
r
(
(λ−

←
T1 − σ1)−1σ1

fm
`+1(K◦)1,`+1

)
λ+ λ`+1

> 0,

with the latter term tending to ∞ as λ→ −λ`+1.

Step 2. Next we need to show that

lim
λ→∞

r
(
(λI` − T)−1K◦(λ)

)
< 1

The spectral radius r
(
(λI` − T)−1K◦(λ)

)
as is K◦(λ). Using the standard operator norm ‖·‖2

on
∏`

i=1 L2(D × V ),

‖K◦(λ)g‖2 = ‖M
(
diag

(
(λ+ λ`+1)−1, · · · , (λ+ λm)−1

))
K◦g‖2

and, hence, by inspection, K◦(λ) is decreasing with λ and tends to K◦ as λ → ∞. Note,
moreover, that for all g ∈

∏`
i=1 L2(D × V ),

(λI` − T)−1K◦(λ)g =

∫ ∞
0

e−λt〈f, UTt [K◦(λ)g]〉dt,

showing similarly that (λI`−T)−1K◦(λ) is decreasing in λ. Due to [25, Lemma 8.1] (note that
it is not difficult to see from the proof of that lemma that that the order of the operators
there can be reversed), we have

lim
λ→∞

r
(
(λI` − T)−1K◦(λ)

)
< 1.

Step 3. In this penultimate step, we show that we have found a non-negative function of
←
A,

with eigenvalue λc.

We have the existence of a λc > −λ`+1 such that r((λI` − T)−1K◦(λ)) = 1. That is to say,
thanks to Proposition 8.1, we have found ϕ◦ = ϕ◦λc which solves (8.7), which in turn, thanks
to (8.6) gives us that ϕ◦ = (λIm−` + Λ)−1K◦ϕ◦λc so that with the concatenation

ϕ = (ϕ◦λc , (λcIm−` + Λ)−1K◦ϕ◦λc) ≥ 0
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we have the eigensolution
Aϕ = λcϕ.

which is equivalent to
←
Aϕ = λcϕ.

Step 4. For the final step we need to show that λc is the leading real eigenvalue of
←
A, i.e.

λc = s(A) := sup{Re(λ) : λ ∈ σ(A)},

where σ(A) is the spectrum of the operator A or equivalently of
←
A. Moreover we need to

show that it is simple and isolated.

We first note that since we have shown that λc ∈ σ(A), in particular that the spectrum is non-
empty, it follows from [25, Theorem 5.2] that s(A) ∈ σ(A). Now suppose that λc 6= s(A)
so that, in particular, λc < s(A). Then, thanks again to [25, Lemma 8.1], r

(
(s(A)I` −

T)−1K◦(s(A))
)
< 1 and so 1 is not an eigenvalue of (s(A)I`−T)−1K(s(A)). Said another way,

this means that s(A) is not an eigenvalue of A (and hence of
←
A), leading to a contradiction.

Algebraic and geometric simplicity of λc follows from [8, Remark 12] and [8, Theorem 7(iii)],
respectively.

Before turning to the proof of Theorem 4.3 (ii), we must state another intermediary result
which is translated from a general setting of Banach operators to our current situation; cf.
[25, Theorem 4.1] and [1, p. 359, Theorem 22].

Proposition 8.2. Under the assumptions of Theorem 4.3

σ(A) ∩ {Re(λ) : λ > s(T )}

consists of isolated eigenvalues with finite multiplicities, where s(T ) := sup{Re(λ) : λ ∈
σ(T )}.

Note the Theorem from which the above proposition is derived in [1, p. 359, Theorem 22]
requires as a sufficient condition that (λI−T )−1K is compact, where I is an m×m identity
matrix. This fact easily follows from the conclusion in Step 1 of the proof of Proposition 8.1.

Finally we can complete the proof of Theorem 4.3

Proof of Theorem 4.3. (ii) It is also easy from the structure of T that −λ`+1, · · · ,−λm,
belong to its spectrum. Moreover, for all i = 1, · · · , `, s(

←
Ti − σi) = −∞. Since −λ`+1 is the

largest of these eigenvalues, and λc > −λ`+1 (from part (i) of Theorem 4.3), Proposition 8.2
tells us that σ(A)∩{λ : Re(λ) > −λ`+1} contains at least one isolated eigenvalue with finite
(algebraic) multiplicity (i.e. the lead eigenvalue λc).

Suppose we enumerate the eigenvalues in σ(A)∩{λ : Re(λ) > −λ`+1} in decreasing order by
the set {λ(1), · · · , λ(n)} (noting from earlier that we have at least λ(1) = λc and λ(n) > −λ`+1).
Then, from [8, p. 265], for g ∈ Dom(

←
A), we have

Vt[g] =
n∑
k=1

eλ
(k)t

order(λ(k))−1∑
m=0

tmΠm
k [g]

+O(e−λ`+1t),
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as t→∞, where Πk are projectors in Dom(
←
A).

We are really only interested in the projection onto the eigenfunction that we know exists
in the real part of the spectrum. The projector Π1 can be written in the form

Π1[g] = 〈g, ϕ̃〉ϕ, g ∈
m∏
i=1

L2(D × V ),

where ϕ̃ is the left-eigenfunction with eigenvalue λc, which is guaranteed to exist by examining
the preceding arguments for

←
A and re-applying them for

→
A :=

→
T+

→
S+

→
F, the adjoint operator

of
←
A. Hence, we have the following leading order expansion,

Vt[f ] = eλct(f, ϕ̃)ϕ+O(e[λ(2)∨(−λ`+1)]t).

Note that since, according to Proposition 8.2, λc is isolated, there exists a ε > 0 such that
λ(2) ∨ (−λ`+1) < λc − ε. The statement of part (ii) of Theorem 4.3 now follows.
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