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MARTINGALE OPTIMAL TRANSPORT WITH STOPPING∗

ERHAN BAYRAKTAR† , ALEXANDER M. G. COX‡ , AND YAVOR STOEV†

Abstract. We solve the martingale optimal transport problem for cost functionals represented
by optimal stopping problems. The measure-valued martingale approach developed in [A. M. G.
Cox and S. Källblad, SIAM J. Control Optim., 55 (2017), pp. 3409–3436] allows us to obtain an
equivalent infinite dimensional controller-stopper problem. We use the stochastic Perron’s method
and characterize the finite dimensional approximation as a viscosity solution to the corresponding
HJB equation. It turns out that this solution is the concave envelope of the cost function with respect
to the atoms of the terminal law. We demonstrate the results by finding explicit solutions for a class
of cost functions.
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1. Introduction. The aim of this paper is to solve a class of martingale optimal
transport problems for which the cost functional can be represented as an optimal
stopping problem of the underlying cost function. Specifically, given a continuous and
bounded cost function f : R→ R, we are interested in solving the martingale optimal
transport problem

sup
Pµ

P P(f) with P P(f) = sup
τ∈T0

E[f(Mτ )].(1.1)

The outer supremum is taken over Pµ—the set of all pairs of filtered probability spaces
(Ω,F , (Ft)t≥0,P) and continuous martingales M = (Mt)t≥0 on them such that the
filtration (Ft)t≥0 is generated by a Brownian motion and the terminal law is MT ∼ µ
under P. The inner stopping problem is over Ts—the set of all (Ft)-stopping times
taking values in [s, T ] for s ∈ [0, T ] and some fixed terminal time T > 0.

The duality between martingale optimal transport and robust pricing problems
was studied in a related setting in Dolinsky and Soner [8] for general path-dependent
European-type cost functionals (i.e., payoffs) and continuous models. Recently Bayrak-
tar and Miller [1] and Beiglböck et al. [5] obtained solutions to distribution-constrained
optimal stopping problems by using dynamic programming and martingale transport
methods, respectively. In contrast to our setting, however, the constraints in [1] and
[5] are on the distribution of the stopping times and not on the marginal distribution
at the terminal time. By using the concept of measure-valued martingales, Cox and
Källblad [6] studied the robust pricing of Asian-type options subject to a marginal
distribution constraint. The authors cast the original problem into a control theoretic
framework and obtained a viscosity characterization of the solution.
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Here we employ the control theoretic approach of [6] and [1] to analyze optimal
martingale transport problems with cost functionals which are of American type. The
difficulty in our setting is that we have an additional optimal stopping component.
However, the fact that we optimize over continuous models allows us to prove that
the resulting value function is time-independent up to the terminal time. Since the
original problem is infinite dimensional, we use the continuity with respect to the
terminal law to restrict it only to measures with finitely many atoms. Working in a
Brownian filtration allows us to recast this finite dimensional approximation as a re-
cursive sequence of controller-stopper problems with exit-time components. We prove
that the value functions of these problems are viscosity solutions to the corresponding
sequence of elliptic obstacle problems satisfying exact Dirichlet boundary conditions.
We achieve this by applying the stochastic Perron’s approach in the spirit of Bayrak-
tar and Sirbu [4], where the obstacle problems are associated with Dynkin games,
and Rokhlin [14], where an elliptic Dirichlet boundary problem arose from exit-time
stochastic control. We circumvent the potential difficulty of proving a strong compar-
ison result for viscosity sub/supersolutions satisfying generalized boundary conditions
(see [14]) by using the recursive structure of the problem to show the exact attainment
of these boundary conditions.

The main result in this paper, Theorem 3.1, is the characterization of the value
function of the finite dimensional martingale transport problem as the concave enve-
lope of the payoff with respect to the probability weights of the terminal law’s atoms.
In this final step we use a recent result of Oberman and Ruan [11] on characterizing
convex envelopes as unique viscosity solutions to obstacle problems with appropriate
Dirichlet boundary conditions. One possible application of our results is the robust
pricing of American options. Indeed, the martingales over which we optimize can be
seen as different models for the stock price with a given marginal distribution at the
terminal time.

The rest of this paper is organized as follows: In section 2, we formulate the finite
dimensional approximation of the martingale optimal transport problem; see (2.12).
In section 3, we employ the stochastic Perron’s method to characterize the value func-
tion as the unique viscosity solution of the corresponding Dirichlet obstacle problem
and to show its concave envelope form in an appropriate phase space. Section 4 il-
lustrates how our results can be achieved in a probabilistic framework and provides
concrete examples.

2. Problem formulation. We define the set of measures P as

P := {µ ∈ B(R+) : µ(R+) = 1 and

∫
|x|µ(dx) <∞},

and suppose that the terminal law µ of the martingales in the optimal transport
problem (1.1) satisfies µ ∈ P. In the usual optimal transport framework we can
regard the probability measures P contained in Pµ as transporting the initial Dirac
measure δM0 (i.e., the law of M0) to the terminal law µ under the cost functional
P P—both of these laws are known at time t = 0. On the other hand, notice that the
continuous martingale M satisfies

Mt = E[MT |Ft] =

∫
x ξt(dx) for t ∈ [0, T ],(2.1)

where ξt is the conditional law of MT given Ft under the measure P. In particular,
we have that ξ0 = µ and ξT = δMT

. Therefore, similarly to the method proposed in
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[6], we can rewrite (1.1) in its measure-valued martingale formulation as

sup
(ξt)∈Ξ

sup
τ∈T0

E[f(Mτ )] subject to ξ0 = µ,(2.2)

where Ξ is the set of all terminating measure-valued (i.e., P-valued) martingales (see
Definition 2.7 in [6]) such that (

∫
x ξt(dx))t≥0 is a continuous process a.s. with respect

to the filtered probability space (Ω,F , (Ft)t≥0,P) for all (ξt)t≥0 ∈ Ξ, where (Ft)t≥0 is a
Brownian filtration. Moreover, as in [6], we fix the probability space (Ω,F , (Ft)t≥0,P)
which does not materially change our conclusions.

Let us write (2.2) in the Markovian form

U(t, ξ) = sup
(ξr)∈Ξ

sup
τ∈Tt

E[f(Mτ )|ξt = ξ],(2.3)

and note that we have the following variant of Lemma 3.1 in [6], the proof of which
can be found in the appendix.

Lemma 2.1. If f is nonnegative and Lipschitz, then the function U is continuous
in ξ (in the Wasserstein-1 topology) and independent of t for t ∈ [0, T ).

The continuity in ξ allows us to apply the finite dimensional reduction from
section 3.2 in [6]. In particular, we introduce the set XN = {x0, . . . , xN}, where
0 ≤ x0 < x1 < · · · < xN , and let PN = P ∩M(XN ) and P(Xα) = P ∩M(Xα) for
any α ⊆ {0, 1, . . . , N}, where M(XN ), resp., M(Xα), denote the sets of all measures
on XN , resp., Xα := {xi : i ∈ α}. We assume from now on that the terminal law ξ
(i.e., also µ) is an atomic measure and satisfies ξ ∈ PN . Since we work in a Brownian
filtration, by martingale representation for any terminating PN -valued martingale
(ξt)t≥0 it is true that the (nonnegative) martingales ξnt := ξt({xn}) solve an SDE of
the form

dξnt = wnt dWt(2.4)

for t ≥ 0 and n = 0, . . . , N , where the vector of weights wt = (w0
t , . . . , w

N
t ) satisfies∑N

n=0 w
n
t = 0, and ξnt ∈ {0, 1} implies that wnt = 0. The following result, by analogy

to Corollary 3.6 in [6], follows directly from Lemma 3.4 in [6] and allows us to work
with a bounded set of controls.

Lemma 2.2. Under the above assumption that µ ∈ PN , the value function in
(2.3) for t ∈ [0, T ) reduces to the value function

V (ξ) = sup
w∈A

sup
τ∈T0

E

f
 N∑
j=0

xj ξ
j

T−1
τ

 |ξ0 = ξ

 ,(2.5)

where the admissible control set A is defined as

A := {(wr)r≥0 prog. meas. : wr ∈ cl(DN+1) , ξnr ∈ {0, 1} implies wnr = 0},

with the disk Dk+1 being the intersection of the open unit ball with the hyperplane
z1 + · · ·+ zk+1 = 0 in Rk+1, and T−1

r is the continuous inverse of

Tr :=

∫ r

0

λsds for r ≥ 0,(2.6)

where the strictly positive time change rate process λ = (λr)r≥0 satisfies

‖wr‖2 + λr = 1− I{ξr=δxi}I{Tr=T}.(2.7)
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The role of the time change in (2.6) is to stretch/compress the original time scale so
as to bound the volatility of the state process (i.e., the control process w). Thus we
avoid technical difficulties arising from unbounded control sets later when proving the
viscosity characterization of the value function.

Now notice that the value function V (ξ) can be identified with ṼN (ξ) where for
k = 1, . . . , N , and ξ ∈ P(Xα), with |α| = k+1, we introduce the sequence of problems

Ṽk(ξ) = sup
w∈Aα

sup
τ∈T0

E

[
Ṽk−1(ξσ)I{Tσ≤τ} + f

(
N∑
j=0

xj ξ
j

T−1
τ

)
I{Tσ>τ}|ξ0 = ξ

]
,(2.8)

with

Aα := {(wr)r≥0 prog. meas. : wr ∈ cl(DN+1) ,(2.9)

wi ≡ 0 for any i ∈ {0, 1, . . . , N} \ α},
σ := inf{s ≥ 0 : ξs ∈ P(Xα′) for some α′ with |α′| ≤ k or Ts = T},(2.10)

and Ṽ0(ξ) = f(xi) for ξ = δxi . From now on we will denote the time changed filtration
as (Gt)t≥0 := (FTt)t≥0 and suppress its dependence on λ for notational purposes. The
following lemma shows that we can ignore controls which are small enough and that
we can work with stopping times in the time changed filtration.

Lemma 2.3. The value function Ṽk(ξ) can be written as

Ṽk(ξ) = sup
w∈int(Aαε )

sup
τ∈T

E

[
Ṽk−1(ξσ)I{σ≤τ} + f

(
N∑
j=0

xj ξ
j
τ

)
I{σ>τ}|ξ0 = ξ

]
,(2.11)

where int(Aαε ) := {(wr)r≥0 ∈ Aα : wr ∈ DN+1, ξr 6= δxi implies ‖wr‖ ≥ ε} for any
ε ∈ [0, 1) and T is the set of all (Gt)-stopping times for an appropriately time changed
filtration (Gt)t≥0.

Proof. For any time change rate λ we have λu > 0 for u ≥ 0, and from (2.7) it
follows that ‖wu‖ < 1. Moreover, since λ is strictly positive, we have that Tr and T−1

t

are strictly increasing. It follows immediately that if τ ∈ [0, T ] is an (Ft)-stopping
time, then T−1

τ ≥ 0 is a (Gt)-stopping time and, conversely, if τ ≥ 0 is a (Gt)-stopping
time, then Tτ ∈ [0, T ] is an (Ft)-stopping time. Therefore, in (2.8) we can substitute
T0 with T and τ with Tτ .

What is left is to prove that we can take the outer supremum in (2.8) over
int(Aαε ) ⊂ int(Aα). For 0 < ε < 1 and any w ∈ int(Aα) \ int(Aαε ) we can choose
w̃ ∈ int(Aαε ) defined as w̃n

s :=
√
ε̄sw

n
φ(s) where

φ(s) =

∫ s

0

ε̄udu with ε̄s =
ε2

‖wφ(s)‖2
,

and φ(s) is the right-continuous inverse of the (nonstrictly) increasing continuous
function φ−1(s) given by

φ−1(s) =

∫ s

0

‖wu‖2

ε2
du.

From (2.4) we see that ξnr (corresponding to the control w) has the same distribution
as ξ̃nφ−1(r) (corresponding to the control w̃). Hence, for any (Gt)-stopping time τ we

have that τ̃ = φ−1(τ) is a (Gφ(t))-stopping time such that ξnτ has the same law as ξ̃nτ̃ .
We conclude from (2.8).
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Before going further, we introduce some additional notation. Let α(ξ) be the
subset of elements in XN to which the atomic measure ξ ∈ PN prescribes nonzero
probability, and notice that we have the consistency conditions

Ṽk(ξ) = Ṽ|α(ξ)|−1(ξ) for k ≥ |α(ξ)|.

For every ξ ∈ PN with |α(ξ)| = k + 1 it is true that ξ =
∑k
j=0 ξ

ijδxij , where

α(ξ) = {xi0 , . . . , xik} ⊆ XN . Hence, we can identify every ξ ∈ PN with the vector
ξα := (ξi0 , ξi1 , . . . , ξik) ∈ int(∆k+1), where α = {i0, . . . , ik} and ∆k+1 := {z ∈ Rk+1

≥0 :∑
zi = 1}. We let

Vα(ξα) = Ṽ|α(ξ)|−1(ξ), f̄(ξα) = f(xα · ξα),(2.12)

where xα := (xi0 , . . . , xik). For any r ≥ 0 and w = (w0, . . . , wN ) ∈ int(Aα) we also

let ξw,r,ξ
α

u := (ξi0,w
i0 ,r

u , ξi1,w
i1 ,r

u , . . . , ξik,w
ik ,r

u ), where ξ
ij ,w

ij ,r
u is the unique strong

solution to (2.4) with control wij and initial condition ξ
ij ,w

ij ,r
u = ξij for u ≤ r.

Denote by ξw,r,ξ
α

the PN -valued martingale corresponding to ξw,r,ξ
α

, i.e., ξw,r,ξ
α

u :=∑k
j=0 ξ

ij ,w
ij ,r

u δxij . For short we let ξw,ξ
α

:= ξw,0,ξ
α

and ξw,ξ
α

:= ξw,0,ξ
α

.

3. Viscosity characterization of the value function using stochastic Per-
ron’s method. We want to obtain the viscosity characterization of the value function
Vα. Fix 0 < c < 1 and α ⊆ {0, . . . , N} with |α| = k + 1 ≥ 2 for some integer k ≥ 1.
Using (2.12) rewrite the value function from (2.11) as

Vα(ξα) = sup
w∈int(Aαc )

sup
τ∈T

E
[
Ṽk−1(ξw,r,ξ

α

σ )I{σ≤τ} + f̄(ξw,r,ξ
α

τ )I{σ>τ}

]
,(3.1)

where ξα ∈ ∆k+1. Our aim is to show that Vα is the unique viscosity solution (see,
e.g., Definition 7.4 in [7]) to the associated Dirichlet obstacle problem given by

min

{
− sup

w∈Dk+1
c

1

2
tr(ww′D2

ξVα), Vα − f̄

}
= 0 on int(∆k+1),(3.2)

Vα(ξα) = g(ξα) := Vα′(ξ
α′) on ∂∆k+1,(3.3)

where ξα
′
and α′ correspond to the nonzero components of ξα and α, and Dk+1

c := {w ∈
Dk+1 : ‖w‖ > c}. The derivative D2

ξ is to be understood in the directional sense—

i.e., we restrict ourselves to second directional derivatives tr(ww′D2
ξ) with respect to

directions lying in the set Dk+1
c .

We are now ready to state the main result of this paper—its proof relies on the
stochastic Perron’s method, and we present it in the next section.

Theorem 3.1. The function Vα : ∆k+1 → R defined in (3.1) is the unique contin-
uous viscosity solution of the obstacle problem (3.2) satisfying the Dirichlet boundary
condition (3.3). Moreover, Vα is the concave envelope of f̄ on ∆k+1—i.e., denoting
the projection of ∆k+1 onto Rk≥0 by ∆̃k and the projected functions Ṽα, f̃ : ∆̃k → R
as

Ṽα(z0, . . . , zk−1) := Vα

(
z0, . . . , zk−1, 1−

k−1∑
i=1

zi

)
,(3.4)

f̃(z0, . . . , zk−1) := f̄

(
z0, . . . , zk−1, 1−

k−1∑
i=1

zi

)
,(3.5)
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the function Ṽα is the concave envelope of f̃ .

3.1. Proof of Theorem 3.1. We begin by introducing the notions of stochastic
sub- and supersolutions.

Definition 3.2. The set of stochastic subsolutions to the PDE (3.2) with the
boundary condition (3.3), denoted by V−, is the set of functions v : ∆k+1 → R that
have the following properties:

(i) They are continuous and bounded, and satisfy the boundary condition

v(ξα) ≤ g(ξα) on ∂∆k+1.(3.6)

(ii) For each τ ∈ T and ξ ∈ Gτ with P(ξ ∈ ∆k+1) = 1 there exists a control
w ∈ int(Aα) such that for any ρ ∈ T with ρ ∈ [τ, σ(τ, ξ,w)] we have a.s. that

v(ξ) ≤ E[v(ξw,τ,ξρ∧τ∗(v))|Gτ ],(3.7)

where the (Gt)-stopping times σ(τ, ξ,w) and τ∗(v) are defined as

σ(τ, ξ,w) := inf{s ≥ τ : ξw,τ,ξs /∈ int(∆k+1)},(3.8)

τ∗(v) ≡ τ∗(v; τ, ξ,w) := inf{s ≥ τ : v(ξw,τ,ξs ) ≤ f̄(ξw,τ,ξs )}.(3.9)

Definition 3.3. The set of stochastic supersolutions to the PDE (3.2) with the
boundary condition (3.3), denoted by V+, is the set of functions v : ∆k+1 → R that
have the following properties:

(i) They are continuous and bounded, and satisfy the boundary condition

v(ξα) ≥ g(ξα) on ∂∆k+1.(3.10)

(ii) For each τ ∈ T and ξ ∈ Gτ with P(ξ ∈ ∆k+1) = 1, for any control w ∈
int(Aαc ) and any ρ ∈ T with ρ ∈ [τ, σ(τ, ξ,w)] we have a.s. that

v(ξ) ≥ E[v(ξw,τ,ξρ )|Gτ ],(3.11)

where σ(τ, ξ,w) is defined as in (3.8).

Clearly, V− (resp., V+) is nonempty since f̄ is bounded from below (resp., above) and
any constant which is small (large) enough belongs to V− (resp., V+). Actually, we
can easily verify that f̄ ∈ V−. The following lemma proves an important property of
the sets V− and V+.

Lemma 3.4. For any two v1, v2 ∈ V− we have that v1 ∨ v2 ∈ V−. For any two
v1, v2 ∈ V+ we have that v1 ∧ v2 ∈ V+.

Proof. We will only prove the first part of the lemma—the second part follows
in a similar way. Denote v = v1 ∨ v2 and notice that item (i) in Definition 3.2
is clearly satisfied by v. Now fix τ ∈ T and ξ ∈ Gτ as in item (ii) of Definition
3.2 and introduce the sequence of stopping time, control, and state process triples
(γn,w

n, ξn)n≥−1 defined recursively as follows:

(γ−1,w
−1, ξ−1) ≡ (γ0,w

0, ξ0) := (τ,1{v1(ξ)≥v2(ξ)}w
0,1 + 1{v1(ξ)<v2(ξ)}w

0,2, ξw
0,τ,ξ),

where w0,1,w0,2 are the controls corresponding to the stochastic subsolutions v1, v2
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starting at the pair (τ, ξ), and for n = 0, 1, 2, . . . , the following hold:
(i) If v(ξnγn) ≤ f̄(ξnγn), then we set

(γn+1,w
n+1, ξn+1) := (γn,w

n, ξn).

(ii) If v(ξnγn) = vi(ξnγn) > f̄(ξnγn) for i ∈ {1, 2}, then we set

γn+1 := σ(γn, ξ
n
γn ,w

n) ∧ τ∗(vi; γn, ξnγn ,w
n),

wn+1 := wn+1,i, ξn+1 := ξ
wn+1,i,γn+1,ξ

n
γn+1 ,

where wn+1,i is the control process corresponding to the stochastic subsolu-
tion vi starting at the pair (γn+1, ξ

n
γn+1

), and τ∗(v
i; γn, ξ

n
γn ,w

n) is defined as
in (3.9).

Define the control w by

ws :=
∞∑
n=1

1{s∈[γn,γn+1)}w
n
s

and notice that by construction, ξns = ξw,τ,ξs for s ∈ [γn, γn+1] and any n ≥ 0. For
any stopping time ρ ∈ [τ, σ(τ, ξ,w)] denote ρ ∧ γn = ρn. By the definition of the
sequence (γn,w

n, ξn) we get that

v(ξnρn) = (1{v1≥v2}v
1 + 1{v1<v2}v

2)(ξnρn)

≤ E[(1{v1(ξnρn )≥v2(ξnρn )}v
1 + 1{v1(ξnρn )<v2(ξnρn )}v

2)(ξn+1
ρn+1

)|Gρn ]

≤ E[v(ξn+1
ρn+1

)|Gρn ],

and by iterating the above we conclude that

v(ξ) ≤ E[v(ξn+1
ρn+1

)|Gτ ] = E[v(ξw,τ,ξρn+1
)|Gτ ](3.12)

for any n ≥ 0. Now we apply the same reasoning as in the proof of Lemma 2.3 in [4]
to conclude that

lim
n→∞

γn = σ(τ, ξ,w) ∧ τ∗(v; τ, ξ,w) a.s.

By taking n → ∞ in (3.12) and using the bounded convergence theorem we finally
obtain that v satisfies (3.7) and, hence, is a stochastic subsolution.

We introduce the following assumption.

Assumption 3.5. The boundary function g is continuous on ∂∆k+1.

Proposition 3.6. Under Assumption 3.5 the lower stochastic envelope v− :=
supv∈V− v ≤ Vα is a viscosity supersolution and the upper stochastic envelope v+ :=
infv∈V+ v ≥ Vα is a viscosity subsolution of (3.2) and (3.3).

Proof. The proof uses ideas from Theorem 3.1 (and Theorem 4.1) in [3] and
Theorem 2 in [14]. We repeat the key steps for the lower stochastic envelope v−.

Denote for short V ≡ Vα. It is clear that v− ≤ V since in item (ii) of Definition
3.2 we can choose τ = 0, a constant ξ ∈ ∆k+1, and ρ = σ(τ, ξ,w) for some control
w ∈ int(Aα), and use the conditions (3.6) and (3.9).

We will prove the viscosity supersolution property of v− by contradiction. Take
a C2 test function ϕ : ∆k+1 → R such that v− − ϕ achieves a strict local minimum
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equal to 0 at some boundary point ξ0 ∈ ∂∆k+1 (the case when ξ0 ∈ int(∆k+1) is
simpler). Assume that v− is not a viscosity supersolution and hence

max

{(
− sup

w∈Dk+1
c

Lwϕ

)
(ξ0), (ϕ− g)(ξ0)

}
< 0,

where

(Lwϕ)(ξ) :=
1

2
tr(ww′D2

ξϕ(ξ)).

It follows that there exists w̃ ∈ Dk+1
c such that

(−Lw̃ϕ)(ξ0) < 0.(3.13)

By the continuity of ϕ, g and the lower semicontinuity of v− we can find a small
enough open ball B(ξ0, ε) and a small enough δ > 0 such that

(−Lw̃ϕ)(ξ) < 0, ξ ∈ B(ξ0, ε) ∩∆k+1,

ϕ < g on B(ξ0, ε) ∩ ∂∆k+1,

ϕ(ξ) < v−(ξ), ξ ∈ B(ξ0, ε) ∩∆k+1 \ {ξ0},

v− − δ ≥ ϕ on (B(ξ0, ε) \B(ξ0, ε/2)) ∩∆k+1.

Using Proposition 4.1 in [2] together with Lemma 3.4 above, we obtain an increasing
sequence of stochastic subsolutions vn ∈ V− with vn ↗ v−. In particular, since ϕ and
the vn’s are continuous we can use an argument identical to the one in Lemma 2.4 in
[4] to obtain for any fixed δ′ ∈ (0, δ) a corresponding v = vn ∈ V− such that

v − δ′ ≥ ϕ on (B(ξ0, ε) \B(ξ0, ε/2)) ∩∆k+1.

Now we can choose η ∈ (0, δ′) small enough such that ϕη := ϕ+ η satisfies

(−Lw̃ϕη)(ξ) < 0, ξ ∈ B(ξ0, ε) ∩∆k+1,

ϕη < g on B(ξ0, ε) ∩ ∂∆k+1,

ϕη < v on (B(ξ0, ε) \B(ξ0, ε/2)) ∩∆k+1.

We define

vη =

{
v ∨ ϕη on B(ξ0, ε) ∩∆k+1,

v otherwise

and notice that vη is continuous and vη(ξ0) = v−(ξ0) + η > v−(ξ0). Since condition
(3.6) clearly also holds, we see that vη satisfies item (i) of Definition 3.2. What is
left is to check item (ii) in Definition 3.2 and obtain vη ∈ V− which will lead to a
contradiction since vη(ξ0) > v−(ξ0).

Choose τ ∈ T and ξ ∈ Gτ with P(ξ ∈ ∆k+1) = 1, and, similarly to the proof of
Lemma 3.4 above, introduce the sequence of stopping time, control, and state process
triples (γn,w

n, ξn)n≥−1 defined recursively as follows:

(γ−1,w
−1, ξ−1) ≡ (γ0,w

0, ξ0) := (τ, w̃1A + w̄01Ac , ξ
w0,τ,ξ),
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where w̄0 is the control corresponding to the stochastic subsolution v starting at the
pair (τ, ξ), the event A is given by

A = A(ξ) := {ξ ∈ B(ξ0, ε/2) ∩∆k+1 and ϕη(ξ) > v(ξ)},

and for n = 0, 1, 2, . . . , the following hold:
(i) If vη(ξnγn) ≤ f̄(ξnγn), then we set

(γn+1,w
n+1, ξn+1) := (γn,w

n, ξn).

(ii) If A(ξnγn) holds, then we set

γn+1 := σ(γn, ξ
n
γn ,w

n) ∧ τ1(γn, ξ
n
γn ,w

n) ∧ τ∗(ϕη; γn, ξ
n
γn ,w

n),

wn+1 := w̃, ξn+1 := ξ
w̃,γn+1,ξ

n
γn+1 ,

where the (Gt)-stopping time τ1 is defined by

τ1(τ, ξ,w) := inf{s ≥ τ : ξw,τ,ξs ∈ ∂B(ξ0, ε/2)},

and τ∗ is defined as in (3.9).
(iii) Otherwise we set

γn+1 := σ(γn, ξ
n
γn ,w

n) ∧ τ∗(v; γn, ξ
n
γn ,w

n),

ξn+1 := ξ
wn+1,γn+1,ξ

n
γn+1 ,

where wn+1 is the control process corresponding to the stochastic subsolution
v starting at the pair (γn+1, ξ

n
γn+1

).
By construction we have that γn ≤ τ∗(v

η; τ, ξ,w) where the control w ∈ int(Aαc ) is
defined as

ws :=

∞∑
n=1

1{s∈[γn,γn+1)}w
n
s .

Introduce the event

B := {γn < τ∗(v
η; τ, ξ,w) ∧ σ(τ, ξ,w) for all n ∈ N},

and notice that for each ω ∈ B there exists n0(ω) such that

ϕη(ξn0+2l+1
γn0+2l+1

) ≤ f̄(ξn0+2l+1
γn0+2l+1

)(3.14)

if τ∗(ϕ
η; γn0+2l, ξ

n0+2l
γn0+2l

,wn0+2l) < τ1(γn0+2l, ξ
n0+2l
γn0+2l

,wn0+2l),

vη(ξn0+2l+1
γn0+2l+1

) = v(ξn0+2l+1
γn0+2l+1

)(3.15)

if τ∗(ϕ
η; γn0+2l, ξ

n0+2l
γn0+2l

,wn0+2l) ≥ τ1(γn0+2l, ξ
n0+2l
γn0+2l

,wn0+2l),

v(ξn0+2l+1
γn0+2l+1

) ≤ f̄(ξn0+2l+1
γn0+2l+1

)(3.16)

for l ≥ 0. Denoting γ∞ := limn γn and noticing that ξw,τ,ξs = ξns for s ∈ [γn, γn+1)
we take the limit in (3.16) to obtain

v(ξw,τ,ξγ∞ ) ≤ f̄(ξw,τ,ξγ∞ ).(3.17)
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Now assume there exists C ⊆ B such that for each ω ∈ C we have

ϕη(ξw,τ,ξγ∞ ) > f̄(ξw,τ,ξγ∞ ),

and conclude from (3.14)–(3.15) that there exists large enough positive integer M(ω)
such that for all n ≥M we have

vη(ξnγn) = v(ξnγn).

By taking n → ∞ above we get vη(ξw,τ,ξγ∞ ) = v(ξw,τ,ξγ∞ ) on C. Hence, by using (3.17)
we see that

vη(ξw,τ,ξγ∞ ) ≤ f̄(ξw,τ,ξγ∞ )

on C. On the other hand, on B \ C we have

ϕη(ξw,τ,ξγ∞ ) ≤ f̄(ξw,τ,ξγ∞ )

and again from (3.17) we get

vη(ξw,τ,ξγ∞ ) ≤ f̄(ξw,τ,ξγ∞ )

on B \ C. It follows that γ∞ ≥ τ∗(v
η; τ, ξ,w) on B, and from the definition of B we

conclude that γ∞ = τ∗(v
η; τ, ξ,w) ∧ σ(τ, ξ,w).

Now take any ρ ∈ T with ρ ∈ [τ, σ(τ, ξ,w)], let ρ ∧ γn = ρn, and notice that, by
Itô’s formula applied to ϕη and the subsolution property of v, we have

vη(ξnρn) = (1Aϕ
η + 1Acv)(ξnρn)

≤ E[(1A(ξnρn )ϕ
η + 1A(ξnρn )cv)(ξn+1

ρn+1
)|Gρn ] ≤ E[vη(ξn+1

ρn+1
)|Gρn ],

and by iterating the above we conclude that

v(ξ) ≤ E[v(ξn+1
ρn+1

)|Gτ ] = E[ξw,τ,ξρn+1
)|Gτ ].(3.18)

By taking n → ∞ in (3.18) and using the bounded convergence theorem, we ob-
tain that vη satisfies item (ii) in Definition 3.2. Hence vη ∈ V− and we obtain a
contradiction and, consequently, the supersolution property of v−.

Assumption 3.7. The boundary function g is the concave envelope of f̄ on the
simplex faces {z ∈ ∆k+1 : zj = 0} for all j = 0, . . . , k + 1.

Proposition 3.8. Under Assumption 3.7 we have that v− = v+ = g on ∂∆k+1.

Proof. Let v be the concave envelope of f̄ on the whole of ∆k+1. From Assumption
3.7 it follows that v = g on ∂∆k+1 and v satisfies item (i) of Definition 3.3. Now
take any τ ∈ T , ξ ∈ Gτ with P(ξ ∈ ∆k+1) = 1, w ∈ int(Aαc ), and ρ ∈ T with
ρ ∈ [τ, σ(τ, ξ,w)], and notice that, by the Itô–Tanaka formula (see, e.g., Theorem
VI.1.5 in [13]) applied to the concave function v we have

E[v(ξw,τ,ξρ )|Gτ ] = E
[
v(ξ) +

∫ ρ

τ

v′(ξw,τ,ξs )dξw,τ,ξs +

∫
∆k+1

Laρ v
′′(da)|Gτ

]
≤ v(ξ),

where v′ is the left derivative, the second derivative v′′ is understood in the sense of a
negative measure, and La is the local time at a of the process ξw,τ,ξ. Hence, item (ii)
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of Definition 3.3 is also satisfied and v is a stochastic supersolution. Since v+ satisfies
(3.10) and v+ ≤ v it follows that v+ = g on ∂∆k+1.

Fix a constant control w ∈ int(Aαc ) and define the function v : ∆k+1 → R by

v(ξα) = sup
τ̄∈T

E
[
Ṽk−1(ξw,ξ

α

σ )I{σ≤τ̄} + f̄(ξw,ξ
α

τ̄ )I{σ>τ̄}

]
.(3.19)

The continuity of v(ξα) follows from the boundedness of the control w and standard
results on optimal stopping problems (see, e.g., Theorem 3.1.5 in [9]). We have that
v(ξα) = Vα′(ξ

α′) = g(ξα) for ξα ∈ ∂∆k+1, and we obtain that item (i) of Definition
3.2 is satisfied. Moreover, the optimal stopping time in (3.19) exists and is equal

to τ∗ = σ ∧ τ∗(v; 0, ξα,w), and it follows that v(ξw,ξ
α

t∧τ∗ ) is a martingale (see, e.g.,
Theorems I.2.4 and I.2.7 in [12]). This means that (3.7) is satisfied with equality
and v is a stochastic subsolution. By definition we know that v− ≤ g on ∂∆k+1 and
v ≤ v−. Hence, we conclude that v− = g on ∂∆k+1.

Proof of Theorem 3.1. It is clear that if |α| = 1, then Vα(ξα) = f̄(ξα), where ξ =
δxi for some i and ξα = 1. We continue by induction and assume that we have proven
the statement for all k′ < k. By the induction hypothesis, Vα′(ξ

α′) is the concave
envelope of f̄ on the corresponding to α′ simplex face and hence Assumption 3.7 is
satisfied. Moreover, value functions coincide on the intersection of their corresponding
simplex faces, and therefore, Assumpton 3.5 is also satisfied. Define the Hamiltonian
H as

H(A) := − sup
w∈Dk+1

c

1

2
tr(ww′A) for A ∈ R(k+1)×(k+1),

and notice that for small enough c the set Dk+1
c contains all directions in Rk. On the

other hand, Vα is a viscosity solution to (3.2) on int(∆k+1) if and only if the projected
function Ṽα defined in (3.4) is a viscosity solution of

min

{
− sup

w∈D̃kc

1

2
tr(ww′D2

ξṼα), Ṽα − f̃

}
= 0(3.20)

on int(∆̃k), where D̃kc is the projection of Dk+1
c onto Rk. Hence, the function Vα

is a viscosity solution to H(D2
ξVα) ≥ 0 if and only if Ṽα is a viscosity solution to

−λk[Ṽα] ≥ 0, where λk[Ṽα] is the largest eigenvalue of the Hessian D2
ξṼα. Therefore,

we can apply Theorem 1 in [10] to obtain that any continuous viscosity solution to
(3.20) is concave. Moreover, uniqueness of the solution to (3.20), together with the
projected boundary condition

Ṽα(ξα) = Ṽα′(ξ
α′),(3.21)

follows from the comparison principle for Dirichlet problems stated in Theorem 2.10 of
[11]. This leads to uniqueness and the comparison principle for our original problem
(3.2)–(3.3). In particular, by Propositions 3.6 and 3.8 we have that v+ ≤ v− on
int(∆k+1). On the other hand, by Proposition 3.6 we also have v− ≤ Vα ≤ v+ on
∆k+1. Therefore, we can conclude that v− = Vα = v+ on ∆k+1 and that Vα is the
unique viscosity solution of (3.2) with the boundary condition (3.3), and the same is
true for the projected versions.

Finally, from Theorem 2 in [10] we have that the concave envelope of the projected
cost function f̃ solves (3.20), and since it also clearly satisfies (3.21), we conclude from
the uniqueness that Ṽα is the concave envelope of f̃ .
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Remark 3.9. The value function Vα can be regarded as the concave envelope on
the simplex ∆k+1 of the modified cost function f̄ . Indeed, we can ignore one direction
in the state space vector ξ due to the fact that ∆k+1 is a k-dimensional simplex and
any concave function on a k-dimensional simplex in Rk+1 is concave in any k of its
variables (and vice versa). Note that the optimal control weight vector w∗ may not
be unique. It is determined by the direction on the simplex ∆k+1 for which the second
directional derivative of the value function Vα is zero—if the value function is linear
at a point, then clearly many directions satisfy this condition.

Remark 3.10. When applying the stochastic Perron’s method to controlled exit-
time problems, one needs a comparison result for the corresponding PDE in order
to characterize the value function as a viscosity solution (see, e.g., Definition 2 and
Remark 1 in [14]). These comparison results are of a slightly different nature than
the standard ones of, e.g., Theorems 7.9 and 8.2 in [7]—the latter requires an a priori
knowledge of the behavior of the stochastic semisolutions at the boundary. We were
able to exploit the specific structure of our exit-time problem in Proposition 3.8 to
obtain the behavior at the boundary of the stochastic semisolutions. This allowed the
application of the comparison result in [11].

4. Examples. Let us first provide some intuition behind the choice of optimal
controls and stopping times. We will consider a general class of cost functions—namely
all bounded, nonnegative Lipschitz continuous functions f : R→ R. This is the class
for which Theorem 3.1 holds. We will use our concave envelope characterization to
choose the optimal controls and verify that Brownian exit times are optimal.

We abuse notation and regard f̄ as a function on the projected set of probability
vectors ∆̃N := {z ∈ RN≥0 :

∑
zi ≤ 1}. Denote by conc(f̄) the concave envelope of f̄

on ∆̃N . For any initial probability vector z ∈ ∆̃N corresponding to some terminal
law µ, e.g.,

µ =

N∑
i=1

ziδxi +

(
1−

N∑
i=1

zi

)
δx0 ,

we will find a candidate optimal control weight process (wr)r≥0 taking values in the

projected admissible set D̃Nc (i.e., the projection of DN+1
c onto RN ) and a candidate

optimal stopping time τ∗ such that the resulting value function will be conc(f̄).
The usual characterization of optimal stopping times leads us to choose the can-

didate τ∗ as

τ∗ := inf{r ≥ 0 : conc(f̄)(ξw,zr ) = f̄(ξw,zr )}.(4.1)

In particular, if the initial probability vector z is such that conc(f̄)(z) = f̄(z), we
can simply set τ∗ = 0. Assume now that conc(f̄)(z) > f̄(z) and note that the point
(z, conc(f̄)(z)) belongs to a planar region of the graph of conc(f̄)(z) that contains
a point (z(1), conc(f̄)(z(1))) such that conc(f̄)(z(1)) = f̄(z(1)). In other words, all
points on the line between (z, conc(f̄)(z)) and (z(1), conc(f̄)(z(1))) are also part of
the graph of conc(f̄). We choose the control weight process as a constant vector in
the direction of z − z(1), i.e., wr ≡ c1(z − z(1)), where the constant c1 is such that
w is admissible. Therefore, the probability vector process (ξw,zr )r≥0 evolves along

the direction z − z(1) and either hits the point z(1) or hits the boundary of ∆̃N at
some point z(2). The point z(2) can be regarded as belonging to a lower dimensional
projected set ∆̃N̄ := {z ∈ RN̄≥0 :

∑
zi ≤ 1} where N̄ < N . If conc(f̄)(z(2)) > f̄(z(2)),
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we repeat the same procedure when choosing a control on this lower dimensional
set—clearly this can happen at most N times.

For simplicity’s sake assume that conc(f̄)(z(2)) = f̄(z(2)). In other words, by
looking at (2.4) and (4.1), we get that τ∗ is the first exit time of a Brownian motion

from the interval with endpoints v1 =
z
(1)
0 −z0

c1(z0−z′0) and v2 =
z
(2)
0 −z0

c1(z0−z′0) . Using the formula

for the Brownian exit times from an interval, we obtain that the projected value
function as defined in (3.4) satisfies

Ṽα(z) =
v2

v2 − v1
f̄(z(1)) +

−v1

v2 − v1
f̄(z(2)),

and the point (z, Ṽα(z)) lies on the line going through (z, conc(f̄)(z)) and (z′, conc(f̄)
(z′)); hence Ṽα(z) = conc(f̄)(z). Similar calculation is valid for the case conc(f̄)(z(2))
> f̄(z(2)).

Finally, by application of the Itô–Tanaka formula as in the proof of Proposition
3.8, we conclude that conc(f̄) bounds the value function from above, and therefore,
the two coincide.

Remark 4.1 (generalized put options). In fact, if the cost function is of the form

f(s) = (g(s))+,

for some concave function g, by direct calculation we can check that the candidate
control and stopping time described above are optimal among those controls that
follow a fixed direction and those stopping times that are Brownian exit times from
an interval. By applying Theorem 3.1, we see that optimization over this class is
sufficient.

In what follows, using the observations above, we will construct the optimal con-
trols and stopping times explicitly for a piecewise linear cost function which can be
thought of as a call option spread.

4.1. Call option spread. We let f take the form

f(s) = (s−K1)+ − (s−K2)+

for K1 ∈ (−1, 1), K2 ∈ (0, 1), and K1 < K2, which can be seen as a bull call spread.
Set N = 2, XN = {−1, 0, 1}, and assume that the law of MT is given by

µ = (1− γ − β)δ−1 + βδ0 + γδ1

for 0 < γ, β < 1 such that 0 < γ + β < 1. Therefore, the initial probability vector is

ξα ≡ (ξ0
0 , ξ

1
0 , ξ

2
0) = (1− γ − β, β, γ) ∈ int(∆3),

where α = {0, 1, 2}. From the definition of the process M in (2.1) it follows that

Mt = γT−1
t
− (1− γT−1

t
− βT−1

t
) = 2γT−1

t
+ βT−1

t
− 1 for t ∈ [0, T ],(4.2)

where βr = ξ1
r and γr = ξ2

r for r ≥ 0. We introduce the constants s−101 = 2γ+ β− 1,
s01 = γ

γ+β , s1 = 1, and s0 = 0 corresponding to the value of M0 taking various atoms

of XN into account. We use the notation Vα(β, γ) := Vα(ξα) and f̄(β, γ) := f̄(ξα).
We will now describe how to obtain a guess for the value function which, as

expected, will turn out to be the concave envelope of the modified cost function
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f̄ . Notice that f is nondecreasing and achieves its maximum for any s ≥ K2 and
its minimum for any s ≤ K1. Therefore, for the martingale state process ξw,ξ

α

(or,
equivalently, the law process ξw,ξ

α

), we want to offset any decrease of probability mass
on the interval (K2,∞) with a corresponding decrease on the interval (−∞,K1). We
consider the following cases:

1. Assume M0 ≡ s−101 ≥ K2. Then it is optimal to stop immediately, i.e.,
choose an optimal stopping time τ∗ = 0 and obtain Vα(β, γ) = K2 −K1.

2. Assume s01 ≥ K2 > s−101, and let the constant η ∈ [0, 1−γ−β) be such that
γ−η

γ+β+η = K2. Then it is optimal to choose a stopping time τ∗ and a control

process wr ≡ (w0
r , w

1
r , w

2
r) = (−c1 − β

γ c1,
β
γ c1, c1) for any r ∈ [0, τ∗], where

the constant c1 > 0 is such that w is an admissible control and the optimal
stopping time τ∗ is the first exit time of γr from the interval (0, γ

γ+β+η ). Note
that this choice of w is not unique.
Equivalently, by using (4.2), we see that τ∗ is the first exit time of MTr from
the interval (−1,K2). This corresponds to letting the law ξw,ξ

α

evolve until
the stopping time τ∗ when it separates into two measures of the form

ξw,ξ
α

τ∗ =

{
γδ1+βδ0+ηδ−1

γ+β+η with probability γ + β + η,

δ−1 with probability 1− (γ + β + η).

By the definition of η we have that γ+β+η = 2γ+β
K2+1 , and therefore, Vα(β, γ) =

2γ+β
K2+1 (K2 −K1).

3. Assume K2 > s01, and let the constant η ∈ (0, β) be such that γ
γ+η = K2.

Then we choose a stopping time R1 and a control process wr ≡ (w0
r , w

1
r , w

2
r) =

(−c1 − η−β(γ+η)
γ−γ(γ+η)c1,

η−β(γ+η)
γ−γ(γ+η)c1, c1) for any r ∈ [0, R1], where the constant

c1 > 0 is such that w is an admissible control and the stopping time R1 is the
first exit time of γr from the interval (0, γ

γ+η ). Equivalently, by using (4.2), we

see that R1 is the first exit time of MTr from the interval
(
− 1−γ−β

1−γ−η ,K2

)
. This

corresponds to letting the law ξw,ξ
α

evolve until time R1 when it separates
into two measures of the form

ξw,ξ
α

R1
=

{
γδ1+ηδ0
γ+η with probability γ + η,

(β−η)δ0+(1−β−γ)δ−1

1−γ−η with probability 1− (γ + η).

In addition, if s0 ≤ K1, we choose the optimal stopping time as τ∗ ≡ R1 and
we have Vα(β, γ) = γ

K2
(K2−K1). This is due to the fact that if γR1 = 0 (i.e.,

the atom {1} dies), it is not worth evolving the law ξw,ξ
α

further because
the cost function f will be 0 under any combination of the atoms {0,−1}. In
other words we gain nothing from transferring probability mass between the
atoms 0 and −1.
On the other hand, if we also have that s0 > K1, on the event A := {γR1

= 0}
we let the control process be wr = (−w1

R1
, w1

R1
, 0) for r ∈ (R1, R2] and set

the optimal stopping time

τ∗ = R11Ac +R21A,

where the stopping time R2 is the first exit time of βu from the interval (0, 1)
for u > R1. Equivalently, by using (4.2), we see that R2 is the first exit
time of MTr from the interval (−1,0) for r > R1. This corresponds to further
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evolving the law ξw,ξ
α

until at the stopping time R2 > R1 it splits into three
measures of the form

ξw,ξ
α

R2
=


γδ1+ηδ0
γ+η with probability γ + η,

δ0 with probability β − η,
δ−1 with probability 1− β − γ.

Therefore we have

Vα(β, γ) =
γ

K2
(K2 −K1) + (β − η)(−K1) = γ(1−K1)− βK1.

Fig. 1. The modified cost function f̄(β, γ) on the left plotted together with the projected value
function Vα(β, γ) on the right for K1 = −0.1 and K2 = 0.5. The three triangular planar regions
correspond to the three cases above. It is evident that Vα(β, γ) is the concave envelope of f̄(β, γ).

The candidate value function Vα(β, γ) is given by

Vα(β, γ) =


K2 −K1 (i) s−101 ≥ K2,
2γ+β
K2+1 (K2 −K1) (ii) s01 ≥ K2 > s−101,
γ
K2

(K2 −K1) (iii) K2 > s01, s0 ≤ K1,

γ(1−K1)− βK1 (iv) K2 > s01, s0 > K1,

and it is the concave envelope of f̄(β, γ) (see Figure 1).1

Appendix A. Proof of Lemma 2.1.

Proof. In order to prove the independence in the t variable we choose 0 ≤ t1 <
t2 < T and notice that U(t1, ξ) ≥ U(t2, ξ). Indeed, the supremum in (2.3) correspond-
ing to U(t1, ξ) is taken over a larger set of stopping times than the one corresponding

1It turns out that the value function in this example is the same as in the Asian option setting
of [6]; see the example in section 4.2 therein. This is because under their optimal model the stock
price is a fixed random variable which is given by the average of our measure-valued martingale at
τ∗ using (2.1).
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to U(t2, ξ). Conversely, for any ξ ∈ Ξ and τ ∈ Tt1 we can choose ξ̃ ∈ Ξ and τ̃ ∈ T̃t2
such that

τ̃ = aτ + b, ξ̃at+b = ξt,

with a = T−t2
T−t1 and b = T (t2−t1)

T−t1 . This choice leads to∫
x ξτ (dx) =

∫
x ξ̃τ̃ (dx),

which allows us to conclude that U(t2, ξ) ≥ U(t1, ξ) and hence U(t2, ξ) = U(t1, ξ),
and we have independence in t for t ∈ [0, T ).

To prove the continuity in ξ we first observe (e.g., see Lemma 3.1 in [6]) that if
(ξr)r≥0 ∈ Ξ with ξt = ξ and dW1(ξt, ξ

′) < ε (here dW1 is the Wasserstein-1 metric),
then there is (ξ′r)r≥0 ∈ Ξ with ξ′t = ξ′ such that E[|

∫
x ξτ (dx) −

∫
x ξ′τ (dx)||Ft] < ε

for all τ ∈ Tt with some fixed λ ∈ Λ. Indeed, we know that ξs = E[ξT |Fs], and we
can define

ξ′s(dy) = E
[∫

ξT (dx)m(x, dy)|Fs
]
, s ≥ t,

where the Borel family of probability measures m(x, dy) is obtained by the disintegra-
tion of the transport plan Γ(dx, dy) = ξt(dx)m(x, dy) such that Γ(R+, dy) = ξ′(dy),
Γ(dx,R+) = ξt(dx), and

∫ ∫
|x− y|Γ(dx, dy) < ε. By optional stopping we get∣∣∣∣∫ x ξτ (dx)−

∫
x ξ′τ (dx)

∣∣∣∣ ≤ E
[∫ ∫

|x− y|ξT (dx)m(x, dy)|Fτ
]
,

and hence

E
[∣∣∣∣∫ x ξτ (dx)−

∫
x ξ′τ (dx)

∣∣∣∣ ∣∣∣Ft] ≤ ∫ ∫ |x− y|Γ(dx, dy) < ε.

Denote by Mξ the process corresponding to the measure-valued martingale (ξr)r≥0

from (2.1). By the Lipschitz property of f and the above inequality we get

E
[∣∣∣f(Mξ′

τ

)
− f

(
Mξ
τ

)∣∣∣ |Ft] < ε.

Now fix ε′ > 0 and consider ξ, ξ′ ∈ P such that dW1
(ξ, ξ′) < ε′/2. From the reasoning

above, we can choose (ξr)r≥0, (ξ
′
r)r≥0 ∈ Ξ with ξt = ξ and ξ′t = ξ′ such that U(t, ξ) ≤

supτ∈Tt E[f
(
Mξ
τ

)
|Ft] + ε′/2 and E

[∣∣∣f(Mξ′

τ

)
− f

(
Mξ
τ

)∣∣∣ |Ft] < ε′/2. Therefore, we

obtain

U(t, ξ) ≤ sup
τ∈Tt

E[f(Mξ
τ )|Ft] + ε′/2 ≤ sup

τ∈Tt
E[f(Mξ′

τ )|Ft] + ε′ ≤ U(t, ξ′) + ε′,

and by symmetry we get |U(t, ξ)− U(t, ξ′)| ≤ ε′ and continuity follows.
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